
The Architecture of eBay Search
Andrew Trotman
University of Otago

andrew@cs.otago.ac.nz

Jon Degenhardt
eBay inc.

jdegenhardt@ebay.com

Surya Kallumadi
Kansas State University

surya@ksu.edu

ABSTRACT
The architecture of a large-scale search engine is dependent on
the application. In the case of a web search engine, the document
collection can be considered to be a constantly growing, but slowly
changing, archive. The task is to find and crawl good pages and
to index them. The rate of change of these pages can be estimated
and the pages re-crawled and re-indexed periodically. Users issue
queries, and the results to those queries are likely to be the same
from day to day so can be cached.

eCommerce, on the other hand, is quite different. The document
collection can change very quickly, the results of queries may differ
from user to user, and crawling may not be required.

In this contribution, we outline the architecture of Cassini, the
eBay search engine. eBay tackles a problem quite different from
that of a traditional web search and consequently chose to design
and build a search engine from scratch and to customize it to the
nature of the problem.

CCS CONCEPTS
• Information systems → Environment-specific retrieval;

KEYWORDS
Product Search, Industrial Information Retrieval.
ACM Reference format:
Andrew Trotman, Jon Degenhardt, and Surya Kallumadi. 2017. The Architec-
ture of eBay Search. In Proceedings of ACM SIGIR Workshop on eCommerce,
Tokyo, Japan, August 2017 (SIGIR 2017 eCom), 7 pages.
https://doi.org/

1 INTRODUCTION
Like a traditional web archive, a marketplace such as that at eBay
forms a large search space. At the time of writing there were about a
billion searchable documents (items) available on eBay. Unlike a tra-
ditional web archive, a marketplace such as eBay sees rapid change
to that document collection, with approximately 20% of the collec-
tion changing every day. Also unlike a web archive, changes in the
document collection must be propagated to the users immediately.

An example scenario illustrates this immediacy. An item may
be seeing a bidding war where two or more users are pushing up
the price, while a third user is searching for a “good deal” listing
results to their search ordered on price from low to high. That third
user expects the price they see on their screen to be accurate at the
Copyright © 2017 by the paper’s authors. Copying permitted for private and academic
purposes.
In: J. Degenhardt, S. Kallumadi, M. de Rijke, L. Si, A. Trotman, Y. Xu (eds.):
Proceedings of the SIGIR 2017 eCom workshop, August 2017, Tokyo, Japan, published
at http://ceur-ws.org

moment of the search (despite the bidding war). If the item sells
to one of the bidders, then a fourth user should not be able to find
that item even if it was sold only a few milliseconds earlier. And
it is obvious that two users cannot be permitted to buy the same
unique item.

Although this appears to be a simple case of database search, it
is not – it is complex Information Retrieval search. eBay buyers
can, and do, issue queries along the lines of “blue Converse All
Stars”, price restricted to under $10, and ordered on price includ-
ing shipping. Such a scenario requires a free-text search (to find
the shoe), a facet restriction (under $10), the use of personalized
information about the seller (the shipping from address), the buyer
(the shipping to address), and feature data such as the weight of the
item (necessary to compute the shipping cost). In this example, the
rank order of items is dependent on the seller and the buyer and
consequently a different user is likely to see a different ordering
making result caching near impossible.

Clearly there is much in common between a traditional large
scale web search engine and eBay. Both require distributed search
in order to search the collection quickly. Both require replicated
search in order to maintain high levels of reliability. Both require
multiple data centers to mitigate network latency issues and to
insure against network or power problems.

In this position paper we outline the current state of the eBay
search engine (called Cassini), and outline the reasons behind some
of the engineering decisions. We start with the search engine itself,
before moving on to briefly discuss ranking (unfortunately the
details of which are proprietary), we then discuss the indexing
pipeline. Finally we introduce one of the many difficult and unique
eCommerce challenges eBay faces: updates to sellers of items.

2 DISTRUBUTED IR
There is a practical limit to the number of queries that can be ser-
viced on a single machine in a given time period. Results from the
SIGIR RIGOR .gov2 evaluation showed the top performing system,
JASS [8], resolving queries in about 28ms – or only 36 queries per
second on short queries. A system like eBay must scale in three
dimensions, to increased queries per second, to increased complex-
ity of those queries, and to an increased number of documents
searched as the size of the document collection grows. The natural
solution is a distributed architecture.

The usual distributed solution is to break the document collection
into several equal sized chunks called shards, and to search each
shard on a different CPU core (or machine) and in parallel. The
machines that resolve the query are referred to as query nodes and
results are then merged at a broker.

The number of shards that are needed is a function of the query
load and the number of documents. Replication is used to address
an increase in query rate. This results in a grid of machines where
columns are shards and rows are replicas. eBay takes exactly this

https://doi.org/
https://doi.org/

SIGIR 2017 eCom, August 2017, Tokyo, Japan Andrew Trotman, Jon Degenhardt, and Surya Kallumadi

approach with the exact configuration changing over time (by man-
ual re-configuration) in order better address the behavioral changes
of the users, advances in hardware, and a growing document col-
lection.

It is relatively easy to show that the same document will be found
regardless of the sharding strategy. However, it is also relatively
easy to show that for any ranking function using IDF it is not
possible to guarantee that the relative rank order of the documents
will remain the same if the shards are searched in isolation then
merged. Prior work suggests several solutions to this [3] including
keeping a central vocabulary of terms and frequencies seen across
all the shards. In a search scenario undergoing rapid change (such as
eBay), keeping a central vocabulary is impractical. A better solution
comes from uncooperative distributed search: probing [10]. With
probing the search engine first sends a query to a query node
in order to ascertain term statistics, the query is annotated with
those statistics and then distributed back to the query nodes to be
resolved. Using this approach the global statistics are computed on
the fly and IDF is, consequently, correct at the moment of query
processing – ideal for a rapidly changing collection. In practice,
probing is expensive as it substantially increases network traffic.
It also introduces an additional level of dependence between the
broker and the query nodes as the query cannot be resolved at any
query node until the broker has fully annotated the query.

eBay, like many distributed search engines, prefers the central
nothing approach. That is, the task of the broker is to distribute
the query to the query nodes and to merge the results, while the
task of the query node is to search its shard. In this way the query
nodes are independent and there is no cross-system dependency.
Although the global term statistics necessary to correctly compute
IDF are inaccurate, the statistics stored at each node are a good-
enough estimate of the global statistics because each shard is large
(typically tens of millions of documents).

There has been considerable research into selective search (also
known as topical sharding) [6] and collection selection by using
source selection approaches such as ReDDE [11]. It is unclear from
the literature whether topical sharding is used in any commercial
search engine, and it is not used at eBay. One consideration is failure
tolerance. Random sharding appears to offer better resilience to
query node drop-out than topical sharding, as it naturally avoids
dropping large numbers of relevant documents. Also importantly,
query streams are topically unpredictable – especially after a world
event. For example, when a famous musician dies eBay can see a
peak in queries for merchandise and memorabilia of that individual.
With random sharding that increased load is spread across all the
query nodes, but with topical sharding a single node might be
expected to resolve the increased query load on its own – leading
to an increase in latency and a decrease in quality of service. Recall
that caching is difficult in a system like eBay due to the high rate
of change in the document collection (and individualized results
listings) – and so all queries pass to all query nodes to be resolved.
The cache does not and cannot compensate for the increased query
traffic as there is no cache.

The task of the broker (referred to, at eBay, as an aggregator)
is to simply receive a query from further up the protocol stack, to
distribute that to the query nodes, then to receive the results from

the query nodes, to merge them, and to pass the merged list back
up the protocol stack.

eBay supports several different datasets that a user can search.
The most obvious is known as Active Item, those items currently for
sale through the site. But it is also possible to search through those
items that have recently been sold, known as Completed Item. To
allow the searching through either Active Item, Completed Item, or
the two combined, a second aggregator (the Top Level Aggregator)
is used. This aggregator examines the query to determine which set
of documents should be searched, sends the query to the appropriate
set, aggregates the results and sends that back up the protocol stack.

Figure 1 Illustrates the topology of the eBay search engine.
Queries eventually arrive at the top-level aggregator which then
distributes them to the correct lower level aggregators (based on
collection to search) which then distributes to query nodes to do
the search in a shared nothing (central nothing) architecture. Top-k
results are then passed up the tree, each time being merged at an
aggregator before being returned back to the user. Other elements
of Figure 1 are discussed in other sections.

3 RELIABLE IR
Any production environment expected to remain up 24 hours a day
7 days a week is faced with possible software, network, or hardware
failure. This is often addressed through replication. In the case of
eBay, a data center is divided into a logical grid where columns are
shards (query nodes) and rows are replica sets. Various software
components are constantly monitoring the state of the grid and
reporting any failures.

These replicas are a normal part of the data center – they are
all resolving queries as those queries arrive. But some queries take
longer to resolve than others. A software load balancer is used
to ensure replica sets do not form bottlenecks. Each time a query
arrives the software load balancer identifies the most idle replica
set and forwards the query to that replica set.

Should a replica set fail, the software load balancer stops sending
queries to that set until it eventually returns. Should an individual
node in a column fail then the low-level aggregator knows how
to fail over to a “spare” replica of that individual node. This same
approach was discussed by Barroso et al [1] with respect to the
Google search engine.

As with any large-scale web search engine, eBay has a suffi-
ciently large number of computers in the grid that it is reasonable
to expect that at any moment in time at least one is in a failed state.
Various systems identify this, try and bring those nodes back up,
try to reboot machines, and after going through a checklist, notify
a hardware engineer of a fault.

Once a node returns to service it rejoins its replica set by no-
tifying the broker of its reincarnation. The broker will then send
queries to that node. This is also illustrated in Figure 1 which shows
two lower level aggregators with exact replica sets of the query
nodes for the Active Item collection.

4 STRUCTURED IR
By default, the user queries on the eBay site search only the listing
titles – users can, however, specify that a search should search not

The Architecture of eBay Search SIGIR 2017 eCom, August 2017, Tokyo, Japan

Completed ItemActive Item

Top Level
Aggregator

Software
Load Balancer

Query
Transformation

Lower Level
Aggregator

∙ ∙ ∙ Query
Node

Query
Node

Lower Level
Aggregator

∙ ∙ ∙ Query
Node

Query
Node

Lower Level
Aggregator

∙ ∙ ∙ Query
Node

Query
Node

Figure 1: Two levels of aggregator (broker) talking to query nodes (search engine instances) makes it possible to search active
item or completed item or both, all in parallel. However, before any of this load ballancing and query transformation occurs.

only the title, but also the description of the items. This is an ex-
ample of structured (or fielded) information retrieval. Surprisingly,
there does not appear to be a single best index structure for struc-
tured search. Trotman [12] suggests building a single DOM-like
super-tree over all documents, numbering the nodes, and annotat-
ing postings lists with node numbers. Guo et. al. [5] stores a Dewey
encoded path directly in the postings lists. Both these approaches
involve annotating each posting in a postings list.

Clarke et. al. [2] introduce region algebra, and in doing so show
that the structural information can be stored separate from the post-
ings lists. If the postings lists encode word positions from the start
of the collection (rather than document id and term frequency) and
if the document start and end positions are stored in a separate list
then it is possible, given any posting, to determine which document
it came from. If a document contains several different structures
then the start and end of these structures can be stored in lists,
one for each structure. Given a term restriction (e.g. “Converse in
Description”), the search engine loads the postings for the term,
filters the list using the field’s positional information, and converts
the result into a document id. This approach is particularly appli-
cable if the document collection is XML and the task is focused
retrieval [13].

Figure 2 illustrates region algebra. It shows two documents
(items) in XML, the term positions, and the regions are shown
at the starts of each element. Given a term position and the regions
it is possible to determine whether or not the term lies in the region.
For example, “red” occurs at position 7, and the title regions are 1-3
and 5-6 so “red” does not occur in the title of any document.

eBay sometimes uses region algebra albeit encoded differently
from Figure 2. As the task is document retrieval (not focused re-
trieval), the postings lists store document id, term frequency, and
word positions within that document. The region lists encode doc-
ument id, field frequency, and the start and length of that field in
that document. There are several reasons for this encoding, the
most obvious of which is that by storing <start, length> pairs the

Collection Position Region

<item> 1-4

<title> 1-3

Converse 1

All 2

Star 3

</title>

<description> 4-4

Blue 4

</description>

</item>

<item> 5-7

<title> 5-6

Low 5

Tops 6

</title>

<description> 7-7

Red 7

</description>

</item>

Figure 2: A collection of 2 structured documents, the term
positions and the regions (start and end positions) used for
region algebra.

SIGIR 2017 eCom, August 2017, Tokyo, Japan Andrew Trotman, Jon Degenhardt, and Surya Kallumadi

difficulty of resolving self-containing regions (e.g. a element
inside a element) is diminished. Another reason is efficiency.
When a query contains a field restricted phrase it can be resolved by
first resolving the phrase query then resolving the field restriction.
Region algebra, although provably correct, does not scale well for
semi-structured document collections. For a field that occurs many
times in a document (such as <p> in an HTML document) the lists
that contain the start and end positions of that field can become
very long – longer than the postings lists for even the most frequent
terms. Processing these long lists takes time and can overwhelm
the overall processing time of a query. This does not happen within
eBay because documents are structured (not semi-structured) and
so structures occur at most once per document.

An obvious and far simpler approach to structured information
retrieval is to build an inverted index over each separate field in the
collection. This approach also does not scale, this time if there are
a large number of fields within a document. If the user is able to
choose any combination of fields to search over then each inverted
list for each field must be examined – which is computationally
expensive.

The eBay indexer builds separate inverted indexes over a small
number of fields as well as an index over the entire document,
this time without word positions. A user is then able to restrict a
query term to one of these fields or to the entire collection, but
never to more than one of these (and they cannot use phrases).
This approach has the advantage of decreasing the complexity of
a field restricted search because the number of postings in a field
is typically smaller than in the entire collection, and smaller again
because word positions are not stored.

Figure 3 illustrates the two documents from Figure 2 each with
two fields (title and description) sharing a single vocabulary. If
the user searches for “star” anywhere in the collection then the
postings for “star” are examined. If the user searches for “star”
in the title then the postings for “title:star” are examined. If the
user searches for “star” in the description then, since there is no
“description:star” in the vocabulary, there is a vocabulary mismatch
and no documents will be found. Recall that field restricted phrase
search can be performed using region algebra.

5 QUERY TRANSFORMATION
When a query arrives at the eBay search engine it is immediately
sent to a number of subsystems that are responsible for re-writing
it in several different ways. These query transformations can be
either explicit or implicit. In explicit query transformation, such as
spelling correction, the user sees the transformed query. In implicit
query transformation, the user does not. Search engines use query
transformation as a way to increase the recall of queries while
trying to minimize any negative effect on precision. But it is an
especially critical aspect of eCommerce search as it affects the
purchasing behavior of the user. If the transformation results in
items that are not relevant then it reflects badly on the site. Equally,
if the transformation results in retrieving too few items then it
affects revenues and reduces the purchasing options for the user.

Query transformation often happens through a process of query
understanding then query rewriting. The objective of query under-
standing is to identify the meaning of a query and incorporate that

Term Postings

all <1,1>

blue <1,1>

converse <1,1>

low <2,1>

red <2,1>

star <1,1>

tops <2,1>

title:all <1,1>

title:converse <1,1>

title:low <2,1>

title:star <1,1>

title:tops <2,1>

description:blue <1,1>

description:red <2.1>

Figure 3: The fielded index for document collection in Fig-
ure 2, assuming each document is separated by <item> tags.
Postings are represented <docid, tf>.

into the result retrieval process. For example, for the query “2006
Golf”, the search system should understand that the search intent
is more likely to be cars and less likely to be sports.

The objective of the rewrite is to encapsulate user intent so as to
retrieve a different set of relevant results to rank. This is especially
useful when there is a long tail of items. Rewrite is achieved in two
ways 1) Query expansion and 2) Query relaxation. Query expan-
sion broadens the intent of the query by adding additional relevant
tokens. Query relaxation removes tokens from the query, the ob-
jective of query relaxation is to make the queries less restrictive
thus increasing recall. Of course, a query might have all its terms
relaxed and then be expanded with a completely new set of terms.

Query suggestion is another important aspect of all modern
search engines. At eBay, the objective of query suggestion is to
explicitly nudge the user to construct a query that is aligned with
their intent. Query suggestions are created bymining the query logs
and looking at reformulations. The transient nature of products at
eBay adds additional complexity. We do not want to suggest queries
for items that are no longer available because doing so results in a
negative user experience.

5.1 Automatic Category Navigation (DSBE)
The behavioral data generated by users searching and buying items
on eBay is a valuable source of query disambiguation data (amongst
other things). For example, if a user enters “bread” as a query, eBay
knows, from that behavioral data, that the user is more likely to be

The Architecture of eBay Search SIGIR 2017 eCom, August 2017, Tokyo, Japan

interested in bakeware than music. This knowledge is mined from
the query logs.

When a user enters a query it is logged, when they click on items,
that too is logged. Eventually, when the user purchases an item
that is logged. In an eCommerce environment it is more difficult to
determine this click chain that in a web environment. A web session
is often considered to be a continuous sequence of requests termi-
nating after a period of about 10-15 minutes of user inactivity [4].
However, in an eCommerce environment a user might search for
an item (for example, a car), watch that item for a period of time,
periodically returning to examine characteristics of the item (for
example, the type of stereo), compare that item to several others,
then eventually purchase it (or not). The determination of a session
on an eCommerce site is beyond the scope of this contribution.

Periodically the query and click streams are mined. One purpose
of the mining task is to determine, for the most frequent queries,
how to disambiguate those queries. The difficulty within eBay is
that any user can list almost any item for sale, and many of these are
rare or one-off items – so it is often not feasible to associate frequent
queries with items via a product catalog alone. However, it is often
feasible to use associations with structured data components, such
as category, brand, etc. that can be further associated with items.
The eBay query disambiguation engine takes this approach.

One of the more valuable associations is the most likely cate-
gory that will satisfy the query. For the example, “bread” is more
often bakeware than music so the results list is limited to just the
bakeware section of eBay. Another is any special considerations on
how to rank the query. That is, the query itself carries details of
the ranking function to be applied by the search engine.

5.2 Query Rewrite (SIBE)
A more complex mining task is that of determining user intent
rather than simply disambiguating the query. This, too, is mined
from user behavior logs and the document collection. For each
frequent query a set of purchases and a set of non-purchases forms
a dataset that is analogous to a relevance feedback [9] dataset.

It is clear from relevance feedback experiments [14] that a new
query can be formed from the original and the labeled data, and
that query will better fulfills the user’s information need than the
original query. At eBay these rewritten queries are stored keyed on
the user’s original query and a quick lookup returns the replacement
query.

Examination of these re-written queries shows that they tend
to include boosting of synonyms and stemming variants, but also
down-ranking of ambiguous and noise terms in order to clarify
the query. For some queries these re-writes can be large in size –
not infrequently exceeding hundreds of kilobytes. Unfortunately,
these long queries take a considerable amount of the computational
resources to resolve, a necessary trade off in order to successfully
fulfill the user’s needs.

5.3 Profile Lookup Service (PLS)
The eBay ranking functions are stored externally from the main
source code of the search engine. They are often generated through
data mining and machine learning. For example, a forest of gradient

boosted decision trees is learned and used at the top level of a multi-
stage ranking (i.e. learning to rank) function.

There is no reason why these trees should be constant across
queries, users, or locations – and they are not. There are commonly
many different ranking functions in the system simultaneously.
They may serve different search applications or different query
segments within the same search application. A/B tests are an
especially important case. To perform an A/B test of a ranking
function its necessary to “tie” the user to a particular function for
the duration of the test.

These capabilities are provided by the Profile Lookup Service.
It allows eBay search to define and house many different ranking
functions. It allows them to be retrieved by search application, user
(for A/B tests), and other dimensions of the search environment. It
also serves to isolate front-end applications from the details of the
recall and ranking algorithms.

6 RANKING
Although we are not at liberty to release details of the eBay rank-
ing function, some details are either standard practice or already
released.

By default, only the titles of the documents are searched. How-
ever, the queries are re-written to include two parts: first, those
terms useful in determining a suitable set of documents to rank
(the recall base); and second, those terms used in ranking. In this
way terms that are necessary to identify a relevant document (but
frequent in that set of documents) can be ignored in ranking, and
terms that are frequent in the collection but not in the recall base
can be used for ranking. These terms are mined from user logs.

Multi-stage raking is used. The final stage uses a forest of gradi-
ent boosted decision trees to perform the final ordering. These trees
(and lower levels too) draw from textural features of the document
(such as term proximity), as well as features the user has supplied
(such as price). They are deduced from the customer and seller (lo-
cation information used for postage computation), seller reputation,
and over 500 features eBay stores about an item (ranging from color
to condition to size). Much of this feature information is stored in
a forward index (or docdata).

Unusual in academic search but common in industrial search,
eBay search avoids returning no results whenever possible. If a
query is about to return no results, or a small number of results, then
the null-and-low subsystem is notified. There are several reasons
recall might be low; for example it might be due to the absence of
products in the repository (the query is highly specific and the item
does not exist) or due to a misalignment of vocabulary between
the user and the product (for example, “apple tablet” rather than
“iPad”).

The null-and-low component takes the query, re-writes it to a
new query with similar semantics, and sends it back to the search
engine. This process repeats until either a suitable number of results
is identified, or the process gives up. We cannot release the details
of the null-and-low subsystems, however a user can observe the
eBay spelling checker at work if a single nonsense word is entered.
They can also observe the dropping of query terms if a nonsense
word and a non-nonsense word are entered as the query. Section 5.1
introduced automatic category restriction for queries. Experiments

SIGIR 2017 eCom, August 2017, Tokyo, Japan Andrew Trotman, Jon Degenhardt, and Surya Kallumadi

showed that this has several effects on the search engine. First, by
reducing the size of the recall base the query latency goes down.
Second, by removing noise from the results list the precision goes
up.

7 INDEXING
Maintaining an inverted index over a rapidly changing document
collection has received little attention in the past. Indeed, it is often
assumed that indexing efficiency is unimportant as indexing only
occurs once. This is not the case at eBay or with any other rapidly
changing collection that must be kept up-to-date (for example a
news site).

Lester et al. [7] offer three update strategies for maintaining
an inverted index, in-place, re-merge, and re-build. The in-place
approach accumulates changes to postings lists in memory then
merges those into a master index, keeping the postings list at the
same location if it still fits – and if it does not then it appends it to
the end of the index. Re-merge simply merges the existing index
with a set of diffs to create a new index. Re-build discards the old
index and re-indexes everything from scratch. Their experiments
were on-disk and so the efficiency results are not applicable to an
in-memory index.

At eBay a combination of approaches is used. Every 8 hours
a complete re-build of the gold-standard document collection is
performed. This “bulk” is then shipped to the index serving grid,
trickling from row to row so that, over time, the entire grid has
a fresh index. On a more frequent basis (minutes), all changes to
the gold-standard document collection are computed and shipped
to the grid as a “mini” index. These minis contain newly indexed
documents and a list of deleted documents (document changes are
deletes followed by adds). There is, clearly, a short period when both
bulks and minis are being built at the same time. This is resolved at
the query nodes and in distribution where it is ensured that indexes
arrive in the correct locations and in the correct order.

The in-place index merging approach of Lester et al. is used to
combine bulks and minis, except that the index resides in memory
not on disk. One at a time each postings list that requires append-
ing is pulled from memory. If it contains a posting for a deleted
document then that posting is removed from the list, then the
new postings are added to the end. The postings list is put back
in memory in-place if it fits and if not then elsewhere in mem-
ory. The consequence of this approach is that postings lists that
are not added to are also not purged of deleted documents. There
are several reasons for choosing this approach. One is that it is
not necessary to exactly re-parse the document in order to deter-
mine which postings lists need purging. A second is that it reduces
fragmentation because fewer lists are modified.

As a postings list might contain a posting for a document that
has been deleted it is also necessary to keep track of deleted items.
Documents that have been deleted between the construction of the
mini and the time of the search are removed from the results list
further up the protocol stack.

Each merge of a mini results in a little more memory fragmenta-
tion as some postings lists no-longer fit back in memory where they
came from. This is one of the key reasons for an 8-hour bulk re-
indexing. Each time a bulk index is loaded the memory on the query

serving node, that node is defragmented as the new bulk index lies
consecutively in memory and all old patches can be purged. Other
approaches are possible, for example, a periodic process could move
postings lists about in memory in a de-fragmentation pass.

Another important and pragmatic role of bulk indexes is to
provide a vehicle for large updates affecting many documents, but
that do not have freshness requirements offered by mini index.
Distributing large updates via bulk indexes has strong efficiency
benefits.

The 8-hour bulk reload also ensures that three times a day all
machines in the grid are synchronised. When a new machine is
added to the grid it simply needs to wait for the bulk to arrive to
be in sync.

If a machine fails (for whatever reason) and comes back on-line,
it can simply compare time stamps of which indexes are stored
locally against a global registry of indexes to work out what needs
to be done to re-sync – and that registry need not be concerned
with indexes prior to the previous bulk.

An alternative strategy of keeping up-to-date is to build the
index on the query serving node in real-time as changes occur. This
approach results in a substantial increase in the amount of network
traffic seen at the query serving nodes. It is also difficult to re-sync
in the case of node failure. That is, even if real-time changes are
maintained at each node, a master index of that node must be build
and maintained so that it can be distributed for a restart.

The index building process is, itself, relatively straightforward.
A large HBase cluster is used as the gold-standard document collec-
tion. That no-sql database is built and maintained through a series
of processes that listen to the eBay internal itemmessaging pipeline
for messages about changes to items and sellers, and updates are
applied to HBase accordingly. Although not the topic of this contri-
bution, different processes in different parts of eBay are responsible
for determining different characteristics of an item; for example, it
is automatically classified, spam detection algorithms are applied,
language translation occurs, and more. Updates to a document can
occur at any time and HBase ensures these updates are applied
in the correct order even if they arrive out of order. This HBase
database is not the eBay-wide gold-standard (that is elsewhere), it
is the search department’s gold-standard.

HBase is built on top of Hadoop, the Apache open-source map-
reduce platform. Periodically a map-reduce process kicks-off, the
indexer is shipped to the data, indexing occurs in a distributed
manner, then the index parts are reduced to form a number of
indexes that matches the topology of the query serving grid. These
are then picked up by the index distribution agent and moved to
the query serving nodes.

8 SELLERS, ITEMS, INDEXES, RANKING
The ranking function draws from many hundreds of different fea-
tures. Those features are derived from the item, the seller, and the
buyer. Features of the buyer are determined high in the protocol
stack and are constant for each item. Features of the item are stored
in the inverted index and forward index. It is not clear where to
store the features of the seller in this eCommerce search problem.

If the seller features are stored in HBase along with the item
then any change to a seller would require a change to all items

The Architecture of eBay Search SIGIR 2017 eCom, August 2017, Tokyo, Japan

Feature Value

feedback_score 146

followers 1

Feature Value

feedback_score 1170

followers 10

Feature Value

feedback_score 3898

followers 90

id ptr

1

2

3

Feature Value

seller 3

price 3.00

Feature Value

seller 2

price 9.00

Item Forward Index

Seller Forward Index

Seller Lookup

Figure 4: Seller data is stored in a forward index pointed to indirectly from the item forward index.

that seller is selling – which can be many hundreds of thousands
of items (especially for sellers of Compact Disks). If the seller data
is “crossed” with the item data at indexing time then a change to
the seller data would require a substantial update to the index with
a mini. Such a change in seller data might occur if, for example,
the seller declares that they are on holiday and so the expected
shipping date of all their items is to be postponed a short time.

As part of the indexing process eBay builds two indexes, one for
the items and one for the sellers. Each item has a seller id associated
with it, but the reverse it not true (to find all items of a given seller,
an item search for the seller’s id is performed). To extract the seller
features during ranking a seller lookup is performed on the seller’s
id and the seller’s doc-data is examined.

Figure 4 illustrates this process. The document ids from the
inverted index point to the item doc-data (forward index) which
contains a seller id which is used to find the seller forward index
which contains the seller’s features used in ranking.

The seller index only contains data for sellers who have items
for sale at the moment the index is constructed. The alternative
is to include all potential sellers, but since all users are potential
sellers this table would be large and contain many unused entries
(which is space inefficient). It is clear that the closure of the set of
current sellers can be constructed from the closure of the set of
items, and indeed that is how it is constructed.

9 CONCLUSION
In this position paper we outlined much of how the eBay search
engine currently functions along with the engineering reasons for
it working in this way.

Although many standard techniques are used (inverted indexes,
learning-to-rank, etc.), it is not possible to simply take an off-the-
shelf web search engine and apply it to eCommerce as other stan-
dard techniques (caching, index-once philosophy) are simply un-
tenable. This, along with the rapid rate of change are the reasons
eBay chose to build a search engine – and this paper outlines many
of the engineering decisions taken.

REFERENCES
[1] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web Search for a Planet:

The Google Cluster Architecture. IEEE Micro 23, 2 (March 2003), 22–28.
[2] Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski. 1995. An Algebra for

Structured Text Search and a Framework for its Implementation. Comput. J. 38,
1 (1995), 43. https://doi.org/10.1093/comjnl/38.1.43

[3] O. de Kretser, A. Moffat, T. Shimmin, and J. Zobel. 1998. Methodologies for
distributed information retrieval. In Proceedings. 18th International Conference on
Distributed Computing Systems (Cat. No.98CB36183). 66–73.

[4] Ayse Goker and Daqing He. 2000. Analysing Web Search Logs to Determine
Session Boundaries for User-Oriented Learning. In AH.

[5] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. 2003.
XRANK: Ranked Keyword Search over XML Documents. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data (SIGMOD
’03). ACM, New York, NY, USA, 16–27.

[6] Yubin Kim, Jamie Callan, J. Shane Culpepper, and Alistair Moffat. 2017. Efficient
Distributed Selective Search. Inf. Retr. 20, 3 (June 2017), 221–252.

[7] Nicholas Lester, Justin Zobel, and Hugh E. Williams. 2004. In-place Versus Re-
build Versus Re-merge: Index Maintenance Strategies for Text Retrieval Systems.
In Proceedings of the 27th Australasian Conference on Computer Science - Volume 26
(ACSC ’04). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
15–23.

[8] Jimmy Lin and Andrew Trotman. 2015. Anytime Ranking for Impact-Ordered
Indexes. In Proceedings of the 2015 International Conference on The Theory of
Information Retrieval (ICTIR ’15). ACM, New York, NY, USA, 301–304.

[9] J. J. Rocchio. 1971. Relevance Feedback in Information Retrieval.
[10] Milad Shokouhi, Falk Scholer, and Justin Zobel. 2006. Sample Sizes for Query

Probing in Uncooperative Distributed Information Retrieval. In Proceedings of the
8th Asia-Pacific Web Conference on Frontiers of WWW Research and Development
(APWeb’06). Springer-Verlag, Berlin, Heidelberg, 63–75.

[11] Luo Si and Jamie Callan. 2003. Relevant Document Distribution Estimation
Method for Resource Selection. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion Retrieval (SIGIR
’03). ACM, New York, NY, USA, 298–305.

[12] Andrew Trotman. 2004. Searching Structured Documents. Inf. Process. Manage.
40, 4 (May 2004), 619–632.

[13] Andrew Trotman, Nils Pharo, and Miro Lehtonen. 2007. XML-IR Users and Use
Cases. Springer Berlin Heidelberg, Berlin, Heidelberg, 400–412.

[14] Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improvements to
BM25 and Language Models Examined. In Proceedings of the 2014 Australasian
Document Computing Symposium (ADCS ’14). ACM, New York, NY, USA, Article
58, 8 pages.

https://doi.org/10.1093/comjnl/38.1.43

	Abstract
	1 Introduction
	2 Distrubuted IR
	3 Reliable IR
	4 Structured IR
	5 Query Transformation
	5.1 Automatic Category Navigation (DSBE)
	5.2 Query Rewrite (SIBE)
	5.3 Profile Lookup Service (PLS)

	6 Ranking
	7 Indexing
	8 SELLERS, ITEMS, INDEXES, RANKING
	9 Conclusion
	References

