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ABSTRACT
We compare two machine learning approaches for early predic-
tion of shoppers’ behaviors, leveraging features from clickstream
data generated during live shopping sessions. Our baseline is a
mixture of Markov models to predict three outcomes: purchase,
abandoned shopping cart, and browsing-only. We then experiment
with a mixture of Recurrent Neural Networks. When sequences
are truncated to 75% of their length, a relatively small feature set
predicts purchase with an F-measure of 0.80 and browsing-only
with an F-measure of 0.98. We also investigate an entropy-based
decision procedure.
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1 INTRODUCTION
Recent e-commerce forecast analysis estimates that more than 1.77 
billion users will shop online by the end of 2017 [11]. Although 
this is impressive growth, conversion rates for online shoppers 
are substantially lower than rates for traditional brick-and-mortar 
stores.

Consumers shopping on e-commerce web sites are in�uenced 
by numerous factors and may decide to stop the current session, 
leaving products in their shopping carts. Once a user has interacted 
with a shopping cart, abandonment rates range between 25% and 
88%, signi�cantly reducing merchants’ selling opportunities [15]. 
Several potential purchase inhibitors have been analyzed in the
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online shopping literature [5, 8]. Main causes include concerns
about costs, perceived decision di�culty, and selection con�icts
due to a large number of similar choices.

Early shopping abandonment detection may allow mitigation
of purchase inhibitors by enabling injection of new content into
live web browsing sessions. For instance, it could trigger a discount
o�er or change the product search strategy to retrieve more diverse
options and simplify the consumer’s decision process.

This paper considers real web interactions from a US e-commerce
subsidiary of Rakuten (楽天株式会社) to predict three possible
outcomes: purchase, abandoned shopping cart, and browsing-only.
To early detect outcomes, we consider clues left behind by shop-
pers that are encoded into clickstream data and logged during each
session. Clickstream data is used to experiment with mixtures of
high-order Markov Chain Models (MCMs) and mixtures of Recur-
rent Neural Networks (RNNs) that use the Long Short-Term Mem-
ory (LSTM) architecture. We compare and contrast each model on
sequences truncated at di�erent lengths and report on precision,
recall, and F-measures. We also show F-measures from using an
entropy-based decision procedure that is usable in a live system.

2 RELATEDWORK
We treat predicting user behavior from clickstream data as sequence
classi�cation, which is broadly surveyed by Xing et al. [14], who
divide it into feature-based, sequence distance-based, and model-
based methods. Previous feature-based work on clickstream clas-
si�cation includes the random forest used by Awalker et al. [2],
the deep belief networks and stacked denoising auto-encoders by
Viera [12], and recurrent neural networks by Wu et al. [13]. Previ-
ous distance-based work includes the large margin nearest neighbor
approach by Pai et al. [10]. Previous model-based work by Bertsimas
et al. [4] used a mixture of Markov chains.

Our baseline approach is based on the latter work, whereas our
new approach uses a mixture of RNNs. Although Wu et al. [13] used
RNNs, their approach is not applicable to our scenario, since its
bi-directional RNN uses entire clickstream sequences. Our goal is
to classify incomplete sequences. Also their model is not a mixture.

Finally, our approach di�ers from most others in its use of a
ternary classi�cation scheme. We classify clickstreams as either
being a purchase, abandon or browsing-only session instead of just
purchase and non-purchase.
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Table 1: Clickstream data distribution.

Clickstream outcome Count % Average Median
Length m̄i Length

ABANDON 29,371 14.7% 8.2 5
BROWSING-ONLY 128,450 64.6% 16.6 6
PURCHASE 41,115 20.7% 8.4 5

Total 198,936 100%

3 CLICKSTREAM DATA
We consider clickstream data collected over two weeks and con-
sisting of n0 = 1, 560, 830 sessions. A session Si , i = 1, 2, . . . ,n0, is a
chronological sequence of recorded page views, or “clicks.” Let Vi, j
be the jth page view of session i so that Si = (Vi,1,Vi,2, . . .Vi,mi ),
and mi is de�ned as the length of session i . We exclude session
i from our experiments if mi < 4, after which n = 198, 936 ses-
sions remain. Sessions with purchases are truncated before the �rst
purchase con�rmation. Table 1 summarizes the n sessions.

Our experiments use both the page type and dwell time of Vi, j .
The page type of Vi, j , denoted as Pi, j , belongs to one of eight cate-
gories, including search pages, product view pages, login pages, etc.
The dwell time, Di, j , of Vi, j is the amount of time the user spends
viewing the page, and is not available until the (j + 1)th page view.
After the jth page view, the clickstream data gathered for session i is
given by Si |j = ((Pi,1,Di,0), (Pi,2,Di,1), . . . , (Pi, j ,Di, j−1)) where
Di,0 is unde�ned, i.e., Di,0 = ∅. To reduce sparsity, dwell times
were placed in 8 bins, evenly spaced by percentiles.

4 MODELING APPROACHES
Our goal is to classify customer behavior into �nal decision cat-
egories. In particular, clickstream sequences receive one of the
following labels: PURCHASE, if the sequence leads to an item pur-
chase; ABANDON, if an item was left in the shopping cart, but
there was no purchase; and BROWSING-ONLY, when the shopping
cart was not used. The �nal two categories can be combined to
investigate PURCHASE vs. NON_PURCHASE behavior. In prelimi-
nary studies, the ABANDON sequences were much more similar
to the PURCHASE sequences than to the BROWSING-ONLY se-
quences, so having three categories helped account for some of
the confusability of the data. Our eventual goal of applying our
models in a live system adds a constraint. The classi�er must work
for incomplete sequences, without using data from the “future”.

4.1 Mixture of High-Order Markov Chains
Bertsimas et al. [4] modeled a similar problem with a mixture of
Markov chains, using maximum a posteriori estimation to predict
sequence labels. In this approach, the training data is partitioned by
class and separate Markov chain models are trained for each one.
The resultant models can estimate class likelihoods from sequences.
LetCi be a random variable representing the outcome of session Si ,
where Ci ∈ Ω, and Ω is the set of possible clickstream outcomes.
The models would be used to estimate the likelihoods P (Si |Ci = ω)
for all ω ∈ Ω. Using Bayes’ theorem and the law of total probability,
the class posteriors for each of the three classes can be estimated

by the equation

P (Ci = ω |Si ) =
P (Si |Ci = ω)P (Ci = ω)∑

ω ∈Ω P (Si |Ci = ω)P (Ci = ω)

with the prior, P (Ci = ω), estimated from counts.
This model �ts the problem’s constraints, because likelihoods

can be produced from subsequences without using “future” clicks.
Although each chain is trained only on click data, separating data
by class implicitly conditions them on class.

Taking inspiration from the Automatic Speech Recognition (ASR)
community and similarities to “Language Modeling”, we adapted
some of their more recent techniques to our problem. In preliminary
experiments, 5-grams performed better than shorter chains, so we
used them. Longer chains cause greater sparsity, so we addressed
this with Kneser-Ney smoothing, which performed best in a study
of language modeling techniques [6]. We used the MITLM toolkit
to train the Markov chains [7].

4.2 Recurrent Neural Networks
Taking further inspiration from the ASR community, we replaced
the Markov-chains in our mixtures with RNNs. Earlier language
modeling work used feed-forward arti�cial neural networks [3],
but RNNs have performed better recently, both in direct likelihood
metrics and in overall ASR task metrics [9, 16]. Click-stream data
di�ers from ASR text, and our mixture model di�ered from the
typical ASR approach, so it was unclear whether RNNs would help
in our scenario.

Figure 1: Simple RNN to Predict Following Token

Earlier RNN-based language models used the “simple recurrent
neural network” architecture [9]. The underlying idea, depicted in
Figure 1, is that an input sequence, represented by {X0, ...,Xt−1},
is connected to a recurrent layer, represented by {A0, ...At }, which
is also connected to itself at the next point in time. The recurrent
layer is also connected to an output layer. In our models, each RNN
tries to predict the next input, Xn+1, after each input, Xn .

“Simple” RNN-based language models for ASR were outper-
formed by RNNs using the Long Short-Term Memory (LSTM) con-
�guration and “drop-out” [16]. LSTM addressed the “vanishing
gradient” and “exploding gradient” problems. “Drop-out” addressed
over�tting by probabilistically ignoring the contributions of non-
recurrent nodes during training.

In LSTM RNNs, some nodes function as “memory cells”. Some
connections retrieve information from them, and others cause them
to forget. The LSTM equations are [16]:

LSTM :hl−1
t ,hlt−1,c

l
t−1→hlt ,c

l
t
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where h and c represent hidden states and memory cells, subscripts
refer to time, superscripts refer to layers,Tn,m is an a�ne transform
from Rn to Rm , � refers to element-wise multiplication, and siдm
and tanh are applied to each element.

Since LSTM RNNs with drop-out worked much better than
Markov chains for ASR, we replaced the Markov chains with them
in our clickstream mixture models. Additional work was neces-
sary, since our scenario did not exactly match language modeling.
During training, input tokens were still used to predict following
tokens. During testing, however, our goal was the sequence prob-
abilities. These were calculated from token probabilities present
in intermediate softmax layers in each LSTM model. Due to the
network architecture, “future” events were not used for this. We
used TensorFlow to implement our LSTM RNNs [1].

5 EXPERIMENTS
We experimented on the dataset described in Section 3 and summa-
rized in Table 1. It was partitioned into an 80% training/20% testing
split, using strati�ed sampling to retain class proportions.

All RNNs were trained for 10 epochs, using batches of 20 se-
quences. We tested 16 combinations of the remaining parameters.
The number of recurrent layers was 1 or 2, the keep probability
was 1 or 0.5, and the hidden state size was 10, 20, 40, or 80. For a
particular mixture model, all the RNNs used the same parameter
values.

5.1 Results
For each model, we evaluated the prediction performance by trun-
cating the page view sequences at di�erent lengths. Table 2 shows
the results for the mixture of Markov models, and for one of the
mixture of RNN trials. Although we tested 16 di�erent RNN parame-
ter combinations, results were so similar that we are only reporting
on one of them.

Table 2 reports precision, recall, and F1-measure for each speci�c
sequence outcome when considering 25%, 50%, 75%, and 100% of
the total length of the sequence. For instance, when splitting at
50%, the Markov chain model can predict a PURCHASE with a
0.42 precision and 0.11 recall, resulting in an overall F1-measure
of 0.17. For the same conditions, the RNN-based model reaches a
precision of 0.82 with 0.71 recall and an F1-measure of 0.76. We
also report the accuracy when randomly selecting a class based
on the prior distribution of the clickstream corpus. RNN mixture
components substantially outperform Markov chain components.
This is particularly evident from Figure 2, which shows the F1-
measure by sequence length for the mixtures of MCMs (dotted
line) and of RNNs (solid line). Both models monotonically increase
performance as the model observes more data from 25% splits to
100%, but the mixture of RNNs has an immediate edge even with
the short 25% sequences. The MCMs present similar F1-measures
for the majority class (i.e., BROWSING-ONLY), but it is penalized
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Figure 2: F1-measure by sequence length for mixtures of Markov
Chain Models (MCM) and RNNs for each label: ABN=abandoned;
BRO=browsing-only; PRC=purchase.

by the lack of data for the less represented sequences (i.e., 14.7% for
ABANDON and 20.7% for PURCHASE). RNNs instead generalize
better due to the memory component that can model long-distance
dependencies.

BROWSING-ONLY
ABANDON

PURCHASE

Figure 3: Log-probability trajectories from the MCMmixture, pro-
gressing along page view sequences for each class

Similarly to Bertsimas et al. [4], in Figure 3, we plot 100 log-
probability trajectories, with lengths from 2 through 20 page views,
estimated by the MCM mixture along page view sequences for
each class. This plot demonstrates how probabilities evolve during
interactions and how con�dent each model is compared to others.

The legend in Figure 3 corresponds to the true �nal state labels
of the test examples: dashed red lines for ABANDON sequences,
dashed and dotted green lines for BROWSING-ONLY sequences,
and solid blue lines for PURCHASE sequences. Ideally, the model
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Table 2: Precision (P), Recall (R), and F1-measure (F) for MCM and RNN mixtures by sequence length.

Mixture Type Sequence Length 25% 50% 75% 100%

MCM Final State P R F1 P R F1 P R F1 P R F1 Random

ABANDON 0.44 0.02 0.04 0.45 0.09 0.14 0.72 0.52 0.61 0.70 0.64 0.67 0.21
BROWSING-ONLY 0.66 0.99 0.79 0.69 0.98 0.81 0.89 0.97 0.92 0.99 0.95 0.97 0.64
PURCHASE 0.37 0.02 0.04 0.42 0.11 0.17 0.72 0.67 0.69 0.71 0.86 0.78 0.15

RNN Final State P R F1 P R F1 P R F1 P R F1 Random

ABANDON 0.75 0.39 0.52 0.73 0.62 0.67 0.74 0.72 0.73 1.00 0.84 0.91 0.21
BROWSING-ONLY 0.84 0.99 0.91 0.92 0.99 0.96 0.97 0.99 0.98 1.00 0.98 0.99 0.64
PURCHASE 0.80 0.64 0.71 0.82 0.71 0.76 0.82 0.78 0.80 0.86 1.00 0.92 0.15

would score the PURCHASE sequences (solid blue lines) high, and
the other sequences low, and the earlier the distinction could be
made, the better. Looking at this �gure, there does appear to be
some level of discrimination between the categories. In general,
the BROWSING-ONLY sequences seem more separable from the
PURCHASE sequences than the ABANDON sequences, as expected.

Although Table 2 can be used to compare other work [10], it de-
pends on sequence lengths. A useful live system must predict �nal
actions before sequences are complete and needs a decision process
for accepting the predicted label. We experimented with taking
the highest scoring label once the entropy fell below a threshold.
Figure 4 shows the F1-measures at di�erent thresholds, which are
proportions of the maximum possible entropy. Since the entropy
might not drop below the threshold, it is important to consider
how many sequences have predicted labels. When we calculated F1-
measures, sequences without predictions were counted as misses.
Figure 5 shows the number of sequences where predictions were
made based on entropy threshold. Again, the horizontal axis rep-
resents the proportion of the maximum possible entropy value.
The vertical axis represents the number of sequences where a de-
cision can be made based on threshold crossing. As an example, a
threshold of 0.55 led to reasonable F1-measures while producing
predictions for 99% of the sequences before they were complete.
Choosing higher entropy thresholds allows decisions to be made
for more sequences, but performance can su�er since decisions can
be made while class probabilities are more uniform and con�dence
is lower. Choosing lower entropy thresholds forces the class proba-
bilities to be more distinct, which leads to more con�dent decisions,
but performance starts to su�er when fewer sequences receive
decisions. In practice, the threshold would be tuned on held-out
data.

6 CONCLUSION AND FUTUREWORK
We presented two models for the real-time, early prediction of
shopping session outcomes on an e-commerce platform. We demon-
strated that LSTM RNNs generalize better and with less data than
high-order Markov chain models used in previous work. Our ap-
proach, in addition to distinguishing browsing-only and cart-interaction
sessions, can also accurately discriminate between cart abandon-
ment and purchase sessions. Future work will focus on features,
single RNN architectures, and decision strategies.
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