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Abstract

In this paper we study the topic of integrating supervised
learning models into Monte Carlo Tree Search (MCTS) in
the context of RTS games. Specifically, we focus on learning
a tree policy for MCTS using existing supervised learning
algorithms. We evaluate and compare two families of mod-
els: Bayesian classifiers and decision trees classifiers. Our
results show that in experiments under same iteration bud-
get for MCTS, the models with higher classification perfor-
mance also have better gameplay strength when used within
MCTS. However, when we constrain computation budget by
time, faster models tend to outperform slower, more accurate,
models. Surprisingly, the classic C4.5 algorithm stands out in
our experiments as the best model since it has good classifi-
cation performance and fast classification speed.

Introduction
Board and computer games have always been popular in
the AI research community since they offer a challeng-
ing and rich testbed for both machine learning and search
techniques. A prominent example is AlphaGo (Silver et al.
2016), which demonstrated that it is possible to deal with
large search spaces by integrating machine learning and
search. Real-time strategy (RTS) games have become a more
active research area as it offers a greater challenge because
of their enormous state space and branching factor, real-time
nature, and partial observability. In this paper we study the
topic of integrating supervised learning models into Monte
Carlo Tree Search (MCTS) in the context of RTS games.
Specifically, we focus on learning tree policy for MCTS us-
ing existing supervised learning algorithms. Due to the large
state space and branching factor, it is hard to obtain good
policy real-time from MCTS. Thus, learning a reliable pol-
icy offline and bias the tree search towards a more promising
search space can significantly improve the performance of
MCTS.

In this paper we build upon previous work on Informed
MCTS, where Bayesian models were trained from data to
inform the tree policy (Ontañón 2016). Moreover, given that
RTS games have much more limited decision budget be-
tween each two game decisions compared to other games,
like board games, the model we build must make fast pre-
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diction at testing time, apart from the requirement of ac-
curacy. In consideration of the time constraint, we evalu-
ate and compare two family of models: Bayesian classifiers
and decision trees classifiers. Our results show that in ex-
periments under same iteration budget for MCTS, the mod-
els with higher classification performance also have better
gameplay strength when used within MCTS. However, when
we constrain computation budget by time, faster models tend
to outperform slower, more accurate, models. Specifically,
the C4.5 model stands out in our experiments as the best
model since it has good classification performance and fast
classification speed.

The rest of this paper is structure as follows: (1) In the
background section we introduce RTS games research, the
research platform we employ, and work on applying MCTS
to RTS games. (2) Then we describe and compare the two al-
gorithm families that we study. (3) After that, we specify the
details of our experiments on comparing the models in clas-
sification performance and gameplay strength as tree policy
for MCTS. (4) Finally, we discuss the empirical results and
layout the possible lines of future work.

Background
Real-time strategy (RTS) games have been receiving an in-
creased amount of attention as they are even more chal-
lenging than games like Go or Chess in at least three dif-
ferent ways: (1) the combinatorial growth of the branch-
ing factor (Ontañón 2017), (2) limited computation budget
between actions due to the real-time nature, and (3) lack
of forward model in most of research environments like
Starcraft. Many research environments and tools, such as
TorchCraft (Synnaeve et al. 2016), SCIILE (Vinyals et al.
2017), µRTS (Ontañón 2013), ELF (Tian et al. 2017), and
Deep RTS (Andersen, Goodwin, and Granmo 2018) have
been developed to promote research in the area. Specifically,
in this paper, to stay focused on the problem of interest of
this paper, we chose µRTS as our experimental domain, as
it offers a forward model for game tree search approaches
such as minimax or Monte Carlo Tree Search.

Real-Time Strategy Games
RTS is a sub-genre of strategy games where players aim-
ing to defeat their opponents (destroying their army and



base) by strategically building an economy (gathering re-
sources and building a base), military power (training units
and researching technologies), and controlling those units.
The main differences between RTS games and traditional
board games are: they are simultaneous move games (more
than one player can issue actions at the same time), they
have durative actions (actions are not instantaneous), they
are real-time (each player has a very small amount of time
to decide the next move), they are partially observable (play-
ers can only see the part of the map that has been explored,
although in this paper we assume full observability) and they
might be non-deterministic.

Furthermore, comparing to traditional board games, RTS
games have a very large state space and action space at each
decision cycle. For example, the branching factor in Star-
Craft can reach numbers between 3050 and 30200 (Ontañón
et al. 2013).

µRTS
µRTS1 is a simple RTS game designed for testing AI tech-
niques. µRTS provides the essential features that make RTS
games challenging from an AI point of view: simultaneous
and durative actions, combinatorial branching factors and
real-time decision making. The game can be configured to
be partially observably and non-deterministic, but those set-
tings are turned off for all the experiments presented in this
paper. We chose µRTS, since in addition to featuring the
above properties, it does so in a very minimalistic way, by
defining only four unit types and two building types, all of
them occupying one tile, and there is only one resource type.
Additionally, as required by our experiments, µRTS allows
maps of arbitrary sizes and initial configurations.

There is one type of environment unit (minerals) and six
types of units controlled by players, which are:

• Base: can train Workers and accumulate resources

• Barracks: can train attack units

• Worker: collects resources and construct buildings

• Light: low power but fast melee unit

• Heavy: high power but slow melee unit

• Ranged: long range attack unit

Additionally, the environment can have walls to block the
movement of units. A example screenshot of game is shown
in Figure 1. The squared units in green are Minerals with
numbers on them indicating the remaining resources. The
units with blue outline belong to player 1 (which we will call
max) and those with red outline belong to player 2 (which
we will call min). The light grey squared units are Bases
with numbers indicating the amount of resources owned by
the player, while the darker grey squared units are the Bar-
racks. Movable units have round shapes with grey units be-
ing Workers, orange units being Lights, yellow being Heavy
units (now shown in the figure) and blue units being Ranged.

1https://github.com/santiontanon/microrts
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Figure 1: A Screenshot of µRTS.

Monte Carlo Tree Search in RTS Games
Monte Carlo Tree Search (Browne et al. 2012) (Coulom
2006) is a method for sequential decision making for do-
mains that can be represented by search trees. It has been a
successful approach to tackle complex games like Go as it
takes random samples in the search space to estimate state
value. However, most of the successful variants of MCTS,
e.g. UCT (Kocsis and Szepesvári 2006), do not scale up well
to RTS games due to the combinatorial growth of branching
factor with respect to the number of units. Sampling tech-
niques for combinatorial branching factors such as Naı̈ve
Sampling (Ontañón 2013) or LSI (Shleyfman, Komenda,
and Domshlak 2014) were proposed to improve the explo-
ration of MCTS exploiting combinatorial multi-armed ban-
dits. Inspired by AlphaGo, another approach to address this
problem is the use of Naı̈ve Bayes models to learn a action
probability distribution as a tree policy prior to guide the
search (Ontañón 2016). Other work to deal with this prob-
lem involves limiting the search space by introducing action
abstractions. For example, instead of searching directly in
the raw unit action space, Portfolio greedy search (Churchill
and Buro 2013) and Stratified Alpha-Beta Search (Moraes
and Lelis 2017) search in the abstracted action spaces gen-
erated by hard-coded scripts.

In this paper, we extend the work of policy distribution
learning (Ontañón 2016) by comparing existing machine
learning models and applying the trained model to tree pol-
icy of MCTS.

Naı̈ve Monte Carlo Tree Search. Naı̈ve Monte Carlo
Tree Search (Naı̈veMCTS) (Ontañón 2013) is a variant
of MCTS specifically designed to handle RTS games. For
that purpose, Naı̈veMCTS can also handle durative and si-
multaneous actions. Most importantly, the key feature of
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Naı̈veMCTS is that rather than using standard ε-greedy or
UCB1, it uses a sampling policy for Combinatorial Mul-
tiarmed Bandits (CMABs) called Naı̈ve Sampling in order
to scale up to the combinatorial branching factors of RTS
games.

Specifically, in our experiments, we use the implementa-
tion of Informed Naı̈veMCTS built in into µRTS, which can
be used to incorporate machine learning models into the tree
policy, as described below.

Informed Tree Policy. MCTS algorithms can be broken
down into the following four stages (Browne et al. 2012):

1. Selection: Starting at root node, recursively select child
nodes according to a pre-defined tree policy until a leaf
node L is reached.

2. Expansion: If the selected node L is a not a terminal node
then add a child node C of L to the tree (also using the
tree policy).

3. Simulation: Run a simulation from C according to a play-
out policy until a terminal state is reached.

4. Backpropagation: Update the statistics of the current
move sequence with the simulation result.

The tree policy serves as the criteria of child node se-
lection within the search tree and balances exploration and
exploitation. It can also be informed by a given prior dis-
tribution and then bias the search towards the desired ac-
tion space. For example, the PUCB algorithm (Predic-
tor+UCB) (Rosin 2011) extends the standard UCB1 strat-
egy commonly used as the tree policy with an existing dis-
tribution. A variation of PUCB was used in AlphaGo, where
Silver et al. (Silver, Sutton, and Müller 2012) used temporal
difference method to learn a value function and to inform the
tree policy. This prior distribution can be trained offline, e.g.
from existing game replays. AlphaGo, for example, trained a
neural network using the human expert plays as supervision,
and then refined it using reinforcement learning. Unlike the
game of Go, however, the RTS games are real-time, which
means the computational budget per action is much smaller
than in Go. Therefore, large neural network models become
impractical since they are currently too slow for the avail-
able computational budget. Thus, in this paper, we select a
collection of statistical learning algorithms which are poten-
tially fast at classification time as our subjects of study.

Methods for Tree Policy Learning
We use supervised learning to model and predict the move
probability of script bots and bias the tree search to mimic
and hopefully improve upon script bots with the help of tree
search. A supervised learning model pu(ai|s) takes a fea-
ture vector s as the representation of the game state from the
point of view of a unit u and output the probability distribu-
tion over all n possible actions (a1, a2, a3, · · · , an) the unit
can perform. The model is trained beforehand and predic-
tion is made each time the tree policy needs to be used. Thus
our learning algorithm for modeling the problem must be
fast at classification time. Also, in order to increase the sam-
pling quality, the classifier should also provide good class

probability estimations. Therefore, we selected a relatively
small set of categorical features (eight features) to represent
the game states. Moreover, two types of classification algo-
rithms what are previously known to be suitable to categori-
cal data and fast at classification time are studied in this pa-
per: (semi) Naı̈ve Bayes and (ensembles of) decision trees.

Naı̈ve Bayes and Semi Naı̈ve Bayes
The Naı̈ve Bayes classifier is a simple probabilistic classi-
fier that makes a strong assumption that all the features are
independent. This allows us to write the joint density as the
product of all the component densities:

p(x|y = c,θ) =

D∏
i=1

p(xi|y = c,θic)

Naı̈ve Bayes classifiers are highly scalable and can be
trained and tested both in linear time. However, the assump-
tion of independent features can be to violated for most of
the situations. Thus, the research community has developed
many semi-Naı̈ve Bayes algorithms that have a weakened
independence assumption.

The semi-Naı̈ve Bayes algorithms tested in our paper is
called averaged one-dependence estimators (A1DE) (Webb,
Boughton, and Wang 2005). Sahami introduces n-
dependence estimators, where the probability of each fea-
ture is conditioned by the class and n other features. (Sa-
hami 1996) The averaged one-dependence estimators work
like this: for each feature x, a classifier that assumes the
other features are independent given the label and feature x.
The model makes predictions by averaging the outcome of
all classifiers. Therefore, A1DE can be also viewed as a en-
semble methods for Naı̈ve Bayes classifiers. We also test a
more relaxed variation of A1DE called A2DE, which build
estimators conditioned by each pair of features.

Decision Trees and Ensembles
The C4.5 classifier (Quinlan 2014) iteratively builds a de-
cision tree by splitting the instances by the feature with the
most information gain (reduction of entropy) at each internal
node. Then it assigns class predictions at leaf nodes. Then
the algorithm prunes the tree by a threshold confidence in-
terval of 25%. We can estimate the class probability natu-
rally from the label frequency of the leaves. Moreover, this
estimation can be skewed towards 0 or 1 since the leaves are
mostly dominated by one class. In our experiments, Laplace
smoothing is applied in order to produce more accurate class
probability estimation.

Bootstrapped aggregating (bagging) (Breiman 1996) is an
ensemble method that helps to improve accuracy and stabil-
ity by combining results from multiple training sets resam-
pled with replacement. In our experiments, we apply 10 it-
erations of bagging to C4.5.

Random forest (Liaw, Wiener, and others 2002) is a meta
classifier that fits a collection of random tree classifiers on
resamples of the dataset and thus improve the predictive
accuracy and control overfitting by averaging. The internal
random trees select a subset of features to build the model.
In our case, each random tree selects a subset of log(n) + 1



Table 1: Model Comparison on Classification Accuracy in the 12 Datasets
Naı̈ve Bayes A1DE A2DE J48 Bagging Random Forest

Accuracy Exp. l.l. Accuracy Exp. l.l. Accuracy Exp.l.l Accuracy Exp. l.l. Accuracy Exp. l.l. Accuracy Exp. l.l.
WR 0.6119 -1.0749 0.6609 -0.8921 0.6698 -0.8527 0.6821 -0.8574 0.6828 -0.9074 0.6882 -0.9810
LR 0.7955 -0.6048 0.8210 -0.5059 0.8276 -0.4876 0.8188 -0.4972 0.8248 -0.5598 0.8263 -0.6504
HR 0.8490 -0.4765 0.8671 -0.3950 0.8732 -0.3825 0.8666 -0.3995 0.8703 -0.4379 0.8716 -0.4855
RR 0.8411 -0.5223 0.8585 -0.4110 0.8602 -0.3954 0.8593 -0.4070 0.8606 -0.4389 0.8648 -0.4450

LSI500 0.3637 -1.4711 0.3713 -1.4048 0.3715 -1.3902 0.3637 -1.3488 0.3618 -1.5125 0.3595 -1.9905
LSI1000 0.3743 -1.4626 0.3795 -1.3904 0.3776 -1.3721 0.3628 -1.3392 0.3619 -1.5155 0.3606 -1.9683
LSI2000 0.3832 -1.4621 0.3920 -1.3877 0.3915 -1.3708 0.3749 -1.3314 0.3764 -1.5202 0.3741 -1.9860
LSI5000 0.3977 -1.4382 0.4062 -1.3578 0.4051 -1.3400 0.3866 -1.3119 0.3903 -1.4692 0.3878 -1.9382

Naı̈veMCTS500 0.3747 -1.4711 0.3832 -1.4017 0.3811 -1.3861 0.3677 -1.3385 0.3672 -1.5314 0.3635 -1.9821
Naı̈veMCTS1000 0.3839 -1.4544 0.3926 -1.3809 0.3893 -1.3641 0.3740 -1.3312 0.3747 -1.4991 0.3709 -1.9431
Naı̈veMCTS2000 0.3916 -1.4527 0.3995 -1.3831 0.3985 -1.3665 0.3798 -1.3296 0.3827 -1.5034 0.3802 -1.9374
Naı̈veMCTS5000 0.4005 -1.4422 0.4123 -1.3652 0.4126 -1.3451 0.3969 -1.3100 0.3974 -1.4677 0.3963 -1.9043

Table 2: Comparison of Model Classification Speed
Model Instances/ms. Complexity

Naı̈ve Bayes 303.58 O(kn)
A1DE 174.46 O(kn2)
A2DE 43.07 O(kn3)

J48 298.05 O(log(n))
Bagging+J48 64.37 O(m · log(n))

Random Forest 30.97 O(m · log(n))

where n is the number of features. In our experiments 100
random trees are built by the random forest algorithm. The
class probability estimation is generated from the proportion
of votes of the trees in the ensemble.

In practice, we observed that learning a different model
for each different unit type in the game (workers, bases,
barracks, etc. in µRTS), resulted in better estimation of the
probabilities. So, for the experiments reported in the remain-
der of this paper, we generated the probability models in the
following way: (1) For each unit type we train a model us-
ing the subset of the training data corresponding to the unit
type. (2) If this subset is empty, then just train with the whole
training set (i.e., if we have no training data to model the way
a specific unit is controlled, we just train a model with the
whole training set for such unit, hoping it will reflect what
the script we are collecting data from would have done).

Experiments and Results
Bots for Data Collection
We generated training data in the following way. We col-
lected data from a round-robin tournament consists of six
bots in 8 different maps, four of which are 8 × 8 maps
and the other four are 12 × 12. Four of the bots are built-
in hard-coded bots: WorkerRush, LightRush, HeavyRush,
and RangedRush. The other two were Monte-Carlo search
bots: LSI and Naı̈veMCTS, whose computational budgets
are configurable. We run the experiments for LSI and
Naı̈veMCTS bots for four times with computation budgets
of 500, 1000, 2000, and 5000 playouts per game frame re-
spectively. The description of each bot is as below:

• Rush bots: hardcoded deterministic bots that implement
a rush strategy that constantly produces one type of unit

and sends them to attack the opponent’s base. Specifi-
cally, we used the WorkerRush, LightRush, RangedRush
and HeavyRush bots of µRTS, which implement rushes
with worker, light, ranged, and heavy units respectively.

• LSI: Monte Carlo search with Linear Side Informa-
tion (Shleyfman, Komenda, and Domshlak 2014)

• Naı̈veMCTS: MCTS algorithm with a tree policy specif-
ically designed for games with combinatorial branching
factors. The tree policy exploits Combinatorial Multi-
Armed Bandits (Ontañón 2017) to handle the combina-
torial explosion of possible moves.

The feature vector x(u, s) used to represent each game
state contains only eight features: the number of re-
sources available to the player, the cardinal direction (north,
east,south, west) toward where most friendly units are,
the cardinal direction toward where most enemy units are,
whether we have a barracks or not, and four features indi-
cating the type of the unit in the cell two positions north,
east, south or west (or whether these cells are empty or are a
wall). Adding more features could certainly improve perfor-
mance, which will be part of our future work. We employed
these 8 features, as used in previous work (Ontañón 2016),
for comparison purposes.

The 12 datasets collected are described below:

• IWR: consisting of all the unit-actions of WorkerRush
(32679 instances)

• ILR: consisting of all the unit-actions of LightRush (30139
instances)

• IHR: consisting of all the unit-actions of HeavyRush
(24385 instances)

• IRR: consisting of all the unit-actions of RangedRush
(31279 instances)

• I500LSI ,I1000LSI ,I2000LSI ,I5000LSI : consisting of all the unit-actions
of LSI under computing budget of 500, 1000, 2000, and
5000 respectively (85918, 88816, 85611, and 68236 in-
stances respectively)

• I500NMCTS,I1000NMCTS,I2000NMCTS,I5000NMCTS: consisting of all the unit-
actions of Naı̈veMCTS under computing budget of 500,
1000, 2000, and 5000 respectively (73249, 83925, 78896,
and 68158 instances respectively)



Table 3: Win rates against the baselines of the models trained
by IWR

Tree Policy NB A1DE A2DE J48 Bagging RF
Random 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 0.987 1.000 1.000 0.993 0.993 0.993
WorkerR 0.668 0.650 0.662 0.637 0.675 0.668
LightR 0.843 0.875 0.806 0.900 0.868 0.850
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 1.000 1.000 1.000 1.000 1.000

LSI 0.656 0.662 0.637 0.612 0.662 0.706
NMCTS 0.475 0.531 0.506 0.637 0.587 0.687
Average 0.829 0.840 0.827 0.848 0.848 0.863

Table 4: Win rates against the baselines of the models trained
by ILR

Tree Policy NB A1DE A2DE J48 Bagging RF
Random 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 0.993 1.000 1.000 1.000 0.987 0.993
WorkerR 0.662 0.581 0.625 0.6 0.687 0.681
LightR 0.862 0.862 0.787 0.781 0.862 0.831
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 0.993 1.000 1.000 1.000 1.000

LSI 0.618 0.656 0.618 0.650 0.650 0.687
NMCTS 0.456 0.525 0.500 0.643 0.593 0.606
Average 0.824 0.827 0.816 0.834 0.848 0.850

Table 5: Win rates against the baselines of the models trained
by IHR

Tree Policy NB A1DE A2DE J48 Bagging RF
Random 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 1.000 0.994 1.000 1.000 1.000 1.000
WorkerR 0.631 0.625 0.637 0.713 0.688 0.744
LightR 0.844 0.869 0.856 0.881 0.869 0.919
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 0.993 1.000 1.000 1.000 1.000

LSI 0.544 0.569 0.650 0.738 0.725 0.637
NMCTS 0.512 0.487 0.550 0.575 0.606 0.675
Average 0.816 0.818 0.837 0.863 0.861 0.872

Empirical Comparison of Models
For all six models, we used the Weka implementation2. In
this section we compare the six machine learning models
described before from the following aspects:

• action prediction (accuracy and probability estimation)

• classification speed

• gameplay strength as tree policy under iteration budget

• gameplay strength as tree policy under time budget

Unit Action Classification First we evaluate the models
on the classification and class probability estimation perfor-
mance. Table 1 shows the predictive accuracy and expected
log-likelihood of the six models in each of the 12 datasets
using a 10-fold cross validation. There is a total of 69 differ-
ent actions a unit can perform in µRTS, but each individual
can perform only between 5 and 33 unit-actions. We can see
that the models predict the behavior of the four hard-coded

2The open sourced implementation of C4.5 in Weka is J48.

Table 6: Win rates against the baselines of the models trained
by IRR

Tree Policy NB A1DE A2DE J48 Bagging RF
Random 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 0.994 1.000 0.994 0.994 1.000 0.994
WorkerR 0.675 0.600 0.637 0.681 0.694 0.713
LightR 0.800 0.825 0.875 0.812 0.906 0.838
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 1.000 1.000 1.000 1.000 1.000

LSI 0.588 0.637 0.725 0.700 0.706 0.738
NMCTS 0.619 0.494 0.644 0.588 0.619 0.600
Average 0.834 0.820 0.859 0.847 0.866 0.860

Table 7: Win rates against the baselines of the models trained
by ILSI5000

Tree Policy NB A1DE A2DE J48 Bagging RF
Rndom 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 1.000 1.000 1.000 1.000 0.994 1.000
WorkerR 0.650 0.675 0.700 0.706 0.675 0.725
LightR 0.856 0.944 0.894 0.931 0.894 0.844
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 1.000 1.000 1.000 1.000 1.000

LSI 0.850 0.825 0.688 0.688 0.688 0.744
NMCTS 0.675 0.688 0.662 0.562 0.725 0.625
Average 0.879 0.891 0.868 0.861 0.872 0.867

Table 8: Win rates against the baselines of the models trained
by INMCTS5000

Tree Policy NB A1DE A2DE J48 Bagging RF
Random 1.000 1.000 1.000 1.000 1.000 1.000

RndBiased 1.000 1.000 1.000 0.994 0.994 0.994
WorkerR 0.731 0.700 0.738 0.600 0.688 0.688
LightR 0.875 0.831 0.881 0.887 0.887 0.875
HeavyR 1.000 1.000 1.000 1.000 1.000 1.000
RangedR 1.000 1.000 1.000 1.000 1.000 1.000

LSI 0.800 0.762 0.769 0.700 0.775 0.794
NMCTS 0.650 0.725 0.756 0.688 0.688 0.669
Average 0.882 0.877 0.893 0.859 0.879 0.877

bots better than the Monte Carlo search bots. But as the com-
puting budget increases, the prediction performance also im-
proves for the Monte Carlo search bots. This indicates that
the Monte Carlo search bots converge to more stable strate-
gies as the computing budget increases.

We also report the expected log-likelihood of the actions
in the dataset given the model. This is a better metric to
consider than classification accuracy given that we want to
estimate the probability distribution of the actions, and not
just predicting the most likely action. The best possible log-
likelihood would be 0. We can observe that for Bayesian
models, the more we relax the independence assumption, the
better the accuracy and the log-likelihood. However, for de-
cision trees, bagging and random forest outperformed J48 in
accuracy but not in the log-likelihood.

Table 2 report the speed in classification time, where k is
the number of classes, n is the number of features, and m is
the number of iterations and trees built for bagging and ran-
dom forest respectively. The fastest models are Naı̈ve Bayes
and J48. The classification speed is very important in time-
constrained MCTS experiments as we will show later.
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Figure 2: Win Rates by Dataset and Model under iteration budget.

Win rates under Iteration Budget We now evaluate our
models as the prior distribution for the tree policy. We use
the trained models in the tree policy as the sampling prior
for the Naı̈ve Sampling process and we used RndBiased bot
as the default policy. In this experiment, the Naı̈veMCTS
bots coupled with models trained from different datasets are
tested against the eight baseline bots that were used for train-
ing trace generation. The individual results for each dataset
are reported in Tables 3-8. Figure 2 shows an aggregated bar
chart view of the average win rates grouped by training set
and model. The overall average performance of every model
is reported in Table 9.

The best model overall is random forest with 0.865 win
rate against the baselines, and being the best performing
model in three out of six experiments trained separately
for each dataset. A general observation is that decision tree
models especially the tree ensembles have better gameplay
performance than Bayesian models when the training dataset
is one of the rush bots. Meanwhile the Bayesian models out-
performed the decision tree models in the more complex
datasets, I5000LSI and I5000NMCTS. This seems to be because de-
cision trees are better at predicting the deterministic behav-
ior of the rush bots, but struggle to estimate the probability
distribution of moves of the more stochastic search bots.

Win rates under Time Budget Due to the nature of RTS
games, the computational budget is normally constrained by
time. In that sense, complex models that are working well
under iteration budget might lose their edges because they
run less iterations than simpler but faster models. Thus, we
run the gameplay strength experiments against seven3 of the
baseline bots again with computational budget being 50 mil-
liseconds per cycle. The results are reported in Table 10.

We can observe that the model performance is signifi-
cantly affected by the time budget. Although the more so-
phisticated models like A1DE, bagging, and random forest
have a better performance in experiments with iteration bud-

3The current version of LSI does not support time budgets.

Table 9: Overall Win rates per Model under Iteration Budget
Tree Policy NB A1DE A2DE J48 Bagging RF

Overall 0.844 0.846 0.850 0.852 0.862 0.865

Table 10: Overall Win rates per Model under Time Budget
Tree Policy NB A1DE A2DE J48 Bagging RF

Random 1.000 1.000 1.000 1.000 1.000 1.000
RndBiased 0.992 0.987 0.982 0.991 0.991 0.980
WorkerR 0.522 0.514 0.512 0.551 0.514 0.495
LightR 0.634 0.648 0.608 0.703 0.665 0.624
HeavyR 0.991 0.993 0.995 0.997 0.996 0.987
RangedR 0.993 0.997 0.992 0.996 0.992 0.988
NMCTS 0.708 0.688 0.634 0.736 0.594 0.579
Average 0.834 0.833 0.818 0.853 0.822 0.808

get, they do not have the same performance in experiments
with time budget. The reason is that those models are sig-
nificantly slower than Naı̈ve Bayes and C4.5, according to
Table 2. The C4.5 model stands out as the best performing
model (0.853 overall win rate) under experiments with time
constraints due to its speed and better class probability esti-
mation performance comparing to Naı̈ve Bayes model.

Conclusions and Future Work
The long term goal of this paper is to study the dynamics
of the integration of machine learning models and MCTS
methods and factors that affect the performance of their in-
teraction in the context of RTS games. Specifically, this pa-
per presents a comparison study on two types of machine
learning models, Bayesian models and decision tree models,
integrated in MCTS as part of the tree policy. We compare
the models in terms of classification performance, classifica-
tion speed, and gameplay strength as part of the tree policy
under iteration and time budget.

Our empirical results showed that both classification ac-
curacy and speed play a significant role when integrating



machine learning models into MCTS. Specifically, a random
forest model has the best classification performance and best
gameplay performance as tree policy when we models are
compared under iteration constraints. However, in experi-
ments under time constraint, random forest model has much
worse performance compared to faster models. Instead, the
C4.5 model, which has logarithmic complexity in classifica-
tion time, has the best performance.

There are a number of future work directions we intend
to pursue. For example, the models in this paper ignore the
interdependence of actions (when selecting an action for a
unit, knowing which action was selected for another unit on
the same game state might be relevant). Training a model
that takes action interdependence into account should po-
tentially result in better performing agents. Another possi-
ble improvement can come from models learned online us-
ing techniques like contextual bandit algorithms (Chu et al.
2011; Mandai and Kaneko 2016).
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[Ontañón 2013] Ontañón, S. 2013. The combinatorial multi-
armed bandit problem and its application to real-time strat-
egy games. In Ninth Artificial Intelligence and Interactive
Digital Entertainment Conference.
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