
Discretization of Game Space by Environment Attributes

Alexander Braylan and Risto Miikkulainen
The University of Texas at Austin

Abstract
Game AI is difficult to program, especially as games are fre-
quently changing due to updates from the designers and the
evolving behavior of human players. It would be useful if AI
agents were able to automatically learn to reason about their
environment. A major part of the environment is geospatial
information. An agent’s geospatial coordinates can suggest
likelihoods of encountering important objects such as items
or enemies, even when those objects are not in sight. Diffi-
culties arise when these probabilities are not nicely demar-
cated into areas predefined and provided by the game API,
creating the need to learn geospatial models automatically.
This paper argues for models that divide game environments
into discrete areas, proposes appropriate evaluation measures
for such models, and tests a few clustering approaches on de-
tailed creature sighting data extracted from a large number of
players of a modern multi-player first-person shooter game.
Two methods are shown to work better than simple baselines,
demonstrating how these techniques can be used to automati-
cally divide the game environment by its observed attributes.

Introduction
Programming intelligent agents by hand is increasingly dif-
ficult as games become more complex and evolve faster with
the changing needs and behavior of human players. There-
fore, a major goal for programming game AI is to move to-
ward agents that learn from data on their own. One powerful
ability would be to automatically learn rich representations
of the environmental dynamics.

Video game-playing agents that model their environment
require high-level abstraction of their observations. Abstrac-
tions representing the nature of an agent’s precise location
should be particularly useful. For example, an agent might
be able to infer what kind of items might be obtained in the
vicinity after encountering a certain type of enemy. Or the
agent might be able to assess the threat level of nearby en-
emies based on some of the fauna observed nearby. Using
such spatial knowledge, the agent should be able to make
accurate predictions as its location changes over time. Spa-
tial knowledge therefore enhances gameplay by allowing the
agent or player to strategize about where to hide, where to
hunt, where to find quests or items, where to relax and enjoy
the scenery, and so on.

Characteristics of the various locations in the game space
might not be explicitly coded but emerge rather as a result

of player interactions or the natural progression of the game
mechanics. Previous work has explored ways to automati-
cally represent such game characteristics that cannot be di-
rectly extracted from the game code. One example is extract-
ing interaction modes representing subsets of reasonable ac-
tions for a given situation out of a much larger set of actions
allowed by the code (Fulda et al. 2018). Along those lines,
observed interactions between agents and objects can be or-
ganized into a graph structure used for high-level statistical
reasoning and decision-making (Tomai 2018). Other exam-
ples include extracting hierarchies of concepts formed from
observations of game objects and their attributes (Winder
and desJardins 2018) and learning deep embeddings of game
moments from screenshots (Zhan and Smith 2018).

Complementing prior work, the focus of this paper is to
explore incorporating spatial location into abstract represen-
tations of the game. Representing space is a distinct chal-
lenge from representing objects, events, characters, and in-
teractions in that the input is continuous rather than discrete,
with nearby locations assumed to be more similar than far
ones, and in that it is constantly observable and concur-
rent with other observations. Therefore, some of the exist-
ing methods for extracting and using abstract game concepts
may not be adequate for spatial locations without first con-
verting the spatial input into useful discrete representations.

There are several ways to characterize game locations.
One way is to simply use the high-level information about
the current section of the game map predefined and pro-
vided by the game API. However, such predefined areas
are themselves often divided into several more specific ar-
eas of varying attributes whose borders are not provided by
the API, possibly because they arise from dynamics that are
not explicitly programmed, or possibly because they are af-
fected by human players. Furthermore, it may be desirable
for the agent to know only as much as could be observed
by a human player rather than “cheat” by querying the game
state. An alternative approach then is to learn to reason about
possible observations from the precise (x, y) coordinates of
the agent’s location. These coordinates can be input into a
geospatial model that outputs useful information such as the
probabilities of encountering various types of enemies, non-
player characters, items, etc.

In specifying a geospatial model, an important decision
is whether to use a kernel approach or a clustering ap-

proach. A kernel-based model outputs attributes that vary
smoothly over fine changes in location, often through the use
of Gaussian process regression (Williams 1998), although
other machine learning algorithms could also serve this pur-
pose. This type of model is used in real-world applications
such as geology and mining, which require precise estimates
of resource availability over a range of locations, similarly
to how a game agent might wish to predict what objects
might appear at a location. Such kernel-based models are
often non-parametric, in the sense that the past observations
themselves parametrize the model, as opposed to a para-
metric model whose number of parameters are fixed despite
making additional observations. The implication of using a
non-parametric model for characterizing locations in a video
game is that the model learns not only by changing its pa-
rameters but by growing its parameters, which can be pro-
hibitively expensive.

An alternative geospatial modeling approach is to use
clustering algorithms to divide groups of neighboring lo-
cation coordinates into discrete categories, or biomes (Ud-
vardy 1975). A cluster-based model treats output attributes
as constant within each biome but subject to sudden change
upon crossing into a different biome. As a result, its pre-
dictions are less precise than those of a kernel-based model,
especially near the edges of biomes. However, its number
of parameters are fixed with the number of clusters, which
may only grow as the agent explores far outside the spatial
bounds of its past observations. Furthermore, common ap-
proximate clustering algorithms are often in practice more
computationally efficient than the Gaussian processes, espe-
cially when observations are high-dimensional.

In contrast to many geological applications where new ob-
servations are relatively infrequent and plenty of compute
time and memory are available before making a decision,
a video game agent is constantly moving around the envi-
ronment making new observations and having to act quickly
based not only on geospatial knowledge but many other rel-
evant variables. Cluster-based models can be preferable to
kernel-based models due simply to being the more econom-
ical choice. Additionally, it could be argued that they are
more interpretable as well. Consider the following explana-
tions made by the candidate models:

Kernel-based: “I am at coordinates (x, y), which by inter-
polation from observations at (x− 3, y − 2), (x− 1, y +
1), (x + 2, y + 4), ..., the probability of encountering a
wolf each minute is 0.12”

Cluster-based: “I am at coordinates (x, y), which are in
biome type 7, where the probability of encountering a
wolf each minute is 0.12”

The knowledge required for the cluster-based explanation
is more compact and transferable. A non-player character
that needs to explain its goals and plans in terms of objects
and relationships (Molineaux, Dannenhauer, and Aha 2018)
could enhance its explanations by adding this latter repre-
sentation of location to its terminology.

Given a preference for cluster-based models that demar-
cate the game space into discrete biomes of varying charac-
teristics, the remaining questions are what methods to use

for learning the model parameters from observations and
how to evaluate and compare methods. The remainder of
this paper proposes evaluation criteria and methods that are
then experimentally shown to outperform baselines. The ex-
periments are conducted on data from an anonymous multi-
player first-person shooter game taking place over a large
world map inhabited by hundreds of species of non-player
creature characters.

Approach
The following kind of data is assumed to be collected by the
agent: A set of n observation vectors V = V1, V2, ..., Vn,
where each Vi is of size j + 2: j for environment attributes
of interest and the other two for x and y coordinates. Each
observation Vi is therefore composed of xi, yi, z

1
i , z

2
i , ...z

j
i .

Other notations include X = x1, x2, ..., xn, likewise for Y ,
and the matrix Z with rows as observations and columns
as attributes. The goal is for the algorithm to assign labels
B = b1, b2, ..., bn which represent the biomes each obser-
vation belongs to, thereby also yielding a lookup function
C(b) returning the set of all observations pertaining to biome
b. The possible values for b are integers up to K, the total
number of biomes.

Evaluation measures
While developing candidate algorithms for discretizing the
game space into biomes, progress was initially made by
looking at the resulting maps and manually judging whether
the biome divisions made sense. Qualitatively, the most at-
tractive maps were ones where the biome boundaries were
clear and distinct from each other in the compositions of
their attribute populations. However, it is necessary to estab-
lish how to objectively evaluate a candidate result and why
that evaluation metric is important. The following are the
two main criteria that a successful discretization algorithm
must meet.

Usefulness for modeling The algorithm should minimize
variation in attributes of interest within biomes while maxi-
mizing said variation across biomes. Doing so improves the
agent’s predictive accuracy of its environment. For example,
if an area populated with z1 (e.g. wolves) and a neighboring
area populated with z2 (e.g. turtles) are treated as a single
biome, each species would have comparable probability of
occurring, whereas if the areas are treated as two distinct
biomes, each species would have a probabilities closer to
zero and one, leading to fewer surprises. For categorical at-
tribute variables, information entropy in the attribute occur-
rence rates suffices instead of standard deviation. Low en-
tropy implies the information is more useful in that it can
be predicted more successfully. Biomes with low entropy
are ones in which an agent is less likely to be surprised by
an observation, so an algorithm which produces low-entropy
biomes is more useful for agent reasoning. There may also
be preferences for weighing some attributes more than oth-
ers, but in these experiments all attributes are treated equally.
The total entropy score E for a biome discretization algo-
rithm is calculated by grouping observed attributes by biome

and summing the entropy H of the frequency of each at-
tribute in each biome, or more formally as follows:

E =

K∑
b=1

j∑
t=1

H(P (t, b))

P (t, b) =

∑
i∈C(b) z

t
i

|C(b)|
H(p) = p log(p) + (1− p) log(1− p)

Representation efficiency As the number of attributes j
could be as large as the number of enemy types plus item
types and so on, one important objective is to be able to
handle such high-dimensional predictions with a relatively
compact abstraction. To evaluate compactness, one mea-
sure is the number of clusters used. Eventually the approx-
imate boundaries of the clusters also need to be stored ef-
ficiently. Therefore, another important objective is to max-
imize S(X,Y,B,m), the average fraction of m nearest
neighbors in geographical space belonging to same biome,
in other words a non-overlapping condition.

Baselines
Two simple approaches tested do not achieve a satisfac-
tory level of the above objectives. They make use of the K-
means clustering algorithm (Hartigan and Wong 1979) im-
plemented in scikit-learn (Pedregosa et al. 2011).

K-Means on X, Y One baseline is to run a K-means al-
gorithm on only X and Y - effectively just a partitioning
of the geographical space without regard to the composition
of the clusters in terms of environment attributes, as seen in
Figure 1. This method should not be expected to minimize
and maximize attribute variation within and across clusters,
respectively, therefore being less useful for predictive mod-
eling.

K-Means on Z Another baseline method is to run K-
means on Z, perhaps after normalizing or choosing weights
to assign each column. However, this method should only
be suitable to very specific cases where geospatial distribu-
tions of observations are already very homogeneous. For ex-
ample, if an area only contains wolves, then a single cluster
suffices to cover this area. However, if the area contains both
wolves and turtles, K-means on Z can assign each species to
different clusters which overlap in space as seen in Figure
2, violating the non-overlapping condition. This example il-
lustrates the purpose of the non-overlapping condition: it is
more efficient to store a definition for each biome contain-
ing several species than to store coverage definitions for each
species inhabiting the game.

Geospatially-constrained clustering (GCC)
The first solution attempts to meet the proposed objectives
by clustering Z while imposing a constraint based on X and
Y . Effectively, this approach works by clustering over envi-
ronment attributes like the second baseline above, but only
allowing any observation to belong to a cluster if that clus-
ter contains another observation that is a nearest neighbor in

Figure 1: K-means on X,Y. Biomes determined only by lo-
cation, allocating attribute information sub-optimally.

Figure 2: K-means on Z. Biomes determined only by at-
tributes, preventing demarcation into contiguous areas.

geographic space. A map resulting from GCC can be seen
in Figure 3. The implementation of constrained clustering
used in this paper is the scikit-learn library’s agglomerative
clustering, a form of hierarchical clustering (Ward Jr 1963)
where each observation is initialized in its own cluster be-
fore a merging process groups them into gradually larger
clusters. The constraint is set to merging observations within
q = 3 nearest neighbors. Setting it much larger than this will
result in violations of the non-overlap constraint.

Geospatially-aggregated clustering (GAC)
A second possible solution is to first convert Z into a repre-
sentation that is aggregated in the geospatial neighborhood.
For each observation Vi, any other observations within a
specified radius r are collected, and their attributes are av-
eraged into vector Ẑi = ẑ1i , ẑ

2
i , ...ẑ

j
i . K-means is then run

on Ẑ rather than Z as in the second baseline. The initial ag-
gregation step changes the attribute representation at each
observation by including nearby observations. The second
baseline’s problem of finding separate overlapping biomes

for wolves and turtles occupying the same area is therefore
overcome by grouping wolves and turtles together in the at-
tribute space. Figure 4 depicts a map resulting from GAC.

Compared to the GCC method, GAC allows a biome to
encompass distant patches in the map because it does not re-
quire a geographical constraint during the clustering phase.
For this reason, it may ultimately require a more complex
representation of the biome boundaries, though this paper
does not investigate further into that issue.

Figure 3: Geographically-constrained clustering. Clusters
form out of neighboring observations, so biomes are rarely
separated into different areas.

Figure 4: Geographically-aggregated clustering. Clusters
form from patches of observations that may be in distant
areas.

Experiments
The above four methods are tested on data from an anony-
mous modern multi-player first-person shooter game, de-
scribing the locations of observed non-player creatures. Ex-
periments are conducted and reported on three maps com-
prising about a fifth of the whole game area each. The size of
the attribute vectors in each map is the number of creatures
inhabiting it, ranging between 200 and 400. The n number

Map Method S E Time(s)
1 K-means (X,Y) .99 33 2.3
1 K-means (Z) .64 5 1.4
1 GCC .98 28 3.6
1 GAC .96 28 7.0
2 K-means (X,Y) .99 36 2.3
2 K-means (Z) .50 6 1.4
2 GCC .97 27 3.6
2 GAC .97 31 9.0
3 K-means (X,Y) .99 33 1.4
3 K-means (Z) .55 5 0.7
3 GCC .98 26 2.0
3 GAC .96 25 4.6

Table 1: Results of running the two baselines and two pro-
posed methods to divide three maps into eight biomes each.
K-means (X,Y) performs worst on entropy, while K-means
(Z) gets an impermissibly low S-score, violating the non-
overlap condition. GCC and GAC are about tied for entropy,
but GCC is faster.

of observations in each map ranges between 5000 to 18000.
The target number of clusters is set to eight in all exper-

iments. The q nearest neighbor constraint for GCC is set to
three, which worked best on a separate development map.
The r aggregation radius parameter for GAC is similarly
roughly optimized on the development map. The total infor-
mation entropy measure E is calculated for the evaluation of
usefulness for modeling, while the S-measure is calculated
for the evaluation of representation efficiency.

Results
Table 1 lays out the results of the experiments. As expected,
K-means on X,Y consistently performs worst on the entropy
measure for usefulness, while K-means on Z fails the non-
overlapping condition.

Of the two remaining proposed methods, the winner is
not as clear. GCC outperforms GAC on one map, and they
perform similarly on the other two. This result is slightly
surprising as GAC should attain better entropy due to its
increased flexibility over GCC. Further experiments are
needed to understand this result better. Both GCC and GAC
achieve high enough S-scores that the difference between
them is unimportant. However, due to GAC’s ability to di-
vide each biome into distant areas, the representation effi-
ciency should be a bit worse, although additional measures
of representation efficiency are needed to further confirm
that. GAC takes about twice as long to run as GCC. The ex-
tra slowness is due to the determination of neighbors within
each observation’s radius.

Conclusion
Game AI is increasingly difficult to program by hand due to
the complexity of the game environments, contributed to by
the various types of enemies, friends, items, structures, and
other objects. While some environmental knowledge might
sometimes be provided by the game API, many of the useful
dynamics need to be learned from observation.

Representing space in a lower-dimensional abstraction is
an important ability for game agents that need their knowl-
edge to be light-weight and explainable. Sectioning the ge-
ography into discrete biomes and knowing their boundaries
and distributions of environment attributes is one way to ac-
complish this goal.

A desirable method for discretizing the game space max-
imizes the usefulness of the resulting indicators for the pur-
pose of predictive modeling while also maintaining rep-
resentation efficiency. This paper presents two methods
that accomplish both goals and demonstrates their benefits
against methods that only aim for one goal or the other.

These methods may be further refined by taking what
works from both and figuring out how to overcome their
weaknesses. Future work must also evaluate and optimize
representation efficiency more rigorously, and test how well
predictions generalize near borders and from fewer total ob-
servations. Another interesting direction is to increase to
complexity of the spatial (x, y), and attribute (z) dimensions.
For example, x and y could be augmented with a third spatial
dimension for interstellar games or with a time dimension to
capture dynamic or seasonal biomes. Attributes could con-
sist not only of observed objects but of interactions between
them, allowing for agents to understand how their location
could affect complex game behaviors.

Ultimately these methods to discretize game environ-
ments can be used in a variety of applications besides just
training game agents. For example, they can be used to
create indicator variables for design optimization problems
such as difficulty balancing and match-making. They can
also be used as predictors for player modeling. Biome dis-
tributions and layouts learned from successful games may
even give insights into map design and content generation.

References
Fulda, N.; Ricks, D.; Murdoch, B.; and Wingate, D. 2018.
Threat, explore, barter, puzzle: A semantically-informed al-
gorithm for extracting interaction modes. In Proceedings
of the 1st Knowledge Extraction from Games Workshop.
AAAI.
Hartigan, J. A., and Wong, M. A. 1979. Algorithm as 136:
A k-means clustering algorithm. Journal of the Royal Sta-
tistical Society. Series C (Applied Statistics) 28(1):100–108.
Molineaux, M.; Dannenhauer, D.; and Aha, D. W. 2018.
Towards explainable npcs: A relational exploration learning
agent. In Proceedings of the 1st Knowledge Extraction from
Games Workshop. AAAI.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Tomai, E. 2018. Extraction of interaction events for learn-
ing reasonable behavior in an open-world survival game. In
Proceedings of the 1st Knowledge Extraction from Games
Workshop. AAAI.

Udvardy, M. D. 1975. A classification of the biogeographi-
cal provinces of the world, volume 8.
Ward Jr, J. H. 1963. Hierarchical grouping to optimize an
objective function. Journal of the American statistical asso-
ciation 58(301):236–244.
Williams, C. K. 1998. Prediction with gaussian processes:
From linear regression to linear prediction and beyond. In
Learning in graphical models. Springer. 599–621.
Winder, J., and desJardins, M. 2018. Concept-aware feature
extraction for knowledge transfer in reinforcement learning.
In Proceedings of the 1st Knowledge Extraction from Games
Workshop. AAAI.
Zhan, Z., and Smith, A. M. 2018. Retrieving game states
with moment vectors. In Proceedings of the 1st Knowledge
Extraction from Games Workshop. AAAI.

