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Department of Linguistics and Philology

Uppsala University
Sweden

mats.dahllof@lingfil.uu.se

Abstract

This article explores a minimally super-
vised method for extracting components,
mostly letters, from historical manuscripts,
and clustering them into classes capturing
linguistic equivalence. The clustering uses
the DBSCAN algorithm and an additional
classification step. This pipeline gives us
cheap, but partial, manuscript transcription
in combination with human annotation. Ex-
periments with different parameter settings
suggest that a system like this should be
tuned separately for different categories,
rather than rely on one-pass application
of algorithms partitioning the same com-
ponents into non-overlapping clusters. The
method could also be used to extract fea-
tures for manuscript classification, e.g. dat-
ing and scribe attribution, as well as to ex-
tract data for further palaeographic analy-
sis.

1 Introduction

1.1 Purpose
The present work explores a minimally supervised
method for extraction and clustering of writing
components from historical manuscripts. The pri-
mary purpose is to locate letters and to group them
into classes capturing graphemic equivalence. The
method will to some extent also find ligatures,
scribal abbreviations, parts of letters, and letter
sequences.

1.2 Motivation and applications
Clustering of writing components can be used as
a first step in the transcription of manuscripts. By
annotating clusters which group elements correctly
– and manually correcting those that almost do – we
will get cheaply acquired transcriptions, admittedly

incomplete, associated with regions of the images.
Components labelled in this way can be used as
data for training of systems for handwritten text
recognition. Another possible application is to use
these data to compare different manuscripts, for in-
stance, in the kind of digital palaeography proposed
by Ciula (2005), or in letter-based scribe attribution
in the style of Dahllöf (2014). Clustering can also
be used as a tool for presenting manuscript data for
qualitative palaeographic analysis.

1.3 Related work
The dominant approach in the field of handwritten
text recognition is building systems based on super-
vised machine learning. This kind of work relies
on labelled data, i.e. transcriptions. Less attention
has been paid to methods for automatic analysis
of handwriting which do not rely on transcriptions.
When no linguistic labelling is available, clustering
is a way of finding structure in writing. Rath and
Manmatha (2007) use clustering of words from
historical manuscripts (18th century) as a means
for obtaining labelled data for word spotting. Vu-
urpijl and Schomaker (1997) use clustering to find
allography in on-line handwriting data. Another
application in the field of digital palaeography is
proposed by Stutzmann (2016), who is interested
in the use of clustering for the categorization of
medieval script types.

2 Design and experimental procedure

The two main components of the current system are
responsible for component extraction and cluster-
ing, respectively. As these components have to be
based on certain a priori assumptions, they can be
designed in a variety of ways, and their operation
has to be guided by a number of parameters. We
will present and evaluate a baseline system, which
has proved useful as a point of departure during
the development phase. Its parameter setting is to
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a large extent comprehensible as reflecting proper-
ties of writing. After having looked at the baseline
system, we will proceed to look at a few modified
set-ups.

We will evaluate the clustering results using the
measures precision and recall (see e.g. Manning
et al. (2008)). In this context, these scores will be
based on labels assigned to the clusters by a manual
analysis. We will consider a cluster as capturing a
category if at least 60% of its members belong to
the category. So, the precision of a cluster is the ra-
tio of elements belonging to the category associated
with it. This also makes it possible to characterize a
clustering outcome (the set of clusters) in terms of
which categories it has managed to capture. Given
a labelled cluster, we can also estimate its recall
from the number of actual instances of the category
in a sample of manuscript pages and the number of
these which are included in the cluster.

3 Extraction of components

The first steps in the processing of the image files
(JPEG, TIFF) are scaling and binarization by a
version of the algorithm of Otsu (1979). The sys-
tem ignores the outer margins of the images. To
be more specific, images are cropped in such a
way that, if l is the smallest value of the image
width, w, and height, h, the further processing is
concerned with the image in the centred rectangle
of size (w−0.05l)× (h−0.05l).

In order to adapt the component extraction to
the actual size and scale of the writing, the process-
ing is guided by the typical stroke width, ws (for
the manuscript images being analysed). The sys-
tem estimates ws by determining the most common
width of sequences of continuous horizontal fore-
ground (ink) pixels separated by at least two pixels
of background. After that, the system rescales the
images to make sure all manuscripts are processed
at roughly the same writing-relative resolution. In
the experiments we discuss here, ws = 7 pixels.

The component extraction process is guided by
five parameters, (ti,wmn,wmx,hmn,hmx). First, the
system performs connected component labelling to
find connected stretches of writing. Components
whose width and height are in the intervals [wmn,wmx]
and [hmn,hmx], respectively, are extracted, while
those wider than wmx are fed to a segmentation
module. Loosely speaking, ti is the thickest amount
of ink that allows a vertical cut to be made.

To be more specific, the segmentation process

Figure 1: The grid of 11 × 11 = 121 rectan-
gles corresponding to the features used to cap-
ture the distribution of foreground (component
ink). So, the first five and the last five val-
ues for the example would be something like
(0.1,0.8,0.5,0.1,0.0, . . . ,0.3,0.0,0.2,0.9,0.2) if
we read top to bottom and left to right.

operates on the column sum of foreground (i.e. ink)
I(x), as computed with reference to the bounding
box surrounding the component. It scans the com-
ponent pixel by pixel, xL being the current position.
When xL = 0 or I(xL) ≤ ti, the system looks for
a xR ∈ [xL +wmn,xL +wmx] where I(xR) ≤ ti and
I(xR) is the smallest value. If it is not unique, the
leftmost (smallest) xR is preferred. A component
spanning xL to xR is then proposed, and scanning
resumes with xL=xR. If no xR meets the condition,
scanning resumes with xL=xL +1. If the height of
a proposed component spanning xL to xR is in the
interval [hmn,hmx], it is added to the set of extracted
components.

In order to normalize the segmentation with re-
spect to the size and scale of the writing, each
of the segmentation parameters is defined as
the product of a constant and ws (the typical
stroke width). We used (ti,wmn,wmx,hmn,hmx) =
(1.0ws,3.0ws,8.0ws,3.0ws,15.0ws) in the set-ups
discussed here. These parameters represent a
heuristic assumption about the appearance of the
handwriting. We have tailored them to medieval
book hands, aiming for a “wide-spectrum” retrieval
of letter-size elements, but more or less excluding
the letter i (bold case will be used for linguistic cat-
egories, rather than something like 〈i〉) and other
“minim” components.

4 Clustering

Clustering is performed in three steps. The first
one uses the density-based DBSCAN algorithm
for obtaining a “core clustering”. Secondly, small
(< 40 elements here) clusters are removed. The
third step is classification with the purpose of as-
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signing additional not yet clustered components to
the remaining (larger) core clusters.

4.1 Feature model and distance metric

Each manuscript component is characterized by a
feature vector, which quantifies the distribution of
foreground pixels as captured by a grid of 11×11
equal subrectangles over the bounding box. This
consequently gives us 121 features, as illustrated
by Figure 1. Each value is the ratio of the number
of foreground pixels to the size of the subrectangle
region (i.e. fi ∈ [0.0,1.0]).

The clustering and classification relies on
Euclidean distance operating on these vectors:

distance( f ,g)=
√

∑
n
i=1 ( fi−gi)

2.

4.2 Core clustering

The system uses the density-based DBSCAN al-
gorithm (Ester et al., 1996) to obtain a “core clus-
tering”. DBSCAN was proposed for applications,
like the present one, where a fair amount of noise
data points are present. The clustering process
is guided by two parameters: Eps (epsilon) and
minPts. Eps is the largest distance between two
points which are to be counted as neighbours. A
smaller Eps makes the algorithm more reluctant to
cluster data points by requiring a higher degree of
similarity for clustering to take place. The minPts
parameter is the minimal number of neighbouring
points required for the formation of a same-cluster
dense region. (minPts=11 for the baseline set-up
discussed below.) We can understand minPts as
a constraint on the amount of evidence required
for the stipulation of a cluster. Clusters smaller
than minPts may however be proposed, if another
cluster “steals” data points from a previously es-
tablished cluster in the clustering process (which
is sensitive to the order in which data points are
visited). The DBSCAN algorithm typically leaves
a subset of the data points (referred to as “noise”)
outside of the clusters, viz those points which are
not part of the neighbourhood of any other point as
defined by Eps and minPts.

The absolute distance values, as defined by the
feature model and the distance metric (and thereby
Eps), are hard to work with in a direct and intuitive
way. For this reason, we suggest a data-oriented
criterion, sensitive to the properties of the set of
components to be clustered, for selecting the Eps
value. Thus, we estimate Eps from a given thresh-
old, pE ps, in such a way that pE ps is the probability

that two randomly selected image components be
at most Eps distant from each other. The intuition
is that this probability should correspond to that of
two random components being evident instances
of the same graphemic type. In the baseline set-up,
we estimated Eps from pE ps=0.0007. If we com-
pare this number with English electronic text, we
can note that the corresponding character-related
probability is around 0.07, i.e. roughly 100 times
higher than the number we assume here.

After the DBSCAN step, which typically gives
us clusters of highly varying sizes, we remove the
clusters which we think are too small (size < 40 in
the experiments here) to merit attention. This will
make the output easier to inspect and use.

4.3 Extending clusters by classification

We add more elements to the clusters formed by the
core clustering, using a “nearest neighbour” classi-
fication procedure on the DBSCAN noise and the
components from the removed small clusters. If we
have retrieved n core clusters, with sets of elements
E1, . . . ,En, respectively, the system computes the
centroids, c1, . . . ,cn, for each cluster. It also deter-
mines the distance di, such that a certain fraction, f ,
of the elements of Ei is within that distance of the
centroid. So, di is the smallest distance such that∣∣{e∈Ei |distance(e,ci)< di}

∣∣> f∗
∣∣Ei
∣∣. In the ex-

periments reported here, f = 0.9. This will, loosely
speaking, exclude peripheral components.

The classification procedure assigns each com-
ponent, e (which does not yet belong to a cluster),
to cluster i if and only if ci is the nearest centroid
among c1, ...,cn, and distance(e,ci)< di.

4.4 Implementation and output

The system exists in the form of a Java implemen-
tation. For the purpose of the experiments reported
here, it presents the set of clusters by means of im-
ages and HTML files, as in Figure 2. The members
of each cluster are exhibited in a separate document
as in Figure 3, page by page and ordered by their
closeness to the centroid.

5 Experiments

In the experiments we conducted in order to evalu-
ate the system, we used eight 7th–15th century book
manuscripts as data. We tried a number of different
clustering parameter settings. Complete outputs for
all combinations of data and set-ups discussed here
are available as Supplementary Materials at http:
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//stp.lingfil.uu.se/~matsd/ch2018/.

5.1 Data
In our experiments, we applied the system to eight
different manuscripts, representing four different
important medieval periods and styles, each in two
clearly different instances, spanning roughly seven
centuries, see Table 1. The styles are Irish and
Carolingian minuscule, textualis, and cursiva, The
first four manuscripts are in Latin; the rest in Old
Swedish. The pages of B 59 (the oldest book in
Swedish) are worn and stained. B 10 suffers from
bleed-through. Otherwise, the data are from fairly
well-preserved books. The digitizations are of high
quality – we used the highest resolutions available –
in JPEG or TIFF format. Each file is between
2MB and 90MB in size. The terms of use allow
the images to be used freely for research purposes.
(The URLs for images and metadata are found in
Table 1).

5.2 Baseline set-up
We applied the system with the baseline parameter
settings (specified above) on the eight manuscripts.
From each sequence of pages, the system extracted
exactly 20 000 components. Between 25 and 44
images had to be read. The clustering assigned
between 5000 and 14 800 of them to clusters. We
manually inspected the clusters and performed an
analysis of which linguistic categories they repre-
sent. We also estimated the precision scores. In
the case of letter categories, we accepted also a few
similar majuscule instances of the same letter, e.g.
O among o, as true positives. Table 2 summarizes
the results.

Clusters for between 5 and 15 letters (not count-
ing allographs) were established. Letters like a, d,
m, and q (q only for Latin) had a strong tendency
to appear. As expected, no i cluster was found.
In a few cases, two different clusters for the same
letter had been established. The number of clus-
ters for ligatures and bigrams (ordinary two-letter
sequences) were strikingly higher for the textualis
and cursiva manuscripts, reflecting the fact that
connected letters are typical of these styles.

We can distinguish two kinds of outcome: For
some manuscripts, components were only assigned
to meaningful clusters (Gen. 1, CS 557, CS 564,
C 61(b)). In the other cases, also large “use-
less” clusters were established (CS 60, B 59, B 10,
C 61(a)). This suggests that more generous cluster-
ing settings could be worth exploring in the former

cases, while the latter situation invites using more
reluctant DBSCAN parameter values.

5.3 More generous settings
We tried to cluster the manuscripts Gen. 1, CS 557,
CS 564, and C 61(b), whose components were po-
tentially “underclustered” by the baseline set-up,
with pE ps=0.0014 (i.e. doubled), otherwise using
the baseline settings. Table 3 summarizes the re-
sults. A general tendency is, as can be expected,
that the clusters become larger and less pure. The
change also gives us new useful clusters, e.g. h for
Gen. 1 and b, h, (ligature d with macron), &, and

(pro abbreviation) for CS 564. The CS 557 out-
put covers 18 minuscule letter categories. However,
this setting also to some extent leads to merging
of categories discerned in the baseline set-up. So,
for instance, in the Gen. 1 output, f joins the p∪s2
blend, and instances of n and r – just like instances
of a and o in C 61(b) – get mixed up in the same
cluster.

5.4 More restrictive settings
We also tried two ways of making the clustering
of components more restrictive. The first one was
tightening the DBSCAN neighbourhoods by halv-
ing the probability pE ps (i.e. pE ps=0.00035) from
which Eps is estimated. Secondly, we doubled
the neighbourhood size requirement, i.e. used
minPts=22. Applying the two settings to two of
the “overclustered” manuscripts produced the out-
puts characterized in Table 3. Figure 4 aligns two
cluster set overviews for B 59, one for the baseline
set-up and one for pE ps=0.00035.

We can see that the more restrictive settings,
as expected, make the clusters fewer and smaller
across the board. For CS 60 the outcome is oth-
erwise similar to that for the baseline set-up. A
new cluster is formed by the detachment of a p∪r
category. For B 59 the response to the more re-
strictive settings is more pronounced and fruitful.
Fairly pure clusters appear for three or four addi-
tional letters, d (only with the lower pE ps), f, k,
and þ (thorn). Some letter sequence categories dis-
appear, but we also see a few new ones. For both
manuscripts, the two set-ups (pE ps=0.00035 and
minPts=22) have fairly similar consequences.

5.5 Recall and the classification step
Tables 2–4 give an idea about how the recall scores
for different categories compare to each other. (The
recall is 0 for categories for which the system does
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Table 1: The eight medieval manuscript page sequences used as data. CS: St. Gallen, Stiftsbibliothek.
UUB: Uppsala University Library. The UUB images cover spreads.

Abbr. Source citation, URL Script, date

Gen. 1 Schaffhausen Stadtbibliothek, pp. 6 ff. “Irische Halbunziale”
http://dx.doi.org/10.5076/e-codices-sbs-0001 7th/8th century

CS 60 Cod. Sang. 60, pp. 6 ff. “irischer Schrift”
http://dx.doi.org/10.5076/e-codices-csg-0060 8th century

CS 557 Cod. Sang. 557, pp. 13 ff. “Qualifizierte St. Galler Carolina”
http://dx.doi.org/10.5076/e-codices-csg-0557 late 9th century

CS 564 Cod. Sang. 564, pp. 16 ff. “Grosse, sorgfältige Spätcarolina”
http://dx.doi.org/10.5076/e-codices-csg-0564 late 12th century

B 59 National Library of Sweden, pp. 3 recto ff. (image 9 ff.) Textualis
https://data.kb.se/datasets/2015/01/fornsvenska/B 59 002611384 late 13th century

B 10 UUB, pp. 24 verso ff. Textualis
http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-90664 1350–1399

C 61(a) UUB, C 61, pp. 138 ff. (spread image 74 ff.) Cursiva recentior
http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-55762 late 15th century

C 61(b) The same codex, pp. 540 ff. (spread image 275 ff.) Cursiva recentior (a different hand)
http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-55762 late 15th century.

not establish a corresponding cluster.) Letters like
a, d, m, and q seem to be “easy” ones, while the
more infrequent letters are more difficult to retrieve
or have been filtered out by the size constraint.
The component extraction set-up is probably more
or less responsible for the scarcity of i, f, and l
clusters.

We will not provide a fully-fledged analysis of
absolute recall, but we have estimated recall for
a few cases and categories. For this purpose, we
annotated the three first pages (or four, i.e. two
spreads for C 61(b)) of the sequences for Gen. 1,
CS 557, CS 564, and C 61(b) as regards three let-
ter categories, e, m, and o. We counted black-
ink minuscule non-ligature letter instances in the
main text columns as the relevant ones, excluding
e.g. majuscule and red ink writing and later addi-
tions. (The ligature versus non-ligature distinction
was sometimes difficult to apply, e.g. for Gen. 1.)
We manually counted the true positives using the
overviews of the clustered components (arranged
page by page, as in Figure 3). Table 5 gives the
precision and recall scores for the two set-ups de-
scribed earlier for the manuscripts. Scores for the
baseline core clustering (i.e. excluding the contri-
bution by the classification step) are also reported.

We see that the absolute recall scores vary consider-
ably. The low values for e and CS 564 pertain to the
“clean-cut” e category; many e:s are assigned to se-
quence categories. The m and o categories seem to
reach high recall scores in several cases. Instances
of these are easy to extract because they are inter-
nally well connected and isolated from other letters.
We may also expect the feature model to “agree”
with the shapes of m and o in well capturing the
differences between them and other letters.

The pE ps = 0.0014 set-up leads to a clear in-
crease in recall in most cases, without loss in preci-
sion. For m and o in CS 564, and C 61(b) precision
is somewhat compromised. For C 61(b) it even
leads to the merging of the a and o clusters (sepa-
rated in the baseline output). The o-precision for
the a∪o cluster is just 29%.

The classification step is responsible for 13–35%
(comparing manuscript outputs) of the components
being assigned to clusters in the baseline set-up.
(These components carry a tag indicating their
classification-based assignment.) In the small-scale
study of Table 5, classification generally leads to
a pronounced improvement in recall compared to
the core DBSCAN output of the baseline system.
In only two cases, a fall in precision can be ob-
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Table 2: Outcome of the baseline experiments. Manuscripts, with c: the number of clusters established,
n: the number of components assigned to some cluster (k: in thousands) (the rest is “noise”), and p:
the number of images that the component extraction module read. Clusters for letters, ligatures and
bigrams, and mixtures (∪: union). Three dots “...” indicate preceding or succeeding material in classes of
components with one “dominating” letter. The precision scores are > 99.5%, unless the cluster size is
marked by a symbol indicating a lower level of precision, as follows: ?: > 98%, †: > 80%, or ‡: > 60%.
Plus signs in the size numbers indicate that several clusters were established. Allographs: d1: ordinary,
d2: uncial. Compare Figure 2.

Manuscript Letters Ligatures, bigrams Mixtures, etc.

Gen. 1
c=20, n=8.9k
p=25

a:1171, b:306, c:406, d1:251,
d2:289, e:273, f:112, l:271, m:460,
n:667, o:675, q:204+65, r:755,
s1:101, t:252, u:827 [s1: like
modern s]

en:54, &:90 p∪s2:1715
[s2: tall r-like allograph]

CS 60
c=16, n=14.6k
p=27

a:1138†, c:601?, d:593?, e1:317,
e2:181, m:734?, o:851, q:371,
s:755, t:361 [e2: part of ligatures]

er:62†, &:248 b∪h∪li:718?, n∪u:4300‡

c∪e arc:52, useless: 3274

CS 557
c=17, n=5.0k
p=44

b:241+93, d1:273, g:64, h:84, l:85,
m:585, n:144, o:676, p:597, q:195,
r:409+86, s:1141, v:191

is:104, ss:56 –

CS 564
c=17, n=6.7k
p=42

a:389, d:563, e:115, m:998‡, o:248,
p:487, q:157, r:195+45, s:1324,
u:456?

es:104, os:45, ss:92,
...s:78, it:84

n∪u:1289‡

B 59
c=23, n=14.8k
p=44

a:2938†, m:361†, n:1562‡, o:488,
s:1220‡

al:57, bo:47,
fa:105?, fi:157,
gh:63, gi:94†,
ll:71†, sk:256†,
sti:53†

a...:367, ...a:290†, e...:110,
sk∪st:52†, useless: 3846+
2172+223+190+109

B 10
c=26, n=10.1k
p=35

a:2218?, ä:178, b:216†, d:168,
e:375?, k:96, m:487‡, o:933,
s:951‡, t:197?, þ:314, v:487?, w:54,
y:112 [a: some with lost diacritic]

an:130?, fi:66,
ff:69, ffi:68, gi:109?

a...:116, ...a:53, g...:189,
t...:83,
useless: 2261+103+97

C 61(a)
c=24, n=10.6k
p=31

a:446, d:173, g:383, h:946?, o:116,
t:443†

dh:69, eß:274,
ot:123, sk:50?,
ß:98, th:934?

...a:88, d...:498, ...d:223,
g...:128, ...g:142+107,
h...:576†, ...l:47, ...p:46,
t...:297?, macron:863,
useless: 3535

C 61(b)
c=27, n=11.2k
p=25

a:1594, ä:456, d:508, e:436,
g:158+60, k:117, m:905†, n:1180†,
o:511, r:148?, s:237‡, v:88, w:261,
y:130

en:134, ff:63†,
fö:114†, hy:94,
sk:205, ta:52,
ti:152 tin:41

...h...:2889+111†, s...:461†,
m/n-minim:109
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Figure 2: Cluster sets for Gen. 1 (top) and C 61(b) (bottom) from the baseline set-up. In cells: cluster
number, size, average width – estimated stroke width (ws) being the unit –, and the instance closest to the
centroid. Component foreground (binarized) rendered in dark blue. Compare Table 2.

Table 3: Clusters produced with pE ps = 0.0014, otherwise as baseline set-up, see Table 2 (also for
explanations). New clusters (compared to baseline) are underlined.

Manuscript letters ligatures, bigrams mixtures, etc.

Gen. 1
pE ps=0.0014
c=23, n=13.2k

a:1460?, b:341+51, c:555, d1:284,
d2:405, e:863?, h:113, l:349,
m:630, o:994, q:303, s1:213,
t:615†, u:1231 (absent: f, n, r)

en:129†, er:63,
&:128, e...:55, li:79

n∪r:2306?, f∪p∪s2:1906?,
r-frag.:156

CS 557
pE ps=0.0014
c=27, n=9.5k

a:594, b:404, c:111, d1:309,
d2:167, e:423, E:54, g:112, h:108,
l:109?, m:960, n:685, o:841, p:628,
q:245, r:609+138†, s:1149, t:64,
u:969, v:229

co:104, er:184,
&:104, is:113,
ri:64, ss:66

–

CS 564
pE ps=0.0014
c=28, n=10.9k

a:592, b:282?, d:660, e:202, h:121,
m:1369‡, o:568, p:542?, q:219,
r:276+79, s:1331
(absent: u)

:54, er:248, &:85,
it:245?, on:82, :61,
ri:119?, ss:103

d...:64, n∪u:2992‡, o...:54,
...s:277, st...:55, useless:
151+77+54

C 61(b)
pE ps=0.0014
c=31, n=13.4k

ä:488, d:625, e:483, g:214+66,
k:169, m:945†, n:1277†, r:213?,
s:296‡, v:105, w:330?, y:163
(absent: a, o)

en:202†, ff:84†,
gh:59†, hy:337†,
sk:217, ß:137,
ti:174†, tin:43

a∪o:2471?, ...h...:2860†,
k...:69, r...:78, ...p:50,
s...:788†, t...:81†, th...:90†,
useless: 200+40
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Figure 3: A few cluster instances (excerpts): d, & (〈et〉 ligature), m, and t from from CS 60, b and p∪s2,
both from Gen. 1, þ (thorn) from B 10, m from B 59 (two errors), ...d from C 61(a), and sk from C 61(b).
Some component images are cut to the right.

Figure 4: Cluster sets for B 59: Baseline set-up (top) (compare Table 2) and the more reluctant set-up
with pE ps=0.00035 (bottom) (compare Table 4). Explanations at Figure 2.
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Table 4: Clusters produced by more reluctant settings of pE ps and minPts, otherwise as baseline set-up
(see Table 2). New clusters (compared to baseline) are underlined.

Data & set-up letters ligatures, bigrams mixtures, etc.

CS 60
pE ps=0.00035
c=15, n=12.4k

a:985†, c:520, d:541, e1:254, e2:97,
m:698?, o:726, q:314, s1:178, t:318

&:203 b∪h∪li:635, n∪u:2894†,
p∪r:806†, useless: 3202

CS 60
minPts=22
c=15, n=12.9k

a:1037†, c:549?, d:575?, e1:271,
e2:100, m:719?, o:813, q:318,
s1:468, t:309

&:209 b∪h∪li:666, n∪u:2981†,
p∪r:813†, useless: 3033

B 59
pE ps=0.00035
c=18, n=8.9k

a:2634?, d:200, h:71, k:456?,
m:289†, n:1348‡, o:359, s:1144‡,
þ:355†

ar:122?, sk:236†,
ta:98†

v∪b:693‡, useless:
507+157+75+65+64

B 59
minPts=22
c=16, n=6.6k

a:2852?, h:93, k:477?, m:335†,
n:1433‡, o:455, s:1170‡, þ:386†,

ar:229‡, fi:63,
sk:223†, ta:143†,

v∪b:943‡, useless:
599+155+66

Table 5: Precision (p.) and recall (r.), both in %,
for the baseline and pE ps = 0.0014 set-ups, esti-
mated for three categories (e, m, and o) and four
manuscripts. Last cell (36%) corresponding to clus-
ter a∪o in Table 3. We also report scores for the
baseline set-up excluding the classification step
(Core).

Core Baseline pE ps=0.0014
Manuscript e m o e m o e m o
Gen. 1 p. 100 100 100 100 100 100 100 100 100

r. 10 46 54 14 54 58 46 68 83
CS 557 p. – 100 100 – 100 100 100 100 100

r. 0 13 46 0 44 61 8 71 76
CS 564 p. – 97 100 100 65 100 100 57 100

r. 0 46 1 4 58 17 7 61 36
C 61(b) p. 100 100 100 100 97 100 100 96 29

r. 28 58 25 28 63 28 31 65 36

served. The effect of the classification step varies
even more for individual categories. Just to take
two extreme examples from the full baseline out-
put for CS 557 (see Table 2): for m, 322 of 585
elements were retrieved by classification, but only
1 of 1141 for s. (100% precision in both cases.)

6 Conclusions

In this study, we have shown that simple compo-
nent extraction and clustering in combination with
limited human intervention can be used to produce
partial transcriptions of medieval manuscripts in a
range of styles. This kind of pipeline will provide
a low-cost method for initial annotation, which is
potentially useful in many contexts of handwrit-
ing analysis and digital philology. However, the
basic modules of the system are simple and invite
improvement.

The component extraction module relies on very
basic methods for binarization, connected compo-
nent labelling, and component segmentation. We
have not considered more sophisticated designs in
this paper, but that is certainly one of the more ob-
vious points for future work. Just modifying the
segmentation parameters of the current implemen-
tation would give us other components to cluster
and consequently very different outputs. The sys-
tem works without making use of modules for lay-
out analysis or line segmentation, other than what
is achieved by the connected component labelling.
This makes the system more robust with regard
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to some kinds of manuscript, but using such mod-
ules would potentially be useful for guiding the
component extraction in other cases.

The feature model seems to work quite well for
the styles studied here, because letter distinctions
generally correspond to marked contrasts in how
ink is distributed in the bounding box. Admittedly,
we have only studied fairly regular book styles. The
b∪h∪li mixture produced for C 60 is an example
where the model, so to speak, fails to separate the
categories. The 11×11 “resolution” is reasonable
for letters, but will blur larger components, e.g. let-
ter sequences. The model does not capture absolute
or relative size of the components. This is an ad-
vantage when there is linguistically insignificant
size variation, but could have helped to separate p
and s in Gen. 1, see Figure 3. This letter pair also
illustrates another problem: A significant part of
the p’s is a typically unconnected dot. Another
conclusion that should be drawn is that a system
like this could benefit from also looking at the con-
texts in which the components occur. The current
system only “sees” the foreground components as
framed by the bounding box.

When we looked at the results of the clustering
we saw that settings that are fruitful for the re-
trieval of one letter category might lead to merging
of other categories. And, contrariwise, a set-up that
will to keep the two categories separated might pre-
vent the system from establishing clusters for other
categories. This suggests that a system like the
present one should be tuned separately for different
categories, rather than rely on a one-pass applica-
tion of algorithms partitioning the components into
non-overlapping clusters. This kind of approach
would also benefit from the use of statistical criteria
which would help us find good parameter settings
automatically.
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