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Abstract

Term-document matrices feed most distri-
butional approaches to quantitative textual
studies, without consideration for the se-
mantic similarities between terms, whose
presence arguably reduces content variety.
This contribution presents a formalism rem-
edying this omission, and makes an explicit
use of the semantic similarities as extracted
from WordNet. A case study in similarity-
reduced correspondence analysis illustrates
the proposal.

1 Introduction

The term-document matrix N = (nik) counts the
occurrences of n terms in p documents, and con-
stitutes the privileged input of most distributional
studies in quantitative textual linguistics: chi2 dis-
similarities between terms or documents, distance-
based clustering of terms or documents, multidi-
mensional scaling (MDS) on terms or documents;
and, also, latent clustering by non-negative matrix
factorization (e.g., Lee and Seung, 1999) or topic
modeling (e.g., Blei, 2012); as well as nonlinear
variants resulting from transformations of the inde-
pendence quotients, as in the Hellinger dissimilari-
ties, or transformations of the chi2 dissimilarities
themselves (e.g., Bavaud, 2011).

When using the term-document matrix, the se-
mantic link between words is only indirectly ad-
dressed through the celebrated “distributional hy-
pothesis,” postulating an association between dis-
tributional similarity (the neighbourhood or close-
ness of words in a text) and meaning similarity
(the closeness of concepts) (Harris, 1954) (see also,
e.g., Sahlgren, 2008; McGillivray et al., 2008). Al-
though largely accepted and much documented, the
study of the distributional hypothesis seems hardly
tackled in an explicit way, by typically comput-

ing and comparing the average semantic similarity
within documents or contexts to the average se-
mantic similarity between documents or contexts –
which supposes the recourse to some hand-crafted
semantics, fairly unavailable at the time of Harris’
writings.

The present short study distinguishes both kinds
of similarities and constitutes at this stage a proof
of concept oriented towards the formalism and the
conceptualization rather than large-scale applica-
tions – in the general spirit of the COMHUM 2018
conference. It yields a new measure of textual va-
riety taking explicitly into account the semantic
similarities between terms, and permits to weigh
the usage of the semantic similarity when analyzing
the term-document matrix.

2 Data

After manually extracting the paragraphs of each of
the p = 11 chapters of Book I of “An Inquiry into
the Nature and Causes of the Wealth of Nations”
by Adam Smith (Smith, 1776) (a somewhat arbi-
trary choice among myriads of other possibilities),
we tagged the parts of speech and lemma for each
word of the corpus using the nlp4j tagger (Choi,
2016). Subsequently we created a lemma-chapter
matrix, retaining only the type of words serving
a specific task, such as verbs. Terms i, j present
in the chapters were then associated to their first
conceptual senses ci,c j, that is to their first Word-
Net synsets (Miller, 1995). We inspected several
similarity matrices ŝi j = ŝ(ci,c j) between pairs of
concepts ci and c j.

3 Semantic similarities

A few approaches for computing similarities be-
tween words have been proposed in the literature
(see, e.g., Gomaa and Fahmy, 2013). Recent mea-
sures use word embeddings (Kusner et al., 2015),
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and tough these approaches are successful at re-
solving other NLP tasks, they suffer some draw-
backs in computing semantic similarity (Faruqui
et al., 2016). Also, the latter methods are directly
based on the distributional hypothesis, and hence
unadapted to distinguish between distributional and
semantic dissimilarities, precisely.

By contrast, the present paper uses WordNet,
that is a humanly constructed ontology. The clas-
sical WordNet similarities ŝ(ci,c j) between two
concepts ci and c j computed on WordNet take on
different forms. The conceptually easiest is the path
similarity, defined from the number `(ci,c j)≥ 0 of
edges of the shortest-path (in the WordNet hierar-
chy) between ci and c j as follows:

ŝpath(ci,c j)=
1

1+ `(ci,c j)
(1)

The Leacock Chodorow similarity (Leacock and
Chodorow, 1998) is based on the same principle but
considers also the maximum depth D=maxi `(ci,0)
(where 0 represents the root of the hierarchy, oc-
cuped by the concept subsuming all the others) of
the concepts in the WordNet taxonomy:

ŝlch(ci,c j) =− log
`(ci,c j)

2D

The Wu-Palmer similarity (Wu and Palmer, 1994)
is based on the notion of lowest common subsumer
ci∨ c j, that is the least general concept in the hier-
archy that is a hypernym or ancestor of both ci and
c j:

ŝwup(ci,c j)=
2`(ci∨ c j,0)

`(ci,0)+ `(c j,0)

The following similarities are further based on
the concept of Information Content, proposed by
Resnik (Resnik, 1993b,a). The Information Con-
tent of a concept c is defined as− log(p(c)), where
p(c) is the probability to encounter a concept c in
a reference corpus. The Resnik similarity (Resnik,
1995) is defined as:

ŝres(ci,c j)=− log p(ci∨ c j)

The Lin similarity (Lin, 1998) is defined as:

ŝlin(ci,c j)=
2 · log p(ci∨ c j)

log p(ci)+ log p(c j)

Finally, the Jiang Coranth similarity (Jiang and
Conrath, 1997) is defined as:

ŝjch(ci,c j)=
1

− log p(ci)− log p(c j)+2 · log p(ci∨ c j)

and obeys ŝjch(ci,ci) = ∞.

Among the above similarities, the path, Wu-
Palmer and Lin similarities obey the conditions

ŝi j = ŝ ji ≥ 0 and ŝii = 1 . (2)

In what follows, we shall use the path similarities
when required.

4 A similarity-reduced measure of
textual variety

Let fi ≥ 0 be the relative frequency of term i, nor-
malized to ∑

n
i=1 fi. Shannon entropy H =−∑i fi ln fi

constitutes a measure of relative textual variety,
ranging from 0 (a single term repeats itself) to lnn
(all terms are different). Yet, the entropy does not
take into account the possible similarity between
the terms, in contrast to the reduced entropy R (our
nomenclature) defined as

R =−
n

∑
i=1

fi lnbi where bi =
n

∑
j=1

ŝi j f j . (3)

In Ecology, bi is the banality of species i, measur-
ing its average similarity to other species (Marcon,
2016), proposed by Leinster and Cobbold (2012),
as well as by Ricotta and Szeidl (2006). By con-
struction, fi ≤ bi ≤ 1 and thus R ≤ H: the larger
the similarities, the lower the textual variety as
measured by the reduced entropy, as requested.

Returning to the case study, we have, out of
the 643 verb lemmas initially present in the corpus,
retained the n= 234 verb lemmas occurring at least
5 times (“be” and “have” excluded). Overall term
weights fi, chapter weights ρk and term weights f k

i
within a chapter obtain from the n× p = 234×11
term-document matrix N = (nik) as

fi =
ni•
n••

ρk =
n•k
n••

f k
i =

nik

n•k
(4)

The corresponding entropies and reduced en-
tropies read H = 4.98 > R = 1.60. For each chap-
ter, the corresponding quantities are depicted in
figure 1. One can observe the so-called concav-
ity property H > ∑k ρkHk (always verified) and
R > ∑k ρkRk (verified here), which says that the
variety of the whole is larger than the average vari-
ety of its constituents.
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Figure 1: Entropies Hk and reduced entropies Rk
for each chapter k; dashed lines depict H and R.
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Figure 2: Shannon varieties exp(Hk) and reduced
varieties exp(Rk) for each chapter k; dashed lines
depict exp(H) and exp(R).
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Figure 3: Biplot of the 234× 11 term-document
matrix. Circles depict terms and triangles depict
documents.

Shannon variety NShannon = exp(H)≤ n represents
the equivalent number of distinct types in a uni-
formly constituted corpus of same richness or di-
versity (in the entropy sense) as the currently exam-
ined corpus. Likewise, the reduced variety Nreduced =
exp(R)� NShannon measures the equivalent number
of types if the latter were uniformly distributed and
completely dissimilar (that is si j = 0 for i 6= j): see
figure 2.

5 Ordinary correspondence analysis
(recall)

Correspondence analysis (CA) permits a simulta-
neous representation of terms and documents in
the so-called biplot (figure 3). CA results from
weighted multidimensional scaling (MDS) applied
to the chi2 dissimilarities Dχ

kl between documents
k and l

Dχ

kl =
n

∑
i=1

fi(qik−qil)
2 where qik =

nikn••
ni•n•k

(5)

or equivalently, on MDS applied to the chi2 dis-
similarities between terms. Note the qik in (5)
to constitute the independence quotients, that is
the ratio of the observed counts to their expected
value under independence. Figure 3 constitutes
the two-dimensional projection of a weighted Eu-
clidean configuration of min(234−1,11−1) = 10
dimensions, expressing a maximal proportion of
0.17+ 0.15 = 32% of dispersion or inertia ∆ =
1
2 ∑kl ρkρlD

χ

kl.

Similarity-reduced correspondence analysis In
the case where documents k and l, differing by the
presence of distinct terms, contain semantically
similar terms, the “naive” chi2 dissimilarity (5),
which implicitly assumes distinct terms to be com-
pletely dissimilar, arguably overestimates their dif-
ference. The latter should be downsized accord-
ingly, in a way both reflecting the amount of shared
similarity between k and l, and still retaining the
squared Euclidean nature of their dissimilarity – a
crucial requirement for the validity of MDS. This
simple idea leads us to propose the following re-
duced squared Euclidean distance D̂kl between doc-
uments, taking into account both the distributional
and semantic differences between the documents,
namely

D̃kl = ∑
i j
t̃i j(qik−qil)(q jk−q jl) (6)
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Figure 4: Weighted MDS of the document re-
duced dissimilarities D̃ (6), displaying the optimal
two-dimensional projection of the reduced iner-
tia ∆̃ = 1

2 ∑kl ρkρlD̃kl = 0.025, which is roughly
50 times smaller than the ordinary inertia ∆ =
1
2 ∑kl ρkρlD

χ

kl = 1.156 of usual CA (figure 3).

where (qik − qil)(q jk − q jl) captures the distribu-
tional contribution, and

t̃i j =
fi f j ŝi j√

bib j
where b = Ŝ f is the banality

captures the semantic contribution. Matrix T̃ =
(t̃i j) has been designed so that

• T̃ = diag( f ) for “naive” similarities Ŝ = I
(where I is the identity matrix), in which case
D̃ is the usual chi2-dissimilarity

• T̃= f f ′ for “confounded types” Ŝ= J (where
J is the unit matrix filled with ones), in which
case D̃ is identically zero.

Also, one can prove D̃ in (6) to be a squared Eu-
clidean dissimilarity iff S is positive semi-definite,
that is iff all its eigenvalues are non-negative, a
verified condition for path dissimilarities (see the
Appendix). Figure 4 depicts the corresponding
MDS.

Semantic MDS on terms Positive semi-definite
semantic similarities Ŝ of the form (2), such as
the path similarities, generate squared Euclidean
dissimilarities as

d̂i j = 1− ŝi j (7)
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Figure 5: Weighted MDS on the term semantic dis-
similarities (7) for the 234 retained verbs. The first
dimension opposes do and make (whose similarity
is 1) to the other verbs. The second dimension op-
poses appear and seem (with similarity 1) to the
other verbs.

(see the Appendix), and this circumstance allows
a weighted MDS on semantic dissimilarities be-
tween terms, aimed at depicting an optimal low-
dimensional representation of the semantic inertia

�̂=
1
2 ∑

i j
fi f jd̂i j , (8)

irrespectively of the distributional term-document
structure (figures 5 and 6).

A family of similarities interpolating between
totally distinct types and confounded types
The exact form of similarities Ŝ between terms
fully governs the similarity-reduction mechanism
investigated so far. Yet, little systematic investi-
gation seems to have been devoted to the formal
properties of similarities (by contrast to the study
of the dissimilarities families found, for example,
in Critchley and Fichet (1994) or Deza and Lau-
rent (2009), which may obey much more specific
properties than (2). In particular, ŝα

i j satisfies (2)
for α ≥ 0 if ŝi j does, and varying α permits to
interpolate between the extreme cases of “naive”
similarities Ŝ= I and “confounded types” Ŝ= J.

Lists of synonyms1 yield binary similarity matri-
ces si j = 0 or 1. More generally, S can be defined

1. For example: http://www.crisco.unicaen.fr/des/
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Figure 6: Weighted MDS on the term semantic
dissimilarities (7) for the 643 verbs initially present
in the corpus, emphasizing the particular position
of be and have

as a convex combination of binary synonymy rela-
tions, insuring its non-negativity, symmetry, pos-
itive definiteness, with sii = 1 for all terms i. A
family of such semantic similarities indexed by the
bandwidth parameter β > 0 obtains as

si j = exp(−β d̂i j/�̂) (9)

where d̂i j is the semantic dissimilarity (7) and �̂
the associated semantic inertia (8).

As a matter of fact, it can be shown that a binary
S makes the similarity-reduced document dissim-
ilarity D̃kl (6) identical to the chi2 dissimilarity
(5), with the exception that the sum now runs on
cliques of synonyms rather than terms. Also, the
limit β → 0 in (9) makes D̃kl → 0 with a reduced
inertia ∆̃(β ) = 1

2 ∑kl ρkρlD̃kl tending to zero. In the
opposite direction, β → ∞ makes D̃kl → Dχ

kl pro-
vided d̂i j > 0 for i 6= j, a circumstance violated in
the case study, where the n = 234 verbs display, ac-
cordingly to their first sense in WordNet, 15 cliques
of size 2 (among which do-make and appear-seem,
already encountered in figure 5) and 3 cliques of
size 3 (namely, employ-apply-use, set-lay-put and
supply-furnish-provide). In any case, the relative
reduced inertia ∆̃(β )/∆ is increasing in β (figure
7).

Performing the similarity-reduced correspon-
dence analysis on the reduced dissimilarities (6)
between the 11 document, with similarity matri-
ces S(β ) (instead of Ŝ as in figure 4) demonstrates
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Figure 7: The larger the bandwidth parameter β ,
the less similar are the terms, and hence the greater
are the reduced inertia ∆̃(β ) as well as the reduced
entropy R̃(β ) (3)

the collapse of the cloud of document coordinates
(figure 8). As a matter of fact, the bandwidth pa-
rameter β controls the paradigmatic sensitivity of
the linguistic subject: the larger β , the larger the
semantic distances between the documents, and the
larger the spread of the factorial cloud as measured
by reduced inertia ∆̃(β ) (figure 7). On the other
direction, a low β can model an illiterate person,
sadly unable to discriminate between documents,
which look all alike.

6 Conclusion and further issues

Despite the technicality of its exposition, the idea
of this contribution is straightforward, namely to
propose a way to take semantic similarity explic-
itly into account, within the classical distributional
similarity framework provided by correspondence
analysis. Alternative approaches and variants are
obvious: further analysis on non-verbs should be
investigated; other definitions of D̃ are worth inves-
tigating; other choices of S are possible (in partic-
ular the original Ŝ extracted form Wordnet). Also,
alternatives to WordNet path similarities (e.g., for
languages in which WordNet is not defined) are
required.

On the document side, and despite its numerous
achievements, the term-document matrix still relies
on a rudimentary approach to textual context, mod-
elled as p documents consisting of bag of words.
Much finer syntagmatic descriptions are possible,
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Figure 8: In the limit β → 0, both diagonal and
off-diagonal similarities si j(β ) tend to one, making
all terms semantically identical, thus provoking the
collapse of the cloud of document coordinates.

captured by the general concept of exchange ma-
trix E, giving the joint probability to select a pair
of textual positions through textual navigation (by
reading, hyperlinks or bibliographic zapping, etc.).
E defines a weighted network whose nodes are the
textual positions occupied by terms (Bavaud et al.,
2015).

The parallel with spatial issues (quantitative
geography, image analysis), where E defines the

“where”, and the features dissimilarities between
positions D defines the “what”, is immediate (see,
e.g., Egloff and Ceré, 2018). In all likelihood, de-
veloping both axes, that is taking into account se-
mantic similarities on generalized textual networks,
could provide a fruitful extension and renewal of
the venerable term-document matrix paradigm, and
provide a renewed look to the distributional hypoth-
esis, which can be reframed as a spatial autocorre-
lation hypothesis.
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Appendix: Proof of the squared Euclidean nature
of D in (7).

The number `i j of edges is the shortest path (in
the WordNet hierarchical tree) linking the concepts
associated to i and j is a a tree dissimilarity2, and
hence a squared Euclidean dissimilarity (see, e.g.,
Critchley and Fichet, 1994). Hence, (1) and (7)
entail

d̂i j = 1− ŝi j = 1− 1
1+ `i j

=
`i j

1+ `i j

that is d̂i j = ϕ(`i j), where ϕ(x) = x/(1+ x). The
function ϕ(x) is non-negative, increasing, concave,
with ϕ(0) = 0. For r ≥ 1, its even derivatives
ϕ(2r)(x) are non-positive, and its odd derivatives
ϕ(2r−1)(x) are non-negative. That, is, ϕ(x) is a
Schoenberg transformation, transforming a squared
Euclidean dissimilarity into a squared Euclidean
dissimilarity (see, e.g., Bavaud, 2011), thus estab-
lishing the squared Euclidean nature of D in (7)
(and, by related arguments, the p.s.d. nature of S).

2. Provided no terms possess two direct hypernyms, which
seems to be verified for the verbs considered here
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