
A Brief Tour of Formally Secure Compilation

Matteo Busi1 and Letterio Galletta2

1 Università di Pisa, Pisa, Italy
matteo.busi@di.unipi.it

2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract. Modern programming languages provide helpful high-level
abstractions and mechanisms (e.g. types, module, automatic memory
management) that enforce good programming practices and are crucial
when writing correct and secure code. However, the security guarantees
provided by such abstractions are not preserved when a compiler trans-
lates a source program into object code. Formally secure compilation is
an emerging research field concerned with the design and the implemen-
tation of compilers that preserve source-level security properties at the
object level. This paper presents a short guided tour of the relevant liter-
ature on secure compilation. Our goal is to help newcomers to grasp the
basic concepts of this field and, for this reason, we rephrase and present
the most relevant results in the literature in a common setting.

1 Introduction

Compilers are one of the fundamental tools for software development. Not only
they translate a source program, written in a high-level language, into an object
code (low-level), but they also help programmers to catch a variety of errors, and
optimize the resulting program. A well-known advantage of using a high-level
language is that it usually provides a variety of abstractions and mechanisms
(e.g. types, modules, automatic memory management) that enforce good pro-
gramming practices and ease programmers in writing correct and secure code.

However, those high-level abstractions do not always have counterparts at
the low-level. This discrepancy can be dangerous when the source level abstrac-
tions are used to enforce security properties: if the target language does not
provide any mechanism to preserve such security properties, the resulting code
is vulnerable to attacks. Consider for example Fig. 1, where the code on the left
is written in a C-like language with no pointers, and the code on the right is
its translation into a RISC-like assembly (under the assumption that count is
stored in the register R0). In this case the programmer’s intention was to use the
encapsulation mechanism provided by the static qualifier to guarantee integrity
on the value stored in count. However, at the object level, the value is no longer
protected: any other object-level module linking our code as a library can read
from or write to the register R0. This toy example leverages the very same idea
as real-world, potentially dangerous attacks: both use object level mechanisms

to break high-level abstractions, thus making the reasoning at the source level
useless [37,14]. A possible solution to this problem would be to adapt the source
to the object language (or vice-versa) so to make them equally powerful, but
that is undesirable because, in doing that, we would lose all the advantages that
come from having different levels of abstraction in the source and in the object.
Moreover, it would not be even sufficient. Indeed, as recently observed by D’Silva
et al. [23] and previously known in the cybersecurity community [1,2,3,42], even
less radical, seemingly innocuous code transformations that maps a language into
itself (e.g. compiler optimizations) may hinder security. Consider for example the
snippet in Fig. 2 that checks the correctness of a given PIN number. A dead-store
elimination, i.e. a transformation that removes assignments to variables that are
not used afterwards, optimizes away the line highlighted in red. Unfortunately,
that assignment ensured the confidentiality of the value of pin, that now might
be accessed by any attacker able to read the memory of the program (e.g. an
untrusted operating system in which our optimized code is executed), so making
it possible to leak the secret.

A way to solve both the above problems is to work on the compiler itself, by
guaranteeing that it preserves the source-level security properties. The emerging
field of formally secure compilation has exactly this goal. More precisely, secure
compilation is concerned with granting that the security properties at the source
level are preserved as they are into the object level or, equivalently, that all the
attacks that can be carried out at the object level can also be carried out at
the source level. In this way, it is enough to reason at the source level to rule
out attacks even at the object level. Of course, making program translations
secure in general would be a huge step forward for the security of software
systems, especially for those that are critical (e.g. avionics or medical software)
and possibly written in unsafe languages.

Structure of the tour. The next section discusses non-robust secure compilation,
and briefly overviews its basic concepts and motivations, together with the recent
literature. Similarly, in Section 3 we discuss an extended notion of secure com-
pilation to deal with active attackers. Then, Section 4 reports common dynamic
mechanisms, complementary to secure compilation, for protecting programs di-

static int count = 0;

void count ()
{

count++;
}

−−−−−→ count:
add R0, R0, 1

Fig. 1. Non secure compilation.

print("Pin:");
pin = read_secret();

if (check(pin))
print("OK!");

else
print("KO!");

pin = 0; // reset pin

Fig. 2. Non secure dead-store elimination (highlighted in red).

rectly at the hardware level. In Section 5 we briefly discuss the open problems
and the challanges of the field. Finally, Section 6 concludes.

Note that, from now onwards, we highlight in blue the elements of the source
language, and in red the elements of the object language for better readability.

2 Secure Compilation

In the previous section we informally introduced secure compilation, explaining
that it is concerned with guaranteeing that source level security properties are
preserved when compiling a program into a object language. In this section, we
specify more precisely what security preservation actually means.

First, we need to clarify what kind of security policies we are interested in. To
do that, we introduce the concept of program behaviour, as the set of sequences of
actions/states that a program performs/reaches during its execution. Formally,
the behaviour of a program p – written p↓ – is a subset of the set of all the finite
and the infinite traces Ψ defined on a set Σ of observables (or events). Typically,
observables encode information about I/O operations performed by a program,
errors occurred during executions, termination, or divergence [26]. Intuitively,
a security policy predicates on the program behaviour and establishes which
traces are allowed and which not. There are (at least) two different proposals
on how to formalise security properties in the literature: trace properties [25,10]
and hyperproperties [17].

The first proposal defines a security policy as the set of permitted traces,
more precisely, a trace property is a subset of Ψ . In this case, we say that a
program p satisfies a trace property P whenever all the executions of p, i.e. p↓,
are allowed by P , in symbols p↓ ⊆ P . Two typical classes of trace properties
are safety (nothing bad will ever happen) and liveness (something good will
eventually happen).

The commonly used chinese-wall policy is a safety property, stating that “a
system may write to the network as long as it did not read from a file” and it

takes the following form:{
t ∈ Ψ | ¬

(
∃i < j . isFileRead(ti) ∧ isNetworkWrite(tj)

)}
where ti and tj are the observables at the steps i and j of the trace t, and
isFileRead and isNetworkWrite are predicates with the expected meaning.

However, trace properties are not enough to express all the interesting se-
curity policies. For example, termination insensitive non-interference requires
that the public part of the state is not affected by the non-public part, otherwise
some information of this last kind turns out to be disclosed. While this policy
is not a trace property, it can be expressed through a hyperproperty: compare
all pairs of traces the initial states of which coincide on their public part, and
verify that they reach the same final state, up to their public part.

The needed additional expressive power comes from the ability of predicating
on multiple executions of the same program. Indeed, hyperproperties express
security policies as a set of program behaviours, i.e. a set of sets of traces. We
say that a program p satisfies a hyperproperty H ⊆ ℘(Ψ) whenever the whole
behaviour of p is an element of H, i.e. p↓ ∈ H. We formalise the above non-
interference as follows:

{T | ∀ traces t, t′ ∈ T. t0 =public t
′
0 ⇒ tf =public t

′
f}

where t0, t′0 and tf , t′f are the initial and final states of t and t′, respectively, and
ti =public t

′
j holds if and only if the public part of the states ti and t′j coincides.

For conciseness, we shall write p↓ � F whenever p satisfies a given security
property F: when F is a trace property P , p↓ � F reads as p↓ ⊆ P , and when F

is a hyperproperty H, p↓ ∈ H.
We say that a compiler is secure whenever it preserves the properties of a

source program s under the translation steps. In other words, if s satisfies a given
family of properties F then also its compiled counterpart does:

Definition 1 (Secure compiler). A compiler J·KSO from a source language S
to an object language O is secure for F iff for any source program s

∀F ∈ F. s↓ � F ⇒ JsKSO↓ � F

Consider first F to be the set of trace properties. In this case, for proving
a compiler secure it suffices proving that is correct, according to the following
definition that requires the source program to exhibit a trace when the object
code does:

Definition 2 (Compiler correctness [26]). We say that a compiler J·KSO is
correct iff for any source program s:

t ∈ s↓ ⇐ t ∈ JsKSO↓

Correctness is often proved by establishing a backward simulation (or refine-
ment) between the behaviours of source and object programs. Typically, this is

the case when S is an imperative language with some under-specified aspects
(e.g. the evaluation order of expressions) and O is an assembly-level language.
Other notions of compiler correctness, together with some discussion about their
suitability for different kind of languages and their relation with backward sim-
ulation, are discussed in [26].

A correct compiler is also secure for trace properties:

Theorem 1 ([6]). Every correct compiler preserves all the trace properties.

Actually, correctness also suffices in proving that a compiler preserves the subset-
closed (SSC) hyperproperties, i.e. those hyperproperties H such that, for any
T ∈ H and T ′ ⊆ T , T ′ ∈ H (note that trace properties can be turned into SSC
hyperproperties) [17].

Theorem 2 ([17]). Every correct compiler preserves all and only the SSC hy-
perproperties.

Note that in Theorems 1 and 2 we made the implicit assumptions that the
observables we are considering for establishing the correctness are the same on
which our security property predicates. Consequently, the correctness proof is
monolithic in the sense that it has to deal with both the functional and the non-
functional properties, and therefore the observables should be rather complex,
along with the proof itself. In addition, this approach is not modular and does not
scale well when we want to prove the preservation of new security policies: the
correctness proof needs to be changed accordingly. Furthermore, it is not possible
to reuse off the shelf compilers already proved correct. Take for example Com-
pCert [26], a compiler for C that is proved correct assuming as observables I/O
operations (calls to library functions and load/store on those variables modelling
memory-mapped hardware devices). Proving that it preserves the above notion
of non-interference would require to observe also the values of public variables
and to re-do the proof. For these reasons, many papers in the literature adopt a
different approach advocating a neat separation of concerns between functional
and non-functional aspects, allowing for modular and incremental proofs. The
proof that a compiler preserves the security properties of interest is then done
assuming that it is correct, i.e. that it preserves the I/O semantics of programs.

Below, we briefly discuss a couple of proposals that address the security
of program optimizations, assuming them correct w.r.t. I/O observables. Deng
and Namjohsi proved that (variants of) popular compiler optimizations preserve
the above property of non-interference [18], and introduced in [19] a technique
that statically enforces it in SSA-based optimization pipelines. In a framework
that generalises [18], Barthe et al. [13] studied the cryptographic constant-time
policy, which is an instance of observational non-interference and requires that
the execution time of a program does not depend on non-public parts of the state.
The key ingredient of their proposal are (three variants of) CT-simulation, which
is a pair of simulations, one considering two source programs and the other the
corresponding two object programs.

3 Robust Secure Compilation

Secure compilation as presented in the previous section works well when we
consider monolithic programs that incorporate in their code all the functional-
ities they require to operate. Actually, it is not fully adequate when we want
to preserve properties of programs whose external references cannot be solved
at compile time, e.g. because they rely on dynamically linked libraries. These
real-world situations require a sharper notion of security. Environments can be
conveniently abstracted as contexts C[·], i.e. programs with a hole to be filled by
the program to be executed. When an environment is malicious, the context acts
as an attacker that can actively interact with the program at run-time, rather
than passively watching at its execution.

To take into account active attackers and the external environment where the
program is plugged in, we resort to the notion of RHP(X) (§ 3.1 of [6]), where
X denotes a family of hyperproperties, to update the Definition 1 as follows:

Definition 3 (Robustly secure compiler). A compiler J·KSO from a source
language S to an object language O is robustly secure for F iff for any source
program s

∀F ∈ F. (∀CS [·]. CS [s]↓ � F)⇒ (∀CO[·]. CO[JsKSO]↓ � F)

The seminal work of Abadi [4] proposed full abstraction as a framework to
assess this enhanced notion of compiler security. Indeed, a fully abstract com-
piler preserves and reflects the equivalence of behaviours between original and
compiled programs under any untrusted context of execution. Equivalence of
behaviours is expressed as contextual equivalence, often defined as p ' p′ iff
∀C[·], C[p]↓ = C[p′]↓. We now rephrase the definition of full abstraction (FA) in
our terms:

Definition 4 ([4]). A compiler J·KSO is fully abstract iff

∀s1, s2 ∈ S . s1 ' s2 ⇔ Js1KSO ' Js2KSO.

However, FA has some limitations. The first, most serious drawback is that
real-world, off-the-shelf compilers seldom are FA. For example, neither the stan-
dard compiler from Java to Bytecode [4] nor the one from C# to CLR lan-
guage [24] are FA. The second shortcoming is that FA can be hard to prove
and even harder to disprove. Indeed, the compiler from System F to the crypto-
graphic λ-calculus [35] was conjectured to be FA, but it was proved not such only
20 years later [21]. Also, enforcing FA requires to instrument the object code,
often making it inefficient [34]. Finally, there is no exact characterization of the
class of properties an FA compiler (robustly) preserves [6]. Indeed, FA sometimes
does not preserve properties that secure compilation chains are expected to, as
shown by the following example [33].

Example 1 (FA ; safety preservation). Consider the language S to be a simple
functional language with boolean values and just the constantly true function:

S 3 s ::= true | false | λ_.true | s1 s2

Similarly, let O be an object language with booleans, integers and non-recursive
functions:

O 3 o ::= true | false | n | x | λ x.o | o1 o2 | if o1 < o2 then o3 else o4

An FA compiler follows, assuming the observables to be the values returned by
functions:

JtrueKSO , true JfalseKSO , false Js1 s2KSO , Js1KSO Js2KSO
Jλ_.trueKSO , λ x.if x < 2 then true else false

Actually, it is a trivial compiler except for the constantly true function that is
mapped to a function yielding true or false depending on its parameter.

Consider now the (informal) safety property for S stating that “a function
never outputs false”, trivially satisfied by all the programs in S. However, object
programs can output false depending on x, the object-level input provided by
the context, hence invalidating the property.

An extensive treatment of FA compilation is outside the scope of this paper and
we refer the interested reader to the survey by Patrignani et al. [31].

To overcome the limitations of FA sketched above, new secure compilation
principles have been recently proposed. The first one was trace-preserving (TP)
compilation for reactive programs [33]. Informally, a compiler J·KSO is TP if any
trace of the compiled program JsKSO is either a trace of s or is a special invalid
trace. Depending on how invalid traces are defined, TP compilation comes in
two flavours: halting and disregarding. The first one prescribes that invalid traces
must stutter after an invalid input; the second one defines invalid traces as those
that discard invalid inputs and corresponding outputs. Finally, TP compilers
preserve all the safety hyperproperties [33].

There have been interests in the literature in studying tailored classes of
trace properties and hyperproperties, devising new principles for their preser-
vation. In particular, Abate et al. [6] carried out a systematic investigation in
search of hyperproperty-specific secure compilation principles that come in two
forms: the first one, property-full, explicitly mentions the family of properties
to be preserved, the second one, property-free, does not and fosters formal rea-
soning. The underlying idea is that tailored principles may be helpful to make
proofs easier and to reduce the overhead in the generated code. Concentrat-
ing on trace properties one finds: robust trace property preservation, where the
family of security properties F coincides with all the trace properties; robust
dense property preservation [6] where F coincides with properties predicating on
all terminating traces; and robust safety property preservation and robustly safe
compilation [6,34], where F coincides with all the safety properties. Interestingly,
robustly safe compilation can be also extended to consider modularity and unde-
fined behaviours [5]. As for hyperproperties, there are a series of principles that
we do not report here, e.g. those for relational hyperproperties – hyperproper-
ties that consider multiple runs of multiple systems at the same time. For the
sake of simplicity, here we present as an example the most general principle that
preserves all the hyperproperties, which is an instance of Definition 3.

Definition 5 (Robust hyperproperty preservation [6]). Let s be a source
program. The property-full variant of robust hyperproperty preservation holds
iff for any hyperproperty H

(∀CS [·]. CS [s]↓ � H)⇒ (∀CO[·]. CO[JsKSO]↓ � H)

Its property-free variant holds iff

∀CO[·]. ∃CS [·]. ∀m. m ∈ (CO[JsKSO])↓ ⇔ m ∈ (CS [s])↓

The proposed principles are elegant and expressive, however, there are no
fully automatic provers available yet for establishing them. Some ongoing work [15]
is exploring the possibility of extending translation validation [36,28] to auto-
matically verify security properties. Intuitively, the idea is to prove in the style
of translation validation that a given run of the compiler succeeds in (robustly)
preserving a family of hyperproperties on a specific program, instead of proving
the compiler secure for all programs.

4 Low-level Enforcement Mechanisms

In this section, we briefly survey some features of target languages and low-
level architectural mechanisms and tools that a designer can use to implement
a secure compiler.

A first proposal was to use an object language with a rich typed structure
in order to preserve the type guarantees of the source language. An example
is typed assembly language (TAL) [27] that among others has existential types
to support closures and other data abstractions. It has been used as object
language of a type-preserving compiler for System F. Some researches addressed
the development of FA compilers targeting TAL [8,9], but we are not aware of
any that respects one of the robust secure compilation principles above.

Other proposals consist of enriching the target architecture with low-level
mechanisms to enforce the security policies during program execution. Along
these lines there are capability machines (CM), special microprocessors guar-
anteeing control-flow integrity and local-state encapsulation at the hardware
level [16,38]. CMs are based on memory capabilities, i.e. fat pointers that in-
clude some access-control information, tagging registers and memory locations.
Besides memory capabilities, many machines also implement object capabilities,
i.e. sand-boxed executions that allow invoking a piece of code without exposing
its encapsulated state. Of course, memory and object capabilities neither prevent
vulnerabilities in software nor their exploitation, but they do provide strong mit-
igation mechanisms. Indeed, their main goals are to reduce the attack surface
and, in case of successful exploitation, to avoid that attackers gain too many
rights over the compromised machine. Capability Hardware Enhanced RISC In-
structions (CHERI) [41] extends commodity RISC Instruction Set Architectures
(ISAs) with capability-based primitives and supports real-world operating sys-
tems and applications. Recent research efforts have been devoted to formally

study the properties of this model and to securely compile C code to these ma-
chines [39,40,20]. Similarly, protected module architectures (PMAs) bring some
security guarantees at the hardware level by splitting the memory into a pro-
tected and an unprotected section in order isolate sensitive and critical applica-
tions from the untrusted ones. The idea was further developed [7,32,30,29] and
also implemented in commodity processors by industry, e.g. Intel Secure Guard
eXtensions (Intel SGX).

In this line of research a further proposal is the Sancus 2.0 [29] architecture,
implementing PMA features on a low-cost and embedded microprocessor. San-
cus achieves, without a trusted computing base, (i) software module isolation;
(ii) remote attestation; (iii) secure communication and linking; (iv) confidential
deployment; and (v) hardware breach confinement. For that, this architecture is
equipped with symmetric encryption, key management mechanisms and strictly
regulated protected sections (enclaves) for software modules. Note that, even
though Sancus guarantees some security properties, research is still ongoing to
make these mechanisms more secure, e.g. against side-channel attacks [14].

Finally, other proposals attempt to develop new architectures to dynamically
enforce security policies. Among them, micro-tagged architectures [22,12,11] en-
rich each assembly instruction by tagging it with a pointer to a (security) policy
to be checked at run-time.

5 Open Challenges

In the above sections, we reviewed some of the recent advances in secure compi-
lation and sketched some relevant formal techniques that can be currently used
to achieve it. Indeed, the field of secure compilation is still young, and there are
many open problems have not been tackled yet. This section briefly mentions
some of them and gives some hints about future research directions in the field.

A first open problem is that of devising novel secure compilation principles.
Even though many principles have been recently added to the literature, con-
cerning both robust and non-robust secure compilation, there is still the need of
new secure compilation principles, possibly tailored to very specific hyperprop-
erties (e.g. variants of non-interference or protecting from side-channel attacks).
A key point is to make these new principles suitable to be (rather) easily proved
even for realistic compilers. For that they must be provable in a modular fashion,
e.g. in the style of [13] that assumes some notion of compiler correctness and
builds the security proof on that.

This leads us to the second problem, i.e. that of developing proof and ver-
ification techniques for secure compilers. On the one hand, it is particularly
important to develop novel proof techniques that help the designer of the com-
piler in showing that her compiler is indeed secure. To be applicable in realistic
cases, these new proof techniques must not only be modular (as said above) but
also incremental, in the sense that proofs must require minimal adaptations as
compilers evolve. On the other hand, to foster the development of secure compil-
ers also for mainstream languages, new fully automatic, push-button verification

techniques should emerge. Indeed, the existence of such techniques, for example
along the lines of translation validation, may allow to bring secure compilation
also to real-world and fully fledged compilers.

Bringing secure compilation into real-world compilers also poses the challenge
of separate compilation. The hurdle with separate compilation is that each (mali-
cious) component interacts with the others, built from different source languages
by different compilers (hence, with different security guarantees).

Finally, from a theoretical viewpoint, a last open problem consists in es-
tablishing the exact family of security properties that full abstraction preserves
and under which conditions. Actually, first steps in this direction (at least for
safety hyperproperties) were done by Patrignani and Garg [33], but it is not
clear yet under which conditions full abstraction may preserve other classes of
hyperproperties.

6 Conclusions

This brief tour of formally secure compilation highlighted recent advances in
secure compilation.

We first reviewed what it is called non-robust secure compilation, that is a
simple notion of secure compilation taking into account passive attackers that
can just observe some of the actions performed by the programs, and its relation
with compiler correctness. Also, we rephrased well-known results in the litera-
ture, so to make precise the claim that correct compilers may preserve security
properties and we summarised recent and relevant results that applies when
correct compilers do not preserve security properties.

In the third section, we defined the notion of robust secure compilation by
extending the previous concept to cope with active attackers, i.e. contexts (pro-
grams with a hole). After giving a short motivation on why the classical principle
of full abstraction might not be fully appropriate in some situations, we briefly
discussed emerging principles for robust secure compilation and we sketched
some ideas on how they can be statically enforced.

Talking of enforcement in Section 4 we reported some mechanisms that allow
enforcing security properties directly at the low level, usually at run-time.

Finally, we discussed open problems and known challenges in secure compila-
tion, especially concerning the need of new robust secure compilation principles,
(automatic) verification and proof techniques for real-world, off-the-shelf com-
pilers, and full abstraction guarantees.

The picture that emerges is that secure compilation is an expanding and ever
growing research field sitting at the intersection of programming languages, pro-
gram verification and cybersecurity. Given that secure compilation is relatively
new and little-known, we hope that this shallow tour may help newcomers to
grasp the basics of the field and to navigate the existing literature on the topic.

References

1. CVE-2009-1897. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-
1897, accessed: 17 Nov 2018

2. CWE-14. https://cwe.mitre.org/data/definitions/14.html, accessed: 17 Nov 2018
3. CWE-733. https://cwe.mitre.org/data/definitions/733.html, accessed: 17 Nov

2018
4. Abadi, M.: Protection in programming-language translations. In: Vitek, J., Jensen,

C.D. (eds.) Secure Internet Programming, Security Issues for Mobile and Dis-
tributed Objects. Lecture Notes in Computer Science, vol. 1603, pp. 19–34.
Springer (1999)

5. Abate, C., de Amorim, A.A., Blanco, R., Evans, A.N., Fachini, G., Hritcu, C.,
Laurent, T., Pierce, B.C., Stronati, M., Tolmach, A.: When good components go
bad: Formally secure compilation despite dynamic compromise. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 1351–1368 (2018)

6. Abate, C., Blanco, R., Garg, D., Hritcu, C., Patrignani, M., Thibault, J.: Journey
beyond full abstraction: Exploring robust property preservation for secure compi-
lation. CoRR abs/1807.04603 (2018)

7. Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure compilation to modern
processors. In: Chong, S. (ed.) 25th IEEE Computer Security Foundations Sym-
posium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012. pp. 171–185. IEEE
Computer Society (2012)

8. Ahmed, A., Blume, M.: Typed closure conversion preserves observational equiv-
alence. In: Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28,
2008. pp. 157–168 (2008)

9. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. In: Proceeding of the 16th ACM SIGPLAN international con-
ference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011. pp. 431–444 (2011)

10. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

11. de Amorim, A.A., Collins, N., DeHon, A., Demange, D., Hritcu, C., Pichardie, D.,
Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow architecture.
Journal of Computer Security 24(6), 689–734 (2016)

12. de Amorim, A.A., Dénès, M., Giannarakis, N., Hritcu, C., Pierce, B.C., Spector-
Zabusky, A., Tolmach, A.: Micro-policies: Formally verified, tag-based security
monitors. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. pp. 813–830. IEEE Computer Society (2015)

13. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel coun-
termeasures: The case of cryptographic "constant-time". In: 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12,
2018. pp. 328–343 (2018)

14. Bulck, J.V., Piessens, F., Strackx, R.: Nemesis: Studying microarchitectural timing
leaks in rudimentary cpu interrupt logic. In: CCS ’18: 2018 ACM SIGSAC Con-
ference on Computer & Communications Security, Oct. 15–19, 2018, Toronto, ON,
Canada. ACM, New York, NY, USA (2018)

15. Busi, M., Degano, P., Galletta, L.: Translation Validation for Security Properties.
CoRR abs/1901.05082 (2019)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/733.html

16. Carter, N.P., Keckler, S.W., Dally, W.J.: Hardware support for fast capability-
based addressing. SIGPLAN Not. 29(11), 319–327 (Nov 1994)

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157–1210 (2010)

18. Deng, C., Namjoshi, K.S.: Securing a compiler transformation. In: Rival, X.
(ed.) Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK,
September 8-10, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9837,
pp. 170–188. Springer (2016)

19. Deng, C., Namjoshi, K.S.: Securing the SSA transform. In: Ranzato, F. (ed.) Static
Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August
30 - September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10422, pp. 88–105. Springer (2017)

20. Devriese, D., Birkedal, L., Piessens, F.: Reasoning about object capabilities with
logical relations and effect parametricity. In: IEEE European Symposium on Secu-
rity and Privacy, EuroS&P. pp. 147–162. IEEE (2016)

21. Devriese, D., Patrignani, M., Piessens, F.: Parametricity versus the universal type.
PACMPL 2(POPL), 38:1–38:23 (2018)

22. Dhawan, U., Hritcu, C., Rubin, R., Vasilakis, N., Chiricescu, S., Smith, J.M., Jr.,
T.F.K., Pierce, B.C., DeHon, A.: Architectural support for software-defined meta-
data processing. In: Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
’15, Istanbul, Turkey, March 14-18, 2015. pp. 487–502 (2015)

23. D’Silva, V., Payer, M., Song, D.X.: The correctness-security gap in compiler op-
timization. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW
2015, San Jose, CA, USA, May 21-22, 2015. pp. 73–87. IEEE Computer Society
(2015)

24. Kennedy, A.: Securing the .NET programming model. Theor. Comput. Sci. 364(3),
311–317 (2006)

25. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977)

26. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, Charleston, South
Carolina, USA, January 11-13, 2006. pp. 42–54 (2006)

27. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

28. Necula, G.C.: Translation validation for an optimizing compiler. In: Lam, M.S. (ed.)
Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June
18-21, 2000. pp. 83–94. ACM (2000)

29. Noorman, J., Bulck, J.V., Mühlberg, J.T., Piessens, F., Maene, P., Preneel, B.,
Verbauwhede, I., Götzfried, J., Müller, T., Freiling, F.C.: Sancus 2.0: A low-cost se-
curity architecture for iot devices. ACM Trans. Priv. Secur. 20(3), 7:1–7:33 (2017)

30. Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37(2), 6:1–6:50 (2015)

31. Patrignani, M., Ahmed, A., Clarke, D.: Formal approaches to secure compilation:
A survey of fully abstract compilation and related work. ACM Computing Surveys
(2019)

32. Patrignani, M., Clarke, D.: Fully abstract trace semantics for protected module
architectures. Computer Languages, Systems & Structures 42, 22–45 (2015)

33. Patrignani, M., Garg, D.: Secure compilation and hyperproperty preservation. In:
30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara,
CA, USA, August 21-25, 2017. pp. 392–404. IEEE Computer Society (2017)

34. Patrignani, M., Garg, D.: Robustly safe compilation or, efficient, provably secure
compilation. CoRR abs/1804.00489 (2018)

35. Pierce, B., Sumii, E.: Relating Cryptography and Polymorphism (2000), http://
www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf

36. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
Tools and Algorithms for Construction and Analysis of Systems, 4th International
Conference, TACAS ’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1384, pp. 151–166. Springer (1998)

37. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1), 2:1–2:34
(2012)

38. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system pp. 170–
185 (1999)

39. Skorstengaard, L., Devriese, D., Birkedal, L.: Reasoning about a machine with
local capabilities - provably safe stack and return pointer management. In: Ahmed,
A. (ed.) 27th European Symposium on Programming, ESOP 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10801, pp. 475–501. Springer (2018)

40. Tsampas, S., El-Korashy, A., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
Towards automatic compartmentalization of c programs on capability machines.
In: Workshop on Foundations of Computer Security. pp. 1–14 (2017)

41. Watson, R.N.M., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chis-
nall, D., Dave, N.H., Davis, B., Gudka, K., Laurie, B., Murdoch, S.J., Norton, R.,
Roe, M., Son, S.D., Vadera, M.: CHERI: A hybrid capability-system architecture
for scalable software compartmentalization. In: 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 20–37 (2015)

42. Yang, Z., Johannesmeyer, B., Olesen, A.T., Lerner, S., Levchenko, K.: Dead store
elimination (still) considered harmful. In: 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. pp. 1025–
1040 (2017)

http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf

	 A Brief Tour of Formally Secure Compilation

