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Abstract. While favouring communications and easing information
sharing, Online Social Networks are increasingly used to launch harmful
campaigns against specific groups and individuals. Although providers
struggle to keep pace by manually removing hate content published on
their platforms, recent research efforts rely on automatic text classifica-
tion techniques, whose performances are usually measured on annotated
corpora. In this work, we propose six distinct machine learning classifica-
tion strategies: three based on conventional machine learning approaches,
three based on neural networks. The latter are able to process texts al-
most from scratch, avoiding the need of i) NLP tools specialised for a
specific language, ii) the phase of time-consuming feature engineering,
and iii) the high computational cost usually derived from processing a
huge amount of features. Thus, the main goal of the paper is to inves-
tigate whether it is possible to rely on neural networks and to achieve
performance results at least comparable with those of NLP-based clas-
sifiers. The performances of the six configurations are evaluated over an
annotated dataset consisting of 4,000 Italian tweets and 4,000 Italian
Facebook comments. By comparing the classification results, we demon-
strate that relying on deep learning techniques for hate speech detection
is more than encouraging. In particular, a deep learning model, based on
an ensemble approach, obtains a F1 score of 0.786 on the Twitter data
and 0.775 on the Facebook ones, the best results, compared to the ones
obtained with the other tested configurations.

1 Introduction

The more and more massive usage of Online Social Networks (OSNs) leads un-
deniable benefits, among others the opportunity for users to easily interact for
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a myriad of goals, which range from planning social events to engaging in com-
mercial transactions. Unfortunately, since years social platforms also represent a
fertile ground for ill-intentioned people, whose goals spam from maliciously in-
fluencing the public opinion, by diffusing polarized content on important societal
topics – like politics, terrorism, immigration – (see, e.g., [6, 9, 27]) to stalking,
cyberpranking, and slyly acquiring sensitive information by circumventing the
most defenseless users1.

Furthermore, the enormous degree of freedom for knowledge creation and
sharing on OSNs allows the publication of content promoting ‘violence or ha-
tred against individuals or groups based on certain attributes, such as: race or
ethnic origin, religion, disability, gender, age, veteran status, sexual orientation
and gender identity’2. Such violent content is usually referred as hate speech. Al-
though the most popular social networks managers announced in their policies
to strive to fight against hate speech [21], current solutions mainly rely on man-
ually checking and possibly removing the targeted content once published, upon
appropriate signaling by OSNs users. Despite the massive enrollment of content
moderators by social media providers [31], the recent past has seen the dramatic
growth of hate attacks, affecting the mental and even the physical status of the
victims (see [19, 20, 1], just to mention a few deplorable events).

A promising stream of research to fight haters, by quickly and automatically
discriminating between hate and no hate speech, is the training of automated
classifiers based on manually annotated corpora. The majority of the existing
methods rely on supervised document classification tasks [29]. In their turn,
these tasks are divided into two main categories: classic and deep learning meth-
ods [35]. While the former depend on the extraction and engineering of (mainly)
textual features, successively given as input by classifiers such as Support Vector
Machines, Naive Bayes, and Logistic Regression, see, e.g., [7], the latter employ
neural networks to learn various level of abstract features from raw text [24].
As of late, the trend in automatic detection of hate speech is relying on deep
learning. This is mainly due to the fact that classic methods strongly depend on
Natural Language Processing (NLP) approaches, which require a notable effort
for extracting the features in input to the classifier and, moreover, are strongly
dependent from the considered language.

The research question of this work is the following: Can we avoid the adoption
of NLP-based classifiers for the task of hate speech detection, moving towards
deep-learning techniques and achieving at least comparable performance results?

To answer the question, we compare the performances of NLP and deep
learning-based classifiers to automatically discriminate whether, and to what
extent, two Italian corpora express hate. Our benchmark consists of two an-
notated datasets: i) a collection of Facebook posts and comments, created and
firstly used in [8], and ii) a Twitter corpus recently introduced in [26, 28].

1 https://www.mobistealth.com/blog/facebook-misuse-stats/ All URLs accessed
on November 16, 2018.

2 https://support.google.com/youtube/answer/2801939?hl=en YouTube Hate
Speech Policy.



Overall, we test six classifier configurations: three based on conventional ma-
chine learning approach, three based on neural networks. The outcome of the
analysis, given as usual in terms of standard classification metrics, testify that
the best classification results are obtained via deep learning techniques. This
means that an effective hate speech detection system can be successfully built
without the need of NLP tools. The main advantages of this achievement are:

– a language-agnostic solution: there is no need of NLP tools optimised for
specific languages;

– a very limited feature engineering phase: basically, we use tokenization and
stop words removal only;

– a sizable reduction of the time needed for both the learning and the classi-
fication phase: at the same classification performances, deep learning-based
classifiers need a number of features which are 3 orders of magnitude less
than those needed by NLP-based classifiers;

– there is no need for a complete re-training of the learning model, when
feeding the classifier with new labeled data: neural networks models can be
updated online, and incrementally, on the arrival of new data. Remarkably,
this limits the issue known as concept drift [11].

As a further achievement, although for both the Twitter and the Facebook
datasets the best results are obtained with the deep learning methodologies, we
discuss the differences of such results passing from one methodology to the other.
This gives us some remarkable insights on the characteristics of the corpora taken
into consideration, and consequently, the capability to discern how much is the
relative gain in the use of each methodology for a specific dataset.

Remainder: Next section describes the annotated corpora and how the text
is pre-processed and, next, it introduces the six classification configurations
adopted throughout the paper. Section 3 describes the choice of parameters
of the learning methods and critically discusses the obtained performances. Fi-
nally, Section 4 illustrates related work in the area of hate speech detection,
while Section 5 concludes the paper.

2 Methodologies

We propose a comparison between several methods of increasing complexity
which can be used to build an effective hate speech detection system. The main
aim is to show that we can detect hate speech by completely avoiding the “fea-
ture engineering problem” (adopting textual representations based on language
modeling techniques [16]) and using popular deep learning algorithms instead.
Each of the proposed methods is a binary classifier which outputs 1 in case of an
input document expressing hate and 0 otherwise. Before describing each method,
we introduce the dataset used throughout this study, and we describe how we
process documents before applying machine learning methods to them.



2.1 Dataset

The dataset is the result of a joint effort of two research teams on unifying the
annotation previously applied to two different datasets, in order to allow their
exploitation for the HaSpeeDe (Hate Speech Detection) task [2], organized within
Evalita 2018, the 6th evaluation campaign of Natural Language Processing and
Speech tools for Italian3.

The first sub-dataset is a collection of Facebook comments created in 2016
and firstly presented in [8]. The content of the comments to Facebook posts
were retrieved through a versatile Facebook crawler, which exploited the Face-
book Graph API4. The collected comments are related to posts published on a
series of public Italian web pages and groups, mainly involved in politics, and
possibly featuring hate content. The original set in [8] consisted of 17,567 Face-
book comments from 99 posts.

The second sub-dataset is a Twitter corpus [26, 28] comprising tweets against
immigrants, Muslims and Roma. To obtain such data, a phase of data filtering
was previously enacted, by means of a keyword-based approach (neutral key-
words frequently associated to the three targets). This led to 236,193 tweets.
After further processing and restricting the dataset so obtained, the final ver-
sion of the corpus was made of 6,928 tweets.

Recently, the Facebook and Twitter corpora have been re-annotated and
made publicly available for participating to the Evalita 2018 task on Hate Speech
Detection. In the brand new annotated dataset, the annotation format consists of
a simplified version of the schemes adopted in [8, 26, 28]. The resulting annotated
dataset comprises the tweet or Facebook comment along with the tag resulting
from the annotation, 1 and 0, expressing the presence or not of hate speech in
the text. Overall, the renewed Facebook and Twitter dataset consists of 4,000
comments and 4,000 tweets. Each corpus is divided into two distinct sets (3,000
documents for training and 1,000 for test). For Facebook, as training set we have
1,618 comments tagged as 0 (No Hate) and 1,382 tagged as 1 (Hate), while as
test set we have 323 comments tagged as 0 and 677 tagged as 1. For Twitter, as
training set we have 2,028 tweets tagged as 0 and 972 tagged as 1, while as test
set we have 654 tweets tagged as 0 and 346 tagged as 1.

2.2 Text pre-processing and document representation

We use two different approaches for the textual representations of documents,
i.e., bag of words and word embeddings (more on these later). Before processing
the data with machine learning methods, we tokenize the original text of the
Twitter and Facebook input datasets, by adopting the following approach. After
lowering the text and removing the stopwords, we delete all the URLs. Next, we
include all tokens which belong to one of these categories: a) normal words, b)
emoticons, and c) special characters (e.g., ‘!’ and ‘?’). In particular, we remove

3 http://www.di.unito.it/~tutreeb/haspeede-evalita18/index.html\#
4 https://developers.facebook.com/docs/graph-api



‘#’ from hashtags and consider the remaining characters as single words, while
we include all the usernames i.e., (words beginning with ‘@’) as single tokens.

The first textual representation we use is the classic bag-of-words (BoW)[30],
which is probably the most popular approach used in the past years. With this
representation, we analyze the training data to build a dictionary of valid words
(tokens) and use them to encode the documents by generating high sparse vectors
for their representations. The importance of each token contained in a document
is usually weighted according to a specific policy. Here, we adopt the well known
TF-IDF [30], whose main idea is to give more importance to terms that are
frequent in a document included in the corpus under evaluation, but, at the
same time, tend to appear in few documents.

The second textual representation is based on word embeddings, a set of
neural language modeling techniques[12] based on unsupervised learning and
used to build effective vector representations of textual contents. Here, we con-
sider the popular word2vec algorithm[23] implemented in gensim software5 as
the language modeling technique to represent text. This technique extracts low-
dimensional dense word vectors from analyzed text which keep track of seman-
tic/syntactic relationships existent between words. Such vectors can thus be used
in algebraic operations to point out some specific characteristic of the data (e.g.,
W (“queen”) ∼= W (“king”) −W (“man”) + W (“woman”)).

We use three different word2vec models to encode documents. The first one
is a model built over the complete document collection of the Italian Wikipedia6,
using skipgram architecture, a window equals to 10 words and embeddings size
equals to 300. The main problem of this model is that the Wikipedia articles used
to train it are very different in terms of lexical and syntactical forms from doc-
uments available on input datasets (i.e., short texts like tweets and comments
on Facebook). To overcome this limitation, we also consider a second embed-
dings model, which is based on the first one but it is updated considering the
documents collection coming from the Twitter dataset. Thirdly, we build a third
word2vec model based on the Wikipedia one but updated with data coming from
the Facebook dataset.

In order to encode the documents, we compute the document vector di as

di = 1/lwi

lwi∑
j=1

we(idx(i, j))

where lwi is the number of valid words7 included in document i, idx(i, j) is the
function which returns the index of embeddings vector corresponding to the word
at position j in document i, and we is the function which returns the embeddings
vector corresponding to the specified index. This document encoding is desirable
while analyzing short textual documents, such as in our scenario, because the
resulting vector does not suffer from a diffuse information loss, due to the mixing
and averaging of vectors of many words (typical case for long documents).

5 A Python implementation of word2vec: https://radimrehurek.com/gensim/.
6 The pre-trained embeddings model: http://hlt.isti.cnr.it/wordembeddings/.
7 A word is valid only if it is available as entry in the dictionary of embeddings model.



2.3 Machine learning methods

In the following we present the methods tested usable for building effective hate
speech detection systems. First we present 3 methods based on SVM algorithm
but using different textual data representations. Next we describe 3 different
deep learning algorithms, of increasing complexity, which show very competitive
results and avoid almost completely the feature-engineering process, except for
the pre-processing part previously described.

As first method (called ‘SVM-TfIdf’ in Table 2), we use a classifier based on
the SVM algorithm[14]8. This algorithm has been successfully used in several
works related to text classification[15, 32, 10], especially if combined with BoW
textual representations and TF-IDF feature weighting. SVM, even when used
with default parameters (e.g., with a simple linear kernel) usually performs rea-
sonably well on various text classifications tasks. For this reason, we argue that
this algorithm, together with BoW and TF-IDF, could be a quite strong baseline
to compare with, giving us evidence of how the other tested methods perform.

To improve the effectiveness of the algorithm, we use other two variants of
SVM, by combining it with a textual representation based on embeddings, ob-
tained as described in Section 2.2. The first variant (‘SVM-GenEmb’ in Table
2) encode documents using a generic embeddings model built over the Ital-
ian Wikipedia collection. A second variant (‘SVM-SpeEmb’ in Table 2) try to
take advantages from a specialized version of the previous embeddings model,
enriched with the Facebook and Twitter datasets. We therefore generate two
embeddings models, one specific for Twitter and one for the Facebook data.

(a) CNN architecture (b) GRU architecture

(c) Ensemble architecture

Fig. (1) Tested deep learning architectures.

8 SVM implementation provided by scikit-learn, http://scikit-learn.org/stable/.



We subsequently concentrate on deep learning (DL) methods, which, in the
last years, have proven to perform very well on text classification tasks. The
first architecture (referred as ‘CNN’ in Table 2) is shown in Figure 1a. The
core is a Convolutional Neural Network (CNN) [17], a fast and popular DL
method, often used for image classification tasks, but also proven effective within
NLP domains [34]. The proposed architecture encodes a raw text into a list of
token IDs, which translates in activating the corresponding tokens vectors into
an embeddings layer, pre-loaded before that the training starts, with weights
learned in the embeddings model9. The encoded document is then fed to a CNN
layer that tries to learn some space-invariant high level features, able to catch
interesting patterns for final hate speech detection phase.

CNN does not take into account the order and dependencies of words while
learning potential interesting features. Thus, the same identified pattern is
given the same weight, independently from contextual dependencies and po-
sition within the document. To overcome this limitation, we test a second DL
architecture ( Figure 1b). It includes a Gated Recurrent Unit (GRU) layer [5]
(‘GRU’ in Table 2). GRU is a recurrent neural network that, before analyzing
new incoming data, maintains an internal state used to record the context that
has been previously met. The current internal state thus influences how the
network reacts in terms of generated output, giving relevance to the temporal
characterization of the text (i.e., to the order the analyzed words appear in the
text).

The last tested method, referred as ‘Ensemble’ in Table 2 and Figure 1c,
tries to merge advantages from the previous DL architectures. Here, there is an
ensemble classifier whose decisions are based on 3 different sub-modules. The first
two modules are composed by two separated layers, as discussed above (GRU and
CNN networks). The third one is a composition of layers, first a CNN layer and
then a GRU layer. The main intuition for such a configuration is that the CNN
and GRU single sub-modules could produce independent information about a
text, to be classified according to the specific nature of the network (spatial for
CNN, temporal for GRU), while the third sub-module could produce a high level
and dependent spatial-temporal representation of the text. The contribution of
each sub-module is in turn sent to an ensemble layer, which can appropriately
measure each feedback, before taking the final decision.

3 Parameters settings and experimental results

This section describes the assumptions and parameters used to perform the
experimentation and presents and discusses the experimental results.

3.1 Parameters settings

For all the SVM methods, except for the ‘SVM-TfIdf’ configuration, we use a k-
fold cross validation (with k = 5), in order to find those kernels and parameters

9 We always use the specialized variant of embeddings model.



Table (1) Values of the parameters used in learning methods, obtained through
a 5-fold cross validation.

Method Kernel type C Gamma NumFiltersCNN KernelSizeCNN NumUnitsGRU

T
w

it
te

r

SVM-Tfidf linear 1.0 - - - -
SVM-GenEmb rbf 1.0 0.3 - - -
SVM-SpeEmb rbf 1.0 0.3 - - -

CNN - - - 50 3 -
GRU - - - - - 50

Ensemble - - - 50 3 50

F
a
c
e
b

o
o
k SVM-Tfidf linear 1.0 - - - -

SVM-GenEmb rbf 1.0 0.1 - - -
SVM-SpeEmb rbf 1.0 0.3 - - -

CNN - - - 50 3 -
GRU - - - - - 50

Ensemble - - - 50 3 50

that guarantee the best effectiveness on a validation set opportunely extracted
from the training set10. In the case of ‘SVM-Tfidf’, for which the computational
cost necessary to perform the optimization is very high11, we decide to use the
default SVM parameters, i.e., a linear kernel with C equals to 1. In all the deep
learning architectures, we use a learning procedure including a batch size of 32
documents, a maximum input sequence length of 100 words, opportunely padded
if needed, a maximum number of epochs equals to 2012, a fixed dropout value
of 0.2 and the binary cross-entropy loss function.

A summary of the parameters values is in Table 1. The values C and Gamma

are the standard parameter names used in the SVM algorithm for tuning its
behaviour during the learning phase, NumFiltersCNN is the number of convolu-
tional units used in the corresponding layer, KernelSizeCNN is the size of the
sliding window used in convolutions, and NumUnitsGRU is the number of GRU
units used in the corresponding layer.

3.2 Experimental results

The experimental results are in Table 2. We use the Precision (Pr), Recall (Re)
and F1 metrics [30] as the standard way to measure the effectiveness of the
proposed methods.

We report in bold the best F1 values obtained for the two datasets, for
the single classes (No hate and Hate) and for the average F1 obtained weighting
both the labels according to the distribution of the documents in the two classes.

10 The training set has been divided in two distinct sets. The first 90% used as real
training in the optimization process, the remaining 10% as validation data used to
measure the effectiveness of the built model.

11 The document vector is very sparse and long, in the order of tens of thousands
distinct words.

12 As early stopping criterion, in order to prevent overfitting, we stop the learning
process when the loss on validation set is less than 0.02 after two consecutive epochs.



Table (2) Effectiveness of tested methods over the test sets.
No hate Hate Weighted avg results

Method Pr Re F1 Pr Re F1 Pr Re F1

T
w

it
te

r

SVM-TfIdf 0.805 0.875 0.838 0.702 0.564 0.625 0.771 0.774 0.769
SVM-GenEmb 0.810 0.870 0.839 0.679 0.574 0.622 0.767 0.774 0.769
SVM-SpeEmb 0.817 0.867 0.841 0.682 0.596 0.636 0.773 0.779 0.775

CNN 0.798 0.935 0.861 0.788 0.506 0.617 0.795 0.796 0.782
GRU 0.830 0.851 0.840 0.671 0.636 0.653 0.778 0.781 0.779

Ensemble 0.839 0.848 0.843 0.675 0.660 0.668 0.786 0.787 0.786

F
a
c
e
b

o
o
k

SVM-TfIdf 0.520 0.782 0.624 0.861 0.663 0.749 0.750 0.701 0.708
SVM-GenEmb 0.609 0.638 0.623 0.823 0.805 0.814 0.754 0.751 0.752
SVM-SpeEmb 0.602 0.669 0.633 0.833 0.789 0.810 0.758 0.750 0.753

CNN 0.636 0.681 0.658 0.843 0.814 0.828 0.776 0.771 0.773
GRU 0.658 0.619 0.638 0.823 0.846 0.835 0.770 0.773 0.771

Ensemble 0.647 0.659 0.653 0.836 0.829 0.832 0.775 0.774 0.775

Considering the weighted average results, the baseline method SVM-TfIdf works
quite well, especially for Twitter, where it obtains good performances, compa-
rable to the SVM methods using textual representations with embeddings (F1
equal to 0.769, 0.769, 0.775, resp.). Instead, on Facebook, the baseline seems to
suffer (F1 equal to 0.708), probably because of a higher average length of the
texts which negatively influences the discriminating power of IDF part in feature
weighting: this decreases the effectiveness of the classifier. Still on Facebook,
the two SVM methods using embeddings (SVM-GenEmb and SVM-SpeEmb)
provide useful additional information from the analysis of Wikipedia data and
outperform the baseline SVM classifier by a notable margin (F1 = 0.752, 0.753).

The double use of embeddings is comparable in effectiveness, with a slight ad-
vantage of SVM-SpeEmb on Twitter data (0.775 vs 0.769), where it can exploits
local information like emoticons, commonly used in tweets to express emotions.

GRU and CNN show very similar weighted average performances, always
better than those obtained with the SVM-based methods. However, they present
some differences between each other. In particular, on both datasets, CNN works
a lot better than GRU on documents labelled as No hate, while GRU works
features good performances in discriminating documents labelled as Hate.

The Ensemble architecture takes advantages from the two DL methods and
obtains a compromise generally able to guarantee the best weighted average
F1 (0.786 for Twitter, 0.775 for Facebook). Indeed, even if the method does not
obtain the best F1 results on all classes and datasets (with the exception of Hate
on Twitter, where F1 = 0.668), it is always close to the best performer (0.843
vs 0.861 for No Hate on Twitter, 0.653 vs 0.658 for No Hate on Facebook, 0.832
vs 0.835 for Hate on Facebook). Therefore, the Ensemble configuration results
in a always-good solution for the application scenarios considered in this work.



Table (3) Efficiency of the tested methods, in seconds.
Method Learning time (s) Classification time (s)

SVM-TfIdf 422.41 32.56
SVM-SpeEmb 18.62 1.19

Ensemble 138.59 3.58

Table 3 shows how the methods perform wrt learning and classification phases
on Facebook. For the sake of simplicity, we report only three methods, since the
others add no additional information to the discussion. The measures consider
both the time to build a classifier with a set of already fixed algorithm’s pa-
rameters (‘Learning time’) and the time to classify all the documents in the test
set (‘Classification time’). SVM-TfIdf is the most costly method because, with
a BoW sparse representation, it must process tens of thousands of different fea-
tures. With embeddings (SVM-SpeEmb), the computational cost is drastically
decreased. The most complex tested method (Ensemble) is a compromise in
terms of cost at learning time while maintaining very good efficiency at classifi-
cation time. The additional cost in learning is repaid by the possibility to create
online learners, thus allowing incremental learning steps and only requiring to
process the entire available training set once, i.e., the first time.

4 Related work

Over the past few years, hate campaigns against individuals or groups, often mi-
norities, have occurred on a variety of online platforms. Given the even extreme
consequences that these incidents may cause to the victims, the scientific com-
munity has recently spent increasing to realize effective automated techniques
able to recognize the presence of aggressive and hateful content within texts
published online. To give the flavor of how challenging this task is, the report
in [18] summarises the findings of the ‘Shared Task on Aggression Identification’,
a challenge organised in 2018 as part of a popular international conference on
Computational Linguistics (COLING 2018). The task was to develop a classifier
that could discriminate between three hate classes: Overtly Aggressive, Covertly
Aggressive, and Non-aggressive texts. The organisers provided the participants
with a dataset of 15,000 annotated comments from Facebook (in English and
Hindi). Over a total of 130 participating teams, the best classifier obtained a
weighted F-score of 0.64 for both Hindi and English.

Interestingly, the research team in [35, 36], in a parallel and independent way
by the authors of this paper, considers a detection system combining convolu-
tional and gated recurrent networks and tests it on a large collection of public
Twitter datasets (in English), obtaining micro F1 scores that, for most of the
datasets, improve the state-of-art performances (values range from 0.83 to 0.94).
The considered architecture is different from that presented in Figure 1c. In
fact, work in [35, 36] considers a cascade of one CNN layer and one GRU layer,
without the ensemble layer here considered.



The authors of [25] propose an ensemble of Recurrent Neural Network clas-
sifiers, which incorporates not only features associated with the document, but
also user-related information, such as a tendency towards racism or sexism. The
approach has been evaluated on a publicly available corpus of 16k tweets in
English, manually labelled as containing sexist, racist, or neutral messages [33].
The RNN classifiers ensemble achieves a weighted average F score equal to 0.93,
succeeding in distinguishing racism and sexism messages from normal text.

Still focusing on Twitter, work in [3] proposes a multi-attributes approach to
detect bullying and aggressive behavior on Twitter. Considering textual, user,
and network-based features, it gives a characterization of bullies and aggressors
behaviour, showing that the former tend to ‘post less, participate in fewer on-
line communities, and are less popular than normal users’, while the latter ‘are
relatively popular and tend to include more negativity in their posts’. Following
a standard machine-learning-based classification, the work succeeds in detecting
bullies and aggressors, considering a corpus of 1.6M tweets.

There exist some work which focuses on less popular platforms, such as the
discussion board 4chan13, whose sub-board ‘Politically Incorrect’ has often been
linked to the alt-right movement. The authors of [13] rely on standard NLP
tools and polarity-annotated lexicons to identify hateful content within the posts
of that sub-board. The results of the analysis show an extraordinary level of
expressed hatred, particularly for ethnic reasons.

In August, 2014, a harassment campaign, primarily conducted over Twit-
ter with the use of the hashtag #GamerGate, targeted several women in the
video game industry, mainly expressing sexist and anti-progressivism opinions.
By means of a methodology similar to that followed in [13], work in [4] charac-
terise the users involve in the GamerGate campaign, mainly by analysing their
social network and the content of their posts. Findings are that they tend to
have more friends and followers, are generally more engaged and post tweets
with less joy and more hate than random users.

Still regarding harassment campaigns, a raising and worrying phenomenon,
known as raiding, consists of organize and coordinate ad-hoc mobs aimed at
disrupt a specific social platform. The authors of [22] employ machine learning
techniques to predict those YouTube videos which are likely to be raided by
users of third-party hateful communities.

Focusing on the Italian language, [8] designed and developed the first hate
speech classifier for Italian, testing two different state-of-art approaches for senti-
ment analysis tasks (SVM and LSTM algorithms). Initially, the Facebook dataset
introduced in Section 2.1 was annotated according to three distinct classes:
comments could either be tagged as Strong Hate, Weak Hate, No Hate. Un-
fortunately, both SVM and LSTM were not able to discriminate well among the
three classes. This was particularly true for the Strong Hate class. These results
were probably due to the small number of Strong Hate documents in the dataset
and the low level of annotators’ agreement. To date, as also highlighted by [26,
28], dealing with multiple hate classes lead to a low agreement among the anno-

13 http://www.4chan.org/



tators, and thus, to scarce results in terms of automated classification. Instead,
when considering two classes (Hate/No Hate) and only the documents for which
at least 70% of the annotators were in agreement, both SVM and LSTM perform
better, with a F1 score equal to 0.72 for the Hate class.

5 Conclusions

The growing spread of online hate campaigns against individuals and minori-
ties quests for effective techniques to automatically detect hate content. Par-
allel to standard text classification methodologies, mainly based on processing
texts through conventional machine learning tools, we assist to the flourishing
of attempts employing neural networks. In this work, we proposed six different
classification configurations and we evaluated their performances over datasets
consisting of Italian Facebook posts and tweets. Results showed that those con-
figurations where deep learning is used perform better than the others. This
outcome is promising, since deep learning features the noticeable advantages
to be independent from i) data re-training, ii) NLP machinery specialised for
specific languages, iii) the time-consuming feature engineering phase.

Given the encouraging results, as future work we aim at testing other DL
configurations, possibly over larger datasets. Furthermore, in order to assess the
strength of our choices wrt related work, we will test the proposals available in
the literature, including ours, on the same dataset. As an example, aiming at
maintaining the dataset considered in this work, a promising starting point is to
work on the architectures, and associated results, of the Hate Speech detection
task at EVALITA, which took place in late December, 2018.
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Hollink, Anna Tordai, and Mehwish Alam, editors, The Semantic Web, pages 745–
760, Cham, 2018. Springer International Publishing.


