
Designing Flink Pipelines in IoT Mashup Tools?

Tanmaya Mahapatra1, Ilias Gerostathopoulos, Federico Alonso Fernández
Moreno, and Christian Prehofer

Lehrstuhl für Software und Systems Engineering, Fakultät für Informatik,
Technische Universität München
tanmaya.mahapatra@tum.de

Abstract. Internet of Things (IoT) applications are generating increas-
ingly large amounts of data because of continuous activity and periodical
sensing capabilities. Processing the data generated by IoT applications
is necessary to derive important insights—for example, processing data
from CO emissions can help municipal authorities apply traffic restric-
tions in order to improve a city’s air quality. State-of-the-art stream-
processing platforms, such as Apache Flink, can be used to process large
amounts of data streams from different IoT devices. However, it is dif-
ficult to both set-up and write applications for these platforms; this is
also manifested in the increasing need for data analysts and engineers.
A promising solution is to enable domain experts, who are not necessar-
ily programmers, to develop the necessary stream pipelines by providing
them with domain-specific graphical tools. We present our proposal for a
state-of-the-art mashup tool, originally developed for wiring IoT applica-
tions together, to graphically design streaming data pipelines and deploy
them as a Flink application. Our prototype and experimental evaluation
show that our proposal is feasible and potentially impactful.

Keywords: Flink pipelines · graphical tool · IoT mashup tools · stream
analytics

1 Introduction

In recent years, there has been an upsurge in the number and usage of ubiquitous
connected physical devices, thereby making the era of the Internet of Things
(IoT) a reality. IoT is defined as the interconnection of ubiquitous computing
devices for increased value to end users [4]. Realising this value of IoT for end-
users depends heavily on its software applications which in turn depends on the
insights gained from IoT data.

IoT data typically comes in the form of data streams that often need to
be processed under latency requirements to obtain insights in a timely fashion.
Examples include traffic monitoring and control in a smart city; traffic data
from different sources (e.g. cars, induction loop detectors, cameras) need to be
combined in order to take traffic control decisions (e.g. setting speed limits,

? Copyright held by the author(s). NOBIDS 2018



2 T. Mahapatra et al.

opening extra lanes in highways). The more sensors and capabilities, the more
data streams require processing.Specialised stream-processing platforms, such
as Apache Flink, Spark Streaming and Kafka Streams, have been proposed to
address the challenge of processing vast amounts of data (also called Big Data),
that come in as streams, in a timely, cost-efficient and trustworthy manner.

The problem with existing stream platforms is that they are difficult to both
set-up and write applications for. The current practice relies on human expertise
and the skills of data engineers and analysts, who can deploy Big Data stream
platforms in clusters, manage their life-cycle and write data analytics applica-
tions in general-purpose high-level languages such as Java, Scala and Python.
Although many platforms, including Flink and Spark, provide SQL-like pro-
gramming interfaces to simplify data manipulation and analysis, the barrier is
still high for non-programmers.

In response to this growing need, we believe a promising solution is to enable
domain experts, who are not necessarily programmers, to develop the necessary
pipelines for streaming data analytics by providing them with domain-specific
graphical tools. In particular, we propose to extend existing flow-based graphical
programming environments, used for simplifying IoT application development,
called IoT mashup tools, and allow the specification of streaming data analytics
pipelines (programs) via their intuitive graphical interfaces which allow compo-
nents to be dragged , dropped and wired together.

To provide a technical underpinning for our proposal and evaluate its feasi-
bility, we have extended aFlux1 [11, 10], a state-of-the-art mashup tool developed
in our department, to support the specification of streaming data pipelines for
Flink, one of the most popular Big Data stream-processing platforms. One main
challenge is reconciling the difference in Flink’s programming paradigm and flow-
based mashup tools. Flink relies on a lazy evaluation execution model, where
computations are materialised if their output is necessary, while flow-based pro-
gramming triggers a component, proceeds to execution and finally passes their
output to the next component upon completion. To program Flink from mashup
tools, the difference in the computation model needs to be addressed. Addition-
ally, there needs to be a seamless connection between the two systems to enable
a smoother consumption of the generated results.

Succinctly, we provide the following contributions in this paper:

1. We analyse the Flink ecosystem and identify the abstractions that will work
for graphical programming of Flink pipelines (Section 3).

2. We describe the concept idea and technical realisation of mapping a graph-
ical flow, designed in aFlux, to a Flink pipeline and providing basic flow
validation functionalities at the level of aFlux (Section 4).

3. We evaluate our proposal by designing pipelines that monitor traffic con-
ditions and detect patterns in the incoming streaming data using real-time
traffic data from the city of Santander, Spain (Section 5).

1 https://github.com/mahapatra09/aflux tum



Designing Flink Pipelines in IoT Mashup Tools 3

2 Background

In this section we give an overview of mashup tools, with an emphasis on aFlux
and Big Data stream analytics platforms, with emphasis on Flink.

2.1 aFlux: An IoT Mashup Tool

Mashups are a conglomeration of several accessible and reusable components
on the web [5]. Mashup tools simplify the development of mashups by allowing
end-users to wire together mashup components, encapsulating business logic into
one or more mashup flows. When executing a mashup flow, control follows the
data flow from one component to the next; this type of flow-based programming
paradigm is also followed in a very popular mashup tool for IoT, Node-RED [7,
1].

aFlux is a recently proposed IoT mashup tool that offers several advan-
tages compared to Node-RED. It features a multi-threaded execution model,
asynchronous and non-blocking execution semantics and concurrent execution
of components.

Available Mashup
Components Application Header & Menu Bar Side Panel

Activity Tabs

Console-like Output 

Canvas

Add-Plug-in 
Button 

Mashups

Fig. 1: Graphical User Interface of aFlux

aFlux consists of a web application and a back-end developed in Java and the
Spring Framework2. The web application is composed of two main entities: the
front-end and back-end, based on REST API. The front-end of aFlux (Fig. 1)
provides a GUI for the creation of mashups. It is based on React3 and Redux4

frameworks. Mashups are created by dragging-and-dropping mashup components

2 https://spring.io/
3 https://reactjs.org/
4 https://redux.js.org/



4 T. Mahapatra et al.

from the left panel. New mashup components are loaded from plug-ins. The
application shows a console-like output in the footer, and the details about a
selected item are shown on the right panel. Using the aFlux front-end, a user
can create a flow by wiring several mashup components (or sub-flows) together.

When a flow is sent to the back-end, it is translated to an internal model,
which is a graph called the ‘Flow Execution Model’ [10]. This model is composed
of actors, as aFlux makes use of Akka actor system5 and Java. In an actor
system, actors encapsulate both a state and behaviour. When an actor receives
a message, it starts to perform the associated computations, and it may send a
message to another actor when finished. In aFlux, a mashup component of the
front-end corresponds to an actor in the back-end. Messages can only be sent
asynchronously between actors [10]; concurrency of actors is also supported.
Currently, aFlux supports graphical Spark programming by making use of the
declarative APIs of the Spark eco-system [10].

2.2 Stream Analytics

The idea of processing data as streams, i.e. as they come in, is different from
batch processing. The latter approach was followed in the first Big Data-processing
systems, such as in Hadoop’s MapReduce and in Apache Spark, which mainly
dealt with reliable parallel processing of Big Data residing in distributed file
systems, such as Hadoop’s HDFS. Stream processing of Big Data has been re-
cently sought as a solution to reduce the latency in data processing and provide
real-time insights (e.g. on the scale of seconds or milliseconds).

In particular, an ideal stream-processing platform should meet the following
requirements [15]:

– Low latency. Streaming platforms usually make use of in-memory pro-
cessing, in order to avoid the time required to read/write data in a storage
facility and thus decrease the overall data-processing latency.

– High throughput. Scalability and parallelism enable high performance in
terms of data-processing capability. The real-time performance of stream-
processing systems is frequently demanded even with spikes in incoming
data [6].

– Data querying. Streaming platforms should make it possible to find events
in the entire data stream. Typically, SQL-like language is employed [15].
However, since data streams never end, there needs to be a mechanism to
define the limits of a query; otherwise it would be impossible to query stream-
ing data. This is where the window concept takes part. Windows define the
data in which an operation may be applied, so they become key elements in
stream-processing.

– Out-of-order data. Since a streaming platform does not wait for all the
data to become available, it must have a mechanism to handle data coming
late or never arriving. A concept of time needs to be introduced, to process
data in chunks regardless of order of arrival.

5 https://akka.io/



Designing Flink Pipelines in IoT Mashup Tools 5

– High availability and scalability. Stream processors will most likely han-
dle ever-growing amounts of data, and in most cases, other systems could
rely on them, e.g. in IoT scenarios. For this reason, the stream-processing
platform must be reliable, fault-tolerant and capable of handling any amount
of data events.

The first approaches to stream processing, notably Storm and Spark Stream-
ing, used to focus on requirements such as low latency and high throughput [8].
Lambda architecture, a well-known approach [6, 12, 9] combines batch and stream-
like approaches to achieve shorter response times (on the order of seconds). This
approach has some advantages, but one critical downside: the business logic
needs to be duplicated into the stream and the batch processors. In contrast to
this, stream-first solutions, such as Apache Flink, meet all the outlined require-
ments [6].

3 Flink Ecosystem: An Analysis

Apache Flink is a processing platform for distributed stream as well as batch
data. Its core is a streaming data-flow engine, providing data distribution, com-
munication and fault tolerance for distributed computations over data streams [16].
It is a distributed engine, built upon a distributed runtime that can be executed
in a cluster to benefit from high availability and high-performance computing
resources. It is based on stateful computations. Indeed, Flink offers exactly-once
state consistency, which means it can ensure correctness even in the case of fail-
ure. Flink is also scalable because the state can be distributed among several
systems. It supports both bounded and unbounded data streams. Flink achieves
all this by means of a distributed data-flow runtime that allows a real-stream
pipelined processing of data.

A streaming platform should be able to handle time because the reference
frame is used for understanding how the data stream flows, that is to say, which
events come before or after another. Time is used to create windows and perform
operations on streaming data, in a broad sense. Flink supports several concepts
of time: (i) Event time refers to the time at which an event was produced in the
producing device. (ii) Processing time is related to the system time of the cluster
machine in which the streams are processed. (iii) Ingestion time is the wait time
between when an event enters the Flink platform and the processing time.

Windows are a basic element in stream processors. Flink supports different
types of windows, and all of them rely on the notion of time as described above.
Tumbling windows have a specified size, and they assign each event to one and
only one window without any overlap. Sliding windows have fixed sizes, but an
overlap, called the slide, is allowed. Session windows can be of interest for some
applications, because sometimes it is insightful to process events in sessions.A
global window assigns all elements to one single window. This approach allows
for the definition of triggers, which tell Flink exactly when the computations
should be performed.



6 T. Mahapatra et al.

The Flink distributed data-flow programming model together with its various
abstractions for developing applications, form the Flink ecosystem. Flink offers
three different levels of abstraction to develop streaming/batch applications as
follows: (i) Stateful stream processing: The lowest level abstraction offers stateful
streaming, permitting users to process events from different streams. It features
full flexibility by enabling low-level processing and control. (ii) Core level: above
this level is the core API level of abstraction. By means of both a DataStream
API and a DataSet API, Flink enables not only stream processing but also
batch analytics on ‘bounded data streams’, i.e., data sets with fixed lengths (iii)
Declarative domain-specific language: Flink offers a Table API as well, which
provides high-level abstraction to data processing. With this tool, a data set or
data stream can be converted to a table that follows a relational model. The
Table API is more concise, because instead of the exact code of the operation,
defined logical operations [16] are less expressive than the core APIs. In the
latest Flink releases, an even-higher-level SQL abstraction has been created as
an evolution of this declarative domain-specific language. In addition to the
aforementioned user-facing APIs, some libraries with special functionality are
built. The added value ranges from machine learning algorithms (currently only
available in Scala) to complex event processing (CEP) and graph processing.

TransformationsData Source Data Sink

Fig. 2: Overall Structure of a Flink Program [16]

The structure of a Flink program (especially when using the core-level APIs)
begins with data from a source entering Flink, where a set of transformations
is applied (window operations, data filtering, data mapping, etc.). The results
are subsequently yielded to a data sink, as shown in Figure 2. A Flink program
typically consists of streams and transformations. Simplistically, a stream is a
never-ending flow of data-sets, and a transformation is an operation on one or
more streams that produces one or more streams as output.

On deployment, a Flink program is mapped internally as a data-flow consist-
ing of streams and transformation operators. The data-flow typically resembles
directed acyclic graphs (DAGs). Flink programs typically apply transformations
on data-sources and save the results to data-sinks before exiting. Flink has the
special classes DataSet for bounded datasets, and DataStream for unbounded
data-streams, to represent data in a program. To summarise, Flink programs look
like regular programs that transform data collections. Each program consists of:
(i) initialising the execution environment, (ii) loading datasets, (iii) applying
transformations, (iv) specifying where to save the results. Flink programs use
a lazy execution model, i.e. when the programs main method is executed, the
data loading and transformations do not happen immediately. Rather, each op-



Designing Flink Pipelines in IoT Mashup Tools 7

eration is added to the program’s plan, which is executed when its output needs
to be used immediately. This contrasts with a flow-based programming model of
mashup tools, which relies on an eager evaluation model i.e., a flow component
is first executed before the control flows to the next component. This differ-
ence must be taken into consideration while enabling Flink programming from
mashup tools.

Design Decisions

In order to support Flink pipelines in mashup tools, we needed to decide on
the (i) required abstraction level, (ii) the execution model mapping and (iii)
the way to support semantic validity of graphical flows. Accordingly, from the
different abstraction levels, we decided to select the core API abstraction levels
for supporting Flink pipelines in graphical mashup tools, as these APIs are easy
to represent in a flow-based programming model. They prevent the need for user-
defined functions to bring about data transformation and provide predictable
input and output types for each operation—the tool can then focus on validating
the associated schema changes. Moreover, it is easy to represent DataStream
and DataSet APIs as graphical components that can be wired together. Finally,
the different input parameters required by an API can be specified by the user
from the front-end. We follow the lazy execution model while composing a Flink
pipeline graphically, i.e., when a user connects different components, we do not
automatically generate Flink code but instead take a note of the structure and
capture it via a DAG, simultaneously checking for semantic validity of the flow.
When the flow is marked as complete, the runnable Flink code is generated.
Lastly, we impose semantic validity restrictions on the graphical flow which can
be composed by the user, i.e. it must begin with a data-source component,
followed by a set of transformation components and finally ending with a data-
sink component, in accordance with the anatomy of a Flink program.

4 Designing Flink pipelines

The conceptual approach for designing Flink pipelines via graphical flows ad-
dresses the main contributions stated in Section 1, and consists of: (i) A model
to enable the graphical creation of programs for stream analytics, in other words,
to automatically translate items specified via a GUI to runnable source code,
known as the Translation & Code Generation Model, and (ii) a model to con-
tinuously assess the end-user flow composition for semantic validity and provide
feedback to ensure that the final graphical flow yields a compilable source code,
known as the Validation Model. Figure 3 gives a high-level overview of the con-
ceptual approach used to achieve such a purpose. This conceptual approach is
based on the design decisions discussed in Section 3.

Since the main idea is to support stream analytics in mashup tools, we re-
strict the scope of the translator to the DataFrame APIs from the core-level
API abstractions. In accordance to the anatomy of a Flink program, we have



8 T. Mahapatra et al.

built ‘SmartSantander Data’ as the data-source component, an ‘Output Result’
supporting writing operation to Kafka, CSV and plain text as data-sink com-
ponent. Map, filter and window operations are the supported transformation
components. Accordingly, we built the ‘GPS Filter’ component to specify filter
operations, the ‘select’ component to support map operations and a ‘Window’ as
well as “WindowOperation” to specify windows on data streams. We also support
the Flink CEP library via the following components :‘CEP Begin’, ‘CEP End’,
‘CEP Add condition’ and ‘CEP New condition’. The CEP library is used to de-
tect patterns in data streams. We also have two additional components, namely
‘Begin Job’ and ‘End Job’, to mark the start and end of a Flink pipeline. The
translator & code generation model have been designed to work within this scope
of selection. We define all potential semantic rules between these components and
the validation model works within this scope.

Runnable Flink
Program

Translator

Actor System

actors + user-defined
properties STD

Graphical 
Parser

Graphical Flow (defined in GUI by the user) 

Visual 
Component #1

Visual 
Component #2

Visual 
Component #3

Visual 
Component #N

Code Generator

Fig. 3: Conceptual Approach for Translation and Code Generation

4.1 Translation & Code Generation

The aim of the translation & code generation model is to provide a way to
translate a graphical flow defined by the end user of the mashup tool (via its
GUI), into source code to program Flink. This model behaves as follows: (i)
First, end users define graphical flows in the mashup tool GUI, by connecting
a set of visual components in a flow-like structure. It represents a certain Flink
functionality and has a set of properties that the user may configure according
to their needs. (ii) Then, a translator acquires the aggregated information of the
user-defined flow, which contains (a) the set of visual components that compose



Designing Flink Pipelines in IoT Mashup Tools 9

the flow, (b) the way in which they are connected, (c) the properties that users
have configured for each component.

The translator has three basic components: a graphical parser, an actor sys-
tem and a code generator. It takes as input the aggregated information of the
user-defined graphical flow (i.e. visual components, the flow structure and the
user-defined properties) and its output is a packaged and runnable Flink job. The
graphical parser takes the aforementioned aggregated information and processes
it, creating an internal model and instantiates the set of actors corresponding
to the flow. The actor system is the execution environment of actors, which
contains the business logic of the translator. Actors are taken from the output
of the graphical parser. The actor model abstraction makes each actor inde-
pendent, and the only way to interact with the rest is by means of exchanging
messages. Actors communicate using a data structure that has been explicitly
defined for making the translation, using a tree-like structure that makes ap-
pending new nodes extremely easy. In this model, the data structure is referred
to as STDS (Specific Tree-Like Data Structure). As previously stated, each ac-
tor corresponds to a specific Flink functionality and, in turn, to the standalone
implementation method of that specific functionality. It adds a generic method-
invocation statement as a message response to the next connected actor. The
method-invocation statement also passes the user parameters and the output
from its preceding node as input to the standalone implementation method of
Flink-functionality APIs. The next actor receives this message and appends its
corresponding method-invocation statement and so forth.

Finally, the code generator takes the STDS as input. It has internal mapping
to translate parametrised statements into real Flink source code statements.
This entity combines the parametrised statement with this mapping and the
user-defined properties, and then generates the final source code. The compiling
process also takes place here. The code generator output is a packaged, running
Flink job that can be deployed in an instance of Flink.

4.2 Validation

The translation model allows the translation of graphical flows into source code.
However, some graphical flows may result in source code that either cannot
be compiled or yields runtime errors. We have provided support on aFlux for
handling the type of errors that occur because of data dependencies in a data
pipeline, during the specification of the pipeline from the GUI. If one of the data
dependency rules is violated when the user connects or disconnects a component
in a flow, visual feedback is provided, which helps avoid problems early on.
Such semantic rules must be specified by the developers of the individual Flink
components of aFlux, according to the following pattern:

Component A︸ ︷︷ ︸
main

visual component

∣∣∣∣should
must

∣∣∣∣︸ ︷︷ ︸
isMandatory

come (immediately)︸ ︷︷ ︸
isConsecutive

∣∣∣∣before
after

∣∣∣∣︸ ︷︷ ︸
isPrecedent

Component B︸ ︷︷ ︸
argument

visual component

For example, the following rules can be specified:



10 T. Mahapatra et al.

– ‘Window’ component must come immediately after ‘Select’ component
– ‘End Job’ component must come after ‘Load data’ component

On the front-end, when a user connects two components, it is considered a state-
change. With every state-change, the entire flow is captured from the front-end
and subjected to the validation process. Basically, the flow is captured in the form
of a tree; the next step is to check whether the nodes are compatible to accept the
input received from their preceding nodes, whether two immediate connections
are legal and whether the tested component’s positional rules permit it to be used
after its immediate predecessor. Algorithm 1 summarises the semantic validation
steps of the flow. During the check, if an error is found with any one component
of the flow, the user is alerted with the appropriate reasons and the component
is highlighted.

Algorithm 1: Continuous Semantic Validation of Flink Pipelines

foreach flow in the canvas do
order the list of element as they appear in the flow;
foreach element in the orderedList do

instantiate the PropertyContainer that corresponds to element;
get the set of conditions out of it;
instantiate a new result;
foreach condition in conditions do

foreach element in the orderedList do
if condition is not met then

result.add(condition);
end

end

end
if result is empty then

clear error information from element;
else

add error information to element;
end

end

end

5 Evaluation and Discussion

The implemented approach has been evaluated for its ease in graphically creating
Flink jobs from aFlux and abstracting the code-generation from the end-user.
For evaluation purposes, we have used real data from the city of Sandander,
Spain, which is offered as open data behind public APIs [14]. In this smart
city use-case, the user is an analyst of Santander City Hall, who need not have



Designing Flink Pipelines in IoT Mashup Tools 11

programming skills. The user only needs to know how to use aFlux from the
end-user perspective (e.g. drag and drop mashup components) and have some
very basic knowledge of what Flink can do from a functionality point of view
rather than from a developer point of view. For example, the city hall analyst
should know that changes in the city are measured in events and events can be
processed in groups called windows. The user does not need to know any details
about how to create a window in the Flink Java or Scala API, or the fact that
generics need to be used when defining the window type of window. The process
of analysing real-time data involves combining data from different sources of the
city and processing it. The goal of this use-case is to gain insights about the city,
that help decision makers take the appropriate calls.

In this evaluation scenario, temperature vs. air quality in a certain area must
be compared with the average of the city. To study the relationship between the
level of a certain gas and temperature, the analyst needs to create four flows (or
wire them all together to create a simple Flink job): two of them will analyse
temperature data (i.e. the ‘temperature’ attribute in the ‘environment’ dataset)
and two of them will analyse air quality (e.g. the ‘levelOfCO’ attribute in the
‘airQuality’ dataset). Two flows are required for each dataset because one will
include a ‘GPS filter component (Fig. 4a), and the other one will not include
it, in order to process all the data in the city (Fig. 4b). To avoid re-adding the
same mashup components, the analyst could make use of the sub-flow feature of
aFlux.

(a) Flow A

(b) Flow B

Fig. 4: Flows in aFlux for Case Study - Real-Time Data Analytics

Figure 4 shows how the analyst can easily get input from real-time sources by
using a graphical data-source component, i.e. the ‘SmartSntndr Data’. Adding
a third source of data to see not only the level of NO2 but also the level of
ozone is as simple as changing a property in the ‘SmartSntndr Data’ component.
However, if they were doing it manually, the Java code for a new ‘MapFunction’
would have to be written.

Tumbling windows were used in Figure 4a, but processing the data in a
different type of window (e.g. using sliding windows) is as easy as changing
the properties of the ‘Window’ mashup component (Figure 5). In Java, the user



12 T. Mahapatra et al.

Fig. 5: Tumbling vs. Sliding Windows in aFlux

would need to know that a sliding window takes an extra parameter and that the
window slide needs to be specified using Flink’s Time class, in which a different
method is invoked depending on the desired time units.The system has been
evaluated against additional scenarios and case studies [13].

Discussion

The approach used to model a Flink pipeline relies on three aspects, i.e. load
data from data source, transform data and finally publish the result via a data
sink. This is also the preliminary form of semantic validation i.e. deciding if the
positional hierarchy of a component is allowed or not. The user-flow is parsed
and expressed as an abstract syntax tree which is passed as an input to the code
generator. Each node in the tree maps to a standalone implementation of the
Flink Core APIs. The code generator generates code for sequences like, opening
and closing a Flink session, and for the nodes in the abstract syntax tree it wires
the standalone implementation of the APIs, while passing the user parameters
and the output from the preceding node as input. The result is a runnable Flink
program, compiled, packaged and deployed on a cluster.

The current work has many limitations in its approach such as the following.

Debugging run-time exceptions: The semantic validation techniques de-
scribed help the user create a flow which can result in a compilable Flink code.
Nevertheless, in the case of run-time exceptions, it becomes difficult to identify
the error from the logs and reverse map the generated Flink program to identify
the corresponding graphical component on the front-end.

Integrate job monitoring: The current approach does not include methods
to include job monitoring and management features at the tool level. The user
can create a Flink job and consume the analytical result, but the user cannot
manage the job deployed on a Flink cluster. This is important from an end-user
perspective as stream applications typically run infinitely.



Designing Flink Pipelines in IoT Mashup Tools 13

Seamless integration with Flink cluster: Currently, there is no seamless
integration between the mashup tool and Flink run-time environment, hence
the consumption of the data analytics results is not a straightforward process.
Therefore, real-time data visualisation has many problems, including time-delays
and unresponsiveness to very minimal interactive capabilities. As of now, we rely
on third party systems, like Apache Kafka, where the Flink application writes
its results to, and we read the data from, Kafka in the mashup tool.

6 Related Work

We did not find any mashup tool solutions which allow wiring components to pro-
duce a Flink application. One of the closest existing solutions is Nussknacker [3].
It is a tool currently in development which supports graphical Flink program-
ming. It consists of an engine, whose aim is to transform the graphical model
created in the GUI, into a Flink job. A standalone user interface application,
which allows both the development and deployment of Flink jobs, is written
in Scala and incorporates data persistence and a Flink client. Basically, a user
needs to enter the data model of their use-case to Nussknacker. Users with no
programming skills can benefit from the GUI to design a Flink job, send it to
a Flink cluster and monitor its execution. Nevertheless, it does not focus on
the integration of data analytics and business logic of application, but rather
designs a data analytics Flink application based on a particular usage model.
IBM SPSS Modeller provides a GUI to develop data analytics flows involving
simple statistical algorithms, machine learning algorithms, data validation al-
gorithms and visualisation types [2]. Although SPSS Modeller is a tool built
for non-programmers to perform data analytics using pre-programmed blocks of
algorithms, it does not support wiring new Flink applications.

7 Conclusion

We defined a new approach for high-level Flink programming from graphical
mashup tools to make the usage of stream analytics easier for non-domain ex-
perts. We showed that this is feasible and evaluated what are the right ab-
stractions. Accordingly, (i) we analysed the Flink ecosystem i.e. its distributed
data-flow programming model and the various abstraction levels offered to pro-
gram applications; we found the core APIs, based on DataFrame and DataSet
interfaces to be the most suitable candidates for use in a graphical flow-based
programming paradigm, i.e. mashup tools; (ii) we adapted the eager evalua-
tion execution model of mashup tools to support designing Flink pipelines in a
lazy fashion and devised a novel generic approach for programming Flink from
graphical flows. The conceptual approach was implemented in aFlux, our JVM
actor-model-based mashup tool and evaluated it with real-time data from the
city of Santander.



14 T. Mahapatra et al.

Acknowledgement

This work is part of the TUM Living Lab Connected Mobility (TUM LLCM)
project and has been funded by the Bavarian Ministry of Economic Affairs,
Energy and Technology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government.

References

1. IBM Node-RED, A visual tool for wiring the Internet of things,
http://nodered.org/

2. IBM SPSS Modeller. https://www.ibm.com/products/spss-modeler, [Online; ac-
cessed 22-June-2018]

3. Nussknacker. https://github.com/TouK/nussknacker, [Online; accessed 22-
September-2018]

4. Atzori, L., Iera, A., Morabito, G.: The internet of things:
A survey. Computer Networks 54(15), 2787 – 2805 (2010).
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010,
http://www.sciencedirect.com/science/article/pii/S1389128610001568

5. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

6. Friedman, E., Tzoumas, K.: Introduction to Apache Flink. O’Reilly (09 2016)
7. Health, N.: How ibm’s node-red is hacking together the internet of things (March

2014), http://www.techrepublic.com/article/node-red/TechRepublic.com [Online;
posted 13-March-2014]

8. Iqbal, M.H., Soomro, T.R.: Big data analysis: Apache storm perspective. Interna-
tional journal of computer trends and technology 19(1), 9–14 (2015)

9. Kiran, M., Murphy, P., Monga, I., Dugan, J., Baveja, S.S.: Lambda architecture
for cost-effective batch and speed big data processing. In: Big Data (Big Data),
2015 IEEE International Conference on. pp. 2785–2792. IEEE (2015)

10. Mahapatra, T., Prehofer, C., Gerostathopoulos, I., Varsamidakis, I.: Stream
analytics in iot mashup tools. In: 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). pp. 227–231 (Oct 2018).
https://doi.org/10.1109/VLHCC.2018.8506548

11. Mahapatra, T., Gerostathopoulos, I., Prehofer, C., Gore, S.G.: Graphical spark
programming in iot mashup tool. In: The Fifth International Conference on Inter-
net of Things: Systems, Management and Security. p. In Press. IoTSMS (2018)

12. Marz, N., Warren, J.: Big Data: Principles and best practices of scalable real-time
data systems. New York; Manning Publications Co. (2015)

13. Moreno, F.A.F.: Modularizing flink programs to enable stream analytics in iot
mashup tools (2018), http://oa.upm.es/52898/

14. Santander City Council: Santander Open Data - REST API Documentation (2018),
http://datos.santander.es/documentacion-api/

15. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream
processing. ACM Sigmod Record 34(4), 42–47 (2005)

16. The Apache Software Foundation: Dataflow Programming Model,
v1.5 (2018), https://ci.apache.org/projects/flink/flink-docs-release-
1.5/concepts/programming-model.html


