
Large Scale Taxonomy Classification using BiLSTM with
Self-Attention

Hang Gao
University of Maryland Baltimore County

Baltimore, Maryland
hanggao1@umbc.edu

Tim Oates
University of Maryland Baltimore County

Baltimore, Maryland
oates@cs.umbc.edu

ABSTRACT
In this paper we present a deep learning model for the task of
large scale taxonomy classification, where the model is expected to
predict the corresponding category ID path given a product title.
The proposed approach relies on a Bidirectional Long Short Term
Memory Network (BiLSTM) to capture the context information for
each word, followed by a multi-head attention model to aggregate
useful information from these words as the final representation
of the product title. Our model adopts an end-to-end architecture
that does not rely on any hand-craft features, and is regulated by
various techniques.

KEYWORDS
taxonomy classification, BiLSTM, attention

ACM Reference Format:
Hang Gao and Tim Oates. 2018. Large Scale Taxonomy Classification using
BiLSTM with Self-Attention. In Proceedings of ACM SIGIR Workshop on
eCommerce (SIGIR 2018 eCom Data Challenge). ACM, New York, NY, USA,
Article 4, 5 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The cataloging of product listing through taxonomy categorization
is a popular research area for many e-commerce marketplace. The
task is challenging due to various reasons, for example, the lack of
read data from actual commercial product catalogs, the noisy nature
of product labels and the typical unbalanced data distribution.

In this paper, we present an end-to-end neural network based sys-
tem for taxonomy classification. The proposed approach employs a
BiLSTM network augmented with a multi-head self attention mech-
anism, producing a feature representation used for classification.
We also regulate the system with various regulation techniques in
order to obtain better generalization.

2 OVERVIEW
Our approach consists of two main steps: (1) the sampling step,
where we over-sample instances of rare categories with augmenta-
tion; (2) the network step, which includes three parts: a recurrent
neural network to generate word representation with context in-
formation; a self-attention network to generate a distribution over

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

Figure 1: # of product titles w.r.t. the rank of their corre-
sponding category ID path. The ranks are generated as the
indices of those category ID paths sorted by the # of product
titles.

the enriched word representations and a classifier that performs
classification.
Task Definition. The task is to predict the category ID path given
a product title, as shown in Table 1, which includes examples taken
from the data challenge description page. Evaluation of a system in
this task is measured by weighted-precision, recall, F1 score with
complete matching.

The task adopts the data released by Rakuten, which includes
1M product listings in tsv format, split into train/test set with ratio
80%/20%. The train set includes 3008 category ID paths and is highly
imbalanced. In Figure 1, we show a comparison of the number of
product titles among these category ID paths.

2.1 Sampling
As mentioned above, since the data is highly imbalanced, it is often
important to over-sample instances of rare classes to force a model
to pay more attention to them, instead of overwhelmed by those
frequent ones. A common strategy of over-sampling is replication,
but in our system, we adopts a different version where we aug-
ment the replicated samples to prevent our system from simply
remembering them in order to get better generalization.

Given an sample, we first randomly replicate it by d times, where
d is randomly picked from the set {1, 2, 3, ...,D}; we then concate-
nate these replicas together and split them into a bag of words,

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
andrew

andrew
Copyright © 2018 by the paper’s authors. Copying permitted for private and academic purposes.
In: J. Degenhardt, G. Di Fabbrizio, S. Kallumadi, M. Kumar, Y.-C. Lin, A. Trotman, H. Zhao (eds.): Proceedings of the SIGIR 2018 eCom workshop, 12 July, 2018, Ann Arbor, Michigan, USA, published at http://ceur-ws.org�

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA Hang Gao and Tim Oates

Table 1: Examples of product titles and their corresponding category ID paths.

Product Title Category ID Path

Replacement Viewsonic VG710 LCD Monitor 48Watt AC Adapter 12V 4A 3292>114>1231
Ka-Bar Desert MULE Serrated Folding Knife 4238>321>753>3121
5.11 TACTICAL 74280 Taclite TDU Pants, R/M, Dark Navy 4015>3285>1443>20
Skechers 4lb S Grip Jogging Weight set of 2- Black 2075>945>2183>3863

followed by random shuffling; next we pick a subset of the bag of
words and generate a sequence based on them; finally we append
the sequence to the end of the original sample to get the augmented
one. This sampling strategy aims at enforcing the model to be ro-
bust to the noise generated by reordering or repeating pieces of a
sample itself.

2.2 Recurrent Neural Network
We model product titles using recurrent neural networks (RNN).
RNNs processes their input in a sequential way, with each time
step sharing the same operation (commonly achieved by sharing
weights). In addition, for a rnn, the output of each time step is fed
back to itself as a part of the input at next time step. In this way, a
rnn is powerful at handling inputs of variable length.

However, RNNs are known to be hard to train [9], due to the
gradient exploding/vanishing problems [2, 4]. A key idea to over-
come these problems is to construct constant error flow (CEF) for
each RNN neuron. Inspired by it, more sophisticated variants of

(a) Regular RNNs

(b) RNNs with attention mechanism

Figure 2: Comparison between a regular RNN and a RNN
with attention.

vanilla RNNs like Long Short Term Memory (LSTM) network [5]
and Gated Recurrent Unit (GRU) network [3] are proposed, which
allow better gradient flow to learn the long-term dependencies.

2.3 Self-Attention Mechanism
Instead of directly using the final hidden state ht of a rnn on a
product title as its final representation r , we use a self-attention
mechanism [1], in order to amplify the contribution of important
words. When using a attention mechanism, we compute r as a
convex combination of all hidden states hi , i ∈ [1, t], with weights
ai , indicating the importance of their corresponding hi . Formally,
r =

∑t
i=0 aihi , where

∑
i ai = 1 and ai >= 0. Figure 2 illustrates

the difference between regular RNNs and RNNs with attention
mechanism.

3 MODEL DESCRIPTION
We use a multi-layer word-level BiLSTM to capture context infor-
mation for each word of a product title and a multi-head attention
model to aggregate useful information from the learned word rep-
resentations generated by the BiLSTM. We present the architecture
of the proposed model in Figure 3.

Embedding Layer. The input to the network is a product title,
treated as a sequence of words. We use an embedding layer to
project the words w1, w2, w3, ..., wt to a low dimensional dense
vectorvri , where r is the dimension of embedding space and t is the
number of words in a product title. It is often popular to pre-train
word embeddings with algorithms like Word2Vec [8] and Glove
[10], but we simply randomly initialize them with other parameters
in our model.

BiLSTMLayer.ALSTM takes a sequence of vectors as input and
produces an annotation for each time step h1, h2, ..., ht . A BiLSTM
performs similar operations, but in both forward and backward
directions. Although there are various ways to combine the forward
and backward annotation hf ,i and hb,i for a BiLSTM, we simply
concatenate them together, i.e., hi = hf ,i | |hb,i , where | | denotes
the concatenation operation. Note that hi ∈ R2L , where L is the
size of the BiLSTM hidden layer.

Multi-Head Attention. Similar to the attention mechanism
mentioned above, a multi-head attention model also aims at aggre-
gating useful information from word features, but allows multiple
convex combinations for attention on different words. In our model,
we adopt an attention model with the following transitions:

Taxonomy Classification using BiLSTM with Self-Attention SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

Figure 3: The architecture of our proposed model.

d
(j)
i = w

(j)
2 tanh(W (j)

1 hi + b
(j)
1) + b(j) (1)

a
(j)
i =

exp(d
(j)
i)∑

l exp(d
(j)
l)

(2)

m(j) =
∑
i
a
(j)
i hi (3)

r =m(1) | |m(2) | |...| |m(K) (4)

where hi is the representation of wordwi , a
(j)
i is its corresponding

attention weight for the jth head, m(j) is the aggregation result
for the jth head and r is the aggregation result for all the heads. | |
denotes the concatenation operator andW (j)

1 ∈ R2Lx2L , b(j)1 ∈ R2L ,
w
(j)
2 ∈ R2L , b(j) ∈ R are the weight parameters, with L denotes the

size of the BiLSTM hidden layer and K indicates the number of
heads.

Classifier. We use a single layer MLP followed by a softmax
activation as the classifier in our model.

3.1 Regulation
In this paper, we also adopt different regulation techniques to im-
prove the model’s generalization capability. In specific, we use L2
regularization, embedding dropout, DropConnect [7] and dropout
[12].

Embedding dropout.We employ embedding dropout by ran-
domly dropping out dimensions of word embeddings with the rest
dimensions scaled by 1/1 − ρ, where ρ denotes the dropout proba-
bility. This is equivalent to adding random bernoulli noise to the
word embeddings.

DropConnect. Preventing overfitting within recurrent neural
network has been a popular research area that draws a lot of at-
tention. Many of the proposed methods focus on the hidden state
vector hi , aiming at introducing a dropout operation between time
steps or on the update to the memory state ci . [7] instead proposes
an approach called "DropConnect" that randomly throws away
connections of hidden neurons to themselves, i.e., the hidden to
hidden weight matrices. In our approach, we adopt this technique
on both forward and backward LSTMs.

Dropout. Dropout is widely used as a regulation technique for
deep neural networks. We employ the technique between BiLSTM
layers and before self-attention model. When applying dropout
between BiLSTM layers, we scale the non-dropped dimensions by
1/1 − ρ, similar to embedding dropout, while when used before
self-attention model, a regular version is adopted, i.e., dimensions
are scaled by (1 − ρ) at evaluation time.

3.2 Optimization
SGD remains one of the most popular optimization techniques for
training deep learning models in various areas, such as computer vi-
sion, natural language processing and deep reinforcement learning.
As a variant of SGD, Non-monotonically Triggered ASGD [7] (NT-
ASGD), may further improve the training process as it provides
certain advantages such as its asymptotic second-order conver-
gence [6, 11]. We adopt NT-ASGD and SGD as the optimization
algorithms.

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA Hang Gao and Tim Oates

4 EXPERIMENTS
4.1 Experiment Setup
Training. We use the combination of SGD and NT-ASGD [7] as
the optmization algorithm. Initially we start training the model
by SGD algorithm with logging interval set as one epoch. After
5 non-monotone interval, NT-ASGD is triggered and employed
for the rest epochs. We set the mini-batch size to be 32, the word
embedding size to be 300, the hidden size of BiLSTM to be 400,
the number of layers of BiLSTMs to be 2, the number of heads to
be 3, the embedding dropout rate to be 0.4, the DropConnect rate
to be 0.5, the dropout rate between BiLSTM layers to be 0.25 and
the dropout rate before self-attention model to be 0.3. The initial
learning rate is set to be 0.5 and the weight decay rate to be 1.2e-6.

Result.We list the current evaluation result on test data in Table
2, along with systems with relative close performance. Our system
currently rank at 15 with weighted precision, recall and F1 to be
0.78, 0.77 and 0.77.

4.2 Accuracy Analysis
In order to analyze the strength and weakness of our system, we
perform an analysis on accuracy with respect to loд2(n) + 1 for
each category ID path, where n is their corresponding number of
product titles in the train set. We show the result in Figure 4.

Generally speaking, our model performs better on frequent cate-
gory ID paths than rare ones. For most frequent category ID paths,
the model can achieve almost 100% accuracy, but varies when it
comes to rare ones. It is as expected since deep learning models are
well known to often be data hungry. The more data they are fed,
the better performance they can achieve.

Another observation is that the overall accuracy for train set is at
least above 0.80 as the accuracy of only some less frequent category
ID paths is below that threshold. Compared to the performance of
ourmodel on test data, this suggests that ourmodel is overfitting the
train set, indicating the necessity of better regulation techniques.

5 EXTENSION
After stage2, we further improve our model by adopting a set of
pre-processing steps and Glove vectors [10] for word embedding

Table 2: Evaluation result on the test data released

Stage Team Precision Recall F1

stage1 Tyche 0.8536 0.7655 0.7976
stage1 Topsig 0.8009 0.8042 0.7967
stage1 VanGuard 0.7950 0.7915 0.7871
stage1 Waterloo 0.7819 0.7853 0.7767
stage1 CorUmBc 0.7822 0.7722 0.7702

Stage Team Precision Recall F1

stage2 Topsig 0.7921 0.8014 0.7941
stage2 VanGuard 0.7899 0.7917 0.7884
stage2 HSJX-ITEC-YU 0.7809 0.7821 0.7790
stage2 Waterloo 0.7802 0.7857 0.7781
stage2 CorUmBc 0.7745 0.7712 0.7690

Figure 4: Accuracy w.r.t. loд2(n) + 1 where n is the number of
product listings for a category ID path.

initialization. These pre-processing steps include: (1) lower case
the product titles; (2) remove all non-ascii characters; (3) remove
all punctuation; (4) remove all digits; (5) stem all words with NLTK
WordNet Lemmatizer; (6) remove all rare words with document
frequency less than 3.

We randomly split train data into train/valid/test sets according
to the ratio 0.8/0.1/0.1. In order to compare the impact of the new set
of pre-processing steps and Glove vectors, we perform two different
runs: one with the same setting adopted in section 4 and the other
with all the newly added extensions. Except that the number of
layers of BiLSTM is set to be 3 and the hidden size is set to be 350,
we use exactly the same training setting as in section 4. We show
the results in Table 3 and these results indicate that these extension
steps may further improve the performance of our model.

6 FUTUREWORK
We aim at further improving the performance of our model in the
following directions.

Word Dropout. We find a large portion of words occur only
once or twice in the train set, which may cause the model to unex-
pectedly rely on them as they show strong discrimination power
when it comes to classification when the model has enough capacity.
A possible way to reduce the impact is to randomly dropping out
rare words before feeding a product title to the network.

Table 3: Evaluation result on the test set sampled from train
data

Set Model Precision Recall F1

valid CorUmBc + extension 0.8054 0.8112 0.8036
valid CorUmBc 0.7751 0.7755 0.7699
test CorUmBc + extension 0.7888 0.7876 0.7801
test CorUmBc 0.7570 0.7504 0.7448

Taxonomy Classification using BiLSTM with Self-Attention SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

Dynamic Class Re-Weighting. One technique to overcome
the problem that the network simply ignores rare category ID
paths is to re-weight classes in order to force the model to pay more
attention to rare ones. Thus changing class weights dynamically
during the training procedure seems promising.

Ensemble ofModels. Ensembling through bagging or boosting
has proven to benefit many systems, thus we seek to improve model
robustness by adopting this technique in the future.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[4] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

[5] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[6] Stephan Mandt, Matthew DHoffman, and David M Blei. 2017. Stochastic gradient
descent as approximate bayesian inference. arXiv preprint arXiv:1704.04289
(2017).

[7] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017).

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[9] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International Conference on Machine
Learning. 1310–1318.

[10] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[11] Boris T Polyak and Anatoli B Juditsky. 1992. Acceleration of stochastic approx-
imation by averaging. SIAM Journal on Control and Optimization 30, 4 (1992),
838–855.

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

	Abstract
	1 Introduction
	2 Overview
	2.1 Sampling
	2.2 Recurrent Neural Network
	2.3 Self-Attention Mechanism

	3 Model Description
	3.1 Regulation
	3.2 Optimization

	4 Experiments
	4.1 Experiment Setup
	4.2 Accuracy Analysis

	5 Extension
	6 Future Work
	References

