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ABSTRACT
The detection of anomalies in vessel trajectories is a problem
of great interest for all maritime surveillance systems, since it
may uncover strange, suspicious or difficult situations for ves-
sels. All the existing works in the field examine specific aspects
of the problem and propose case specific tools that can hardly
generalize or scale-up to a worldwide monitoring system. In this
article, we present a methodology for creating a network abstrac-
tion of the trajectories of multiple vessels, which uses only the
information collected from the vessels’ Automatic Identification
System (AIS). The resulting network abstraction contains rich
information about the vessel behavior in an area and can be pro-
cessed with network analysis and other data mining techniques
in order to uncover hidden outliers, even in an unsupervised
manner. Experimental results on a real dataset demonstrate some
of the capabilities of the proposed network model and indicate
its extension to more complex automatic surveillance tasks.
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1 INTRODUCTION
Abnormal vessel behavior can be indicative for a set of note-
worthy events, such as a vessel in distress or vessel performing
illegal activities. The impact of those events is severe and has a
multifaceted effect on the environment, society, economy, etc.
It is, therefore, crucial to employ technology to allow for the
early detection of suchlike events. The opportunity is now more
relevant than ever, with distributed data sensors tracking and
reporting vessel movements around the globe [5]. This work
contributes directly towards that direction, with the provision
of a mechanism that classifies vessel behavior between normal
and abnormal, using historical information about similar vessels
that operate in a particular area. The mechanism can be used for
the early detection of vessels in distress or vessels that rush to
assist others that are in distress or even for position spoofing in
the case of illegal activities.
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Although it would be easier to solve the anomaly detection
problem using information from other data sources such as coast
guard or vessel logs, the critical challenge is to decipher the vessel
operations by examining only AIS data from multiple vessels in
an area, i.e., data that the vessels themselves regularly and openly
transmit regarding their position at a particular time. Handling
the volume of AIS data, which constitute a vast data stream, is
the second challenge, which is a major challenge for traditional
data analysis methods and machine learning algorithms [24, 27].
So, it is essential, before any further analysis, to simplify vessel
trajectories [23] and if possible to abstract the transactional model
of AIS streams to a model that fits data mining and analytics.

A large part of the literature on vessel position prediction and
anomaly detection [15, 17, 18, 20, 22] focuses on the analysis
of momentary GPS coordinates and vessel movement features
(e.g., velocity, bearing) [12]. This point-based examination of
the trajectories, however, implies the attribution of the same
value in the analysis to each GPS point and this may result in
weak results in understanding vessel behavior [2]. In reality,
there are states in the vessels’ trajectories, which are of high
importance in the context of the real vessel operation that include
the traversal of spatiotemporally defined waypoints (e.g. ports,
off-shore platforms, capes, route deviations, vessel towing etc.)
and a large number of states of low or no contribution to the
solution of the problem at hand.

The intuition behind this work is that a better solution requires
the attribution of context-based knowledge to vessel trajectory
data, such as i) the waypoints that define their operations and
the sort of movement patterns that they follow in relation to
those waypoints (i.e., a region of interest for a given application)
over time, ii) the subtrajectories that compose the trajectory of
a vessel and the features that can be extracted for them. The
main idea is to use AIS data from multiple vessels to identify the
spatial waypoints according to frequently observed vesselsâĂŹ
pattern, such as being stationary or making significant changes
in their courses. After, to understand the frequency and transition
patterns of vessels moving from one waypoint to another using
data from multiple vessels, and finally to generate a network
that captures all this information. Given this network abstraction
model, trajectory analysis can be performed to detect unexpected
vessel behaviors.



This work is structured as follows: Section 2 summarizes re-
lated works. In Section 3 the proposed network abstraction model
is presented in detail and Section 4 describes some of the com-
plex outlier detection methods that can be implemented over a
network created from the AIS data of multiple vessels. Section
5 discusses the preliminary results from the application of our
anomaly detection methodology and explains how it can be ex-
tended to cover a broader range of anomalies and how it can
be fine-tuned to capture specific trajectory anomalies. Finally,
Section 6 concludes the paper with the potential impact of this
work in the domain of maritime surveillance by presenting future
applications of the proposed network abstraction to the identi-
fication of more complex vessel behaviors that engage multiple
vessels at the same time.

2 RELATEDWORK
The proposed network abstraction model offers a method for sim-
plifying the information collected for a set of trajectories within a
geographical area. As a simplification method, it compares other
methods in the literature that mainly focus on single trajectory
simplification and propose a multi-trajectory alternative. As a
network abstraction model for traffic networks, it is comparable
to methods that summarize multiple trajectories from historical
AIS data, to generate traffic networks and establish the basis for
a maritime surveillance system. Although the proposed method-
ology can be applied to the trajectories of several different types
of moving objects, we limit our literature review to the maritime
domain, which is directly related to the experimental work we
performed so far.

2.1 Trajectory simplification
Simplification algorithms are commonly used on AIS trajecto-
ries mainly to remove noise, temporal AIS transmission errors,
etc. For example, the Douglas-Peucker (DP) line simplification
algorithm [6] detects and removes redundant points from a sin-
gle object trajectory, when they fall within the expected object
course (under a given threshold) [30]. However, it ignores the
temporal dimension of a ship’s route [31], as well as other con-
textual information (e.g., physical obstacles [26]), which when
considered can significantly improve the quality of the simplified
trajectory. On the other hand, the Open Window Spatiotemporal
Algorithm (OPW-SP) [16] accounts for the speed changes and
removes points that are within the ship course and within the
expected time interval. Finally, the recently proposed Equivalent
Passage Plan (EPP) Method [23] segments a vessel’s trajectory
into three basic behaviors: stop, fixed-course sailing, and turn. All
the above methods have been applied in a single vessel trajectory
at a time and do not consider historical information, e.g., previous
trajectories of the same vessel at the same area, or trajectories
from other vessels in the same area. Our work, takes advantage of
multiple trajectory information, either from the same or different
vessels, and creates a general and abstracted navigation model
of vessels in a navigation area.

Similarly to the Traffic Route Extraction and Anomaly Detec-
tion (TREAD)methodology suggested in [18], our work simplifies
a set of trajectories from different vessels by extracting a set of
waypoints. The TREAD method considers the spatial clusters of
stationary, entry and exit points from the area of interest as way-
points and then builds route objects by clustering the extracted
vessel flows, which connect two ports (stationary points), or any
other pairwise combination of entry, exit, and stationary points.

Our work expands the concept of waypoints, by including apart
from the entry, exit, and stationary points, the clusters of turning
points, where significant changes in the vesselsâĂŹ course are
frequently happening. Besides, we follow a different method-
ology for detecting waypoints and segmenting trajectories to
sub-trajectories, which is further explained in Section 3. How-
ever, the main contribution of our work is the abstraction of the
results of the aforementioned trajectories’ analysis to a network
model, in which the detection of anomalies is performed in a
more context-rich, computationally cheaper and simplified way,
taking advantage of the work in the area of network analysis.

In [19] authors present a single-pass processing approach,
ideal for streaming AIS data, which reduces noisy AIS positions,
tracks moving vessels and automatically detects specific event
types (single or multi-vessel), such as rendezvous, package pick-
ings etc. The methodology is similar to the trajectory simplifica-
tion step of our methodology, but it focuses on data streams and
dynamic detection of predefined events, whereas the proposed
frameworks performs a post-analysis of collected AIS data and
forms an abstraction, which can be the basis for further analytics.

2.2 From vessel trajectories to traffic
networks

Several works on maritime surveillance have used the grid of
tiles or hexagons model [29] for mapping actual trajectories to
polylines and consequently to sequences of key-points [11, 25].
The proposed simplification model is more coarse-grained than
single trajectory simplifications that keep the majority of AIS
data since it holds only a few points for each trajectory - the
waypoints - along with a set of features for each sub-trajectory.
As it is shown in Section 3, the waypoints are away from each
other in contrast to the grid representation that uses neighboring
tiles.

From the early works of Rhodes et al. back on 2005 [21] on
maritime surveillance to the later works of Holst et al. [10] on
maritime anomaly detection and the latest work of Varlamis et
al. [28] on the detection of search and rescue missions from AIS
data, several representation models have been proposed for de-
scribing trajectory information and many algorithms have been
used to aid situation awareness, to detect adversarial tactics, pre-
viously unobserved events, and combinations of routine events
concealing coordinated activities.

Several works have appeared that last few years that builds
maritime traffic network representations from historical AIS
data [1, 4]. In the two-layer network of [1]: i) the external layer
presents the networkâĂŹs basic structure using waypoints as
nodes/vertices and routes as edges/lines and ii) the internal layer
is composed by nodes - breakpoints that reflect the vessels con-
stant and stable changes of behavior and edges - tracklets that
represent the vessel trajectory. The external layer is a coarse-
grained abstraction of the traffic network, whereas the internal
layer is a fine-grained version of the network that provides pre-
cision and granularity to individual vessel layer. An edge in the
external layer can be a route from a port to another port of an
off-shore platform, whereas an edge in the internal layer will com-
prise all the simplified (using DP algorithm) vessel trajectories
that sailed across this route. The complexity of the internal layer
of the network and the scalability issues it creates is evident in
the analysis of a real dataset for the Baltic Sea that comprised 1.8
million AIS points, from 1,136 actual routes. Using only the 454
complete routes (from port to port) resulted in an internal layer



Figure 1: A snapshot of the area monitored in this study.

composed of 2,095 tracklets. However, the aim of that work to
reduce the RMSE between abstract routes and the actual courses
and to monitor a rather small area (the area of Baltic Sea is only
377,000 km2) explains its complexity.

The level of abstraction of our model is similar to that of
the external layer of [1]. However, we replace the over-detailed
internal layer with statistical information extracted from the
sub-trajectories of the various vessels to reduce the information
stored by the model without loosing its descriptive power. To
give an idea of the size of information that one must handle in a
typical scenario, Figure 1 shows a snapshot of more than 3,000
vessels that sail the Mediterranean sea on a typical day and the
rectangle frames the area from Istanbul and Cyprus in the East
to Genoa and Tunis in the West that we monitor. This is an area
of 1.5 million km2 for which 2.9 million AIS points have been
collected in a month period from 1,716 cargo (only) vessels. This
results to a bigger external network and a much more complex
internal one than that of [1].

3 THE PROPOSED METHOD
The proposed method is applied to trajectory data collected from
multiple vessels of similar type (e.g., cargo vessels) for a period in
a particular geographical area, but can be easily extended to cover
larger areas and time-spans, or multiple types of vessel. Its only
input is the AIS data reported by the vessels, which is processed
and used to build a network abstraction of the collective vessel
trajectory information.

Figure 2: The main steps of the proposed model.

The proposed method is summarized in Figure 2. In step one,
the trajectories (e.g., AIS messages) from multiple vessels are
enriched with features that can be computed using geo-location
and time (Section 3.1). After, trajectory points with particular
characteristics (e.g., stops or points with high bearing rate) are
clustered in waypoints that will be transformed in the nodes
of our network (Section 3.2). The full network abstraction is
processed in step 3 (Section 3.3), where trajectory segments’
information that connects waypoints are used to create the edges
of the model’s network. Finally, the output of our method is a
graph that represents a semantic network model that can be used
for many different problems in the trajectory domain.

3.1 Trajectory data extraction
The first step of the approach is the identification of the keypoints
kpi j in the trajectoryTi of a vessel. We consider as keypoints the
points where the vessel stopped or moved slowly for a period of
time or the points where the vessel quickly performed a major
turn. The library TrajLib 1 was used to process the basic infor-
mation collected from AIS (e.g., geo-location and time-stamp)
for a vessel and extract information regarding the vessel speed,
bearing, and bearing rate. This is done dynamically, as we collect
geo-location and time-stamp information for a vessel. By apply-
ing the segmentation methods described in [9], we identify kpi j
as the segmentation points where the speed is below a threshold
(i.e., very slow or stationary vessel) or the bearing rate is above a
threshold (i.e., a major and quick change in the vessel’s route).
The speed threshold employed in the experiments of this work
was 1 knot, whereas the threshold for the bearing rate was 0.1
degrees/minute. Thresholds have been decided empirically in
order to capture very slow speeds or very quick turns. Differ-
ent thresholds would change the number of keypoints extracted
from each trajectory, but small changes are expected not to affect
the definition of waypoints, which aggregate information from
multiple vessel trajectories.

3.2 Waypoint identification
The second step refers to the spatial clustering of keypoints kpi j
collected from multiple vessels within a period. The DBScan [7]
density-based algorithm is used to spatially group the keypoints
to a set of arbitrary shaped clusters, that we call waypoints wpk .
Since the clusters produced by DBScan can have arbitrary shapes,
we use closed polygons that envelop each cluster and merge
overlapping convex hulls (see Figure 3). DBScan parameters are
also empirically chosen to support a comprehensive network
abstraction. Waypoints are the nodes of our network abstraction
model and several features are associated with each one of them.
The size of each cluster (i.e., number of keypoints it contains),
the area it covers, its density, and the number of distinct vessels
that contributed to it, are some of the features stored for each
waypoint.

3.3 Network abstraction
The next step is the creation of the edges that together with the
nodes (i.e., waypoints) constitute the proposed network abstrac-
tion model. In order to define the network edges and extract their
features, we once again process the AIS data this time using way-
points for trajectory segmentation. For this purpose, we extended
the TrajLib library, with a new trajectory segmentation method,
which segments a trajectory to subtrajectories that either connect
1https://github.com/metemaad/TrajLib

https://github.com/metemaad/TrajLib


Figure 3: The waypoints formed outside the port of Bari.
The main waypoint corresponds to the port as indicated
by three sample vessel routes that stop by.

two waypoints (the “between” edges) or traverse a waypoint (the
“within” edges) (see Figure 4). Since every waypoint is as a closed
polygon, the trajectory of a vessel from departure to destination
will be split to a sequence of subtrajectories that correspond to a
sequence of alternating “between” and “within” edges.

For each subtrajectory, we extract a list of features that are
related to the distance covered, speed, acceleration, bearing and
bearing rate between every consecutive AIS signal collected for
a vessel. So, instead of keeping all the intermediate GPS points
and timestamps for a subtrajectory, we maintain a vector that
describes its mean, minimum, maximum, and intermediate per-
centile values of speed, distance, bearing, etc. as they have been
calculated at each point. This significantly reduces the informa-
tion stored for a subtrajectory, while keeping a lot of information
concerning the vessel course and behavior.

A vessel’s route from the departure to the destination port will
be mapped to a path in the simple network abstraction depicted
in the last step of Figure 2. Each route will add sub-trajectory
feature vectors to one or more edges that will describe how
the specific vessel sailed along the edges that form its path. A
simplified representation of this network will be a directed and
weighted graph with weighted vertices, where weights on the
edges correspond to the number of vessels sailed along the edge
and weights on the vertices will correspond to the number of
vessels sailed through the waypoint.

Figure 4: A zoom of figure 3 reveals that parts of the trajec-
tory correspond tomovement within the waypoint limits.

Figure 5: An example of the semantic networkmodel. The
red markers are waypoints. The yellow markers are ves-
sels. The edges of the original network abstraction are
now mapped to vertices (blue nodes) which also connect
to the vessels that traveled each original edge. The pink
markers are outlier behaviors associated with a vessel (as
in the displayed case) or a specific trip.

3.4 A semantic network model
The resulting network abstraction can be enriched in order to
better illustrate the information extracted in the previous steps.
For example, since more than one vessels may navigate between
two waypoints (i.e. navigate the same edge of the network) or
stay within a waypoint (i.e. traverse a ’self-edge’ of the network),
we can use vertices of different types and directed edges that
connect them as shown in Figure 5. In this semantic network
model, the red colored vertices correspond to waypoints, and the
yellow vertices are used to represent the vessels. The edges of the
network abstraction are now converted to vertices (blue color)
that lay between the waypoints and are connected with them
through directed edges. So a directed edge from waypoint A to
waypoint B (A→B) in the original network will be mapped to
two edges in the semantic network that connect A and B through
a connecting node Îİ (A

voyaдe
−−−−−−−→N

voyaдe
−−−−−−−→B). Node N is marked

with blue and is used to interconnect waypoints or pairs of way-
points with the vessels that traveled between the waypoint pair
(directed ’voyage’ edge) or stayed within a waypoint (directed
’resides’ edge).

Any additional information that is extracted during the pre-
processing for the creation of the abstract network or from the
analysis of the feature information that it conveys can also be
added to the semantic network model. This can be done with
additional types of vertices such as the pink colored vertices
depicted in the bottom of Figure 5, which correspond to an outlier
behavior.

4 GRAPH ANALYSIS AND OUTLIER
DETECTION METHODS

The problem of detecting outlier vessel behaviors usually aims
in locating individual vessels that behave significantly differ-
ent from all other vessels of the same type that operate in the
same area [13]. The very recent work of Mao et al. [14] proposed
a feature-grouping based outlier detection framework for dis-
tributed trajectory streams, which considers in a tandem spatial
proximity of trajectories and differences in multiple features such
as speed, direction etc.



The proposed network abstraction allows implementing both
simple methods that detect spatial outliers (e.g., vessels that sud-
denly appear in an unexpected location) and more complex meth-
ods that use speed, direction and their changes as features to
detect more complex outlier behaviors.

4.1 Probabilistic graph traversal:
The abstraction of an AIS dataset to a network that connects
waypoints with traversal edges, allows us to describe the route
of a vessel from the departure port to the destination port as a
sequence of transition events between states (entering/exiting a
waypoint) of the form:

(sti , eti ,wpx ) or (stj , etj ,wpx ,wpy )
where sti and eti are the start and time of a “within” waypoint x
traversal event (i.e., the time that the vessel entered and exited
waypoint wx ), stj and etj are the start and time of a transition
fromwaypoint x to waypointy (i.e., the time that the vessel exited
waypointwx and the time it entered waypointwy respectively).

A straightforward use of this abstraction would be to learn the
transition probabilities from one state to another using the route
information of all vessels in an area for a time period. Training a
Markov Chain model with this information will allow getting the
probability of every future state given the previous states that a
vessel attained in its route.

The detection of an outlier behavior during a route will be
based on detecting a state transition of low probability. In simple
words, this means that the vessel passed from several waypoints
and then moved to waypoint that few or no other vessel with
a similar route has been found before. In our analysis, we train
discrete-time Markov chain models of order 1 and 2 using the
first part of our timestamped dataset and evaluate the remaining
data for transitions of low probability. This split assumes that
training uses information for a specific time period and then the
model is used to detect outliers in the time period that follows.

By calculating the first-order (or higher) transition probability
matrix using the historical data of all past waypoint sequences,
we can detect anomaly sequences by simply looking at low prob-
ability values [3]. A caveat of this approach is that it must be
used for sequences of the same length. In order to avoid this, we
apply a sliding window of constant size over the past waypoint
sequences, so that all the sequences have the same length.

4.2 Outlier detection using subtrajectory
features on edges:

The network abstraction methodology presented in Section 3 for
an AIS dataset that contains data from multiple vessels results
in a graph with edges that have been traversed by more than
one ships or more than one times. It is expected that the various
vessel trajectories do not match exactly on GPS coordinates nor
speed or direction features at every point. However, keeping the
whole subtrajectories and compare them point-by-point using
RMSE or similar distance metrics in order to find outliers is both
resources demanding and over-detailed. The proposed alternative
approach is to use a feature vector for every subtrajectory that
contains distance, speed, bearing and bearing rate, and percentile
values as features.

The set of features and the methodology employed to extract
them from the timestamped GPS data are explained in details in
[8]. Since the AIS information is not continuous, the methodology
assumes that a trajectory or sub-trajectory is a set of contiguous
segments, for which it computes the following ’point’ features:

the duration, the distance covered, the acceleration, the jerk, the
bearing rate and the rate of the bearing rate. Based on these ‘point’
features the methodology computes global and local trajectory
features which are the minimum, maximum, mean, median, and
standard deviation of the point features and different percentiles
that describe the behavior within the trajectory. These features
allow us to distinguish between a vessel that moved slowly and
then speed up to cover the distance and another vessel that had
a smoother course, or between a long detour and a straight line
sub-trajectory or between a vessel that made many maneuvers
before reaching the final destination and a vessel that followed a
simpler route.

The comparison of a set of trajectories or sub-trajectories that
match in the start and end waypoint, with the aforementioned
features will reveal potential outlier behaviors, which can then
be further examined. Outliers will be vectors that are far away
from all other vectors either in a sub-space or the vector space
of all features.

Both outlier detection methods described in this section are
unsupervised since they do not require prior knowledge of nor-
mal or strange behaviors. The stochastic model used for outlier
detection relies on the fact that a large AIS dataset for an area
and a period, mostly contains normal routes that define the prob-
abilities of normal and abnormal transitions. Using historical
data to learn probabilities and new data to search for rare paths
or transitions of low-probability may reveal potential outliers,
such as ID (MMSI) spoofing or AIS switch-off. The vector-based
representation of sub-trajectories and the use of centroid-based
clustering algorithms are also unsupervised methods. It may
reveal behavioral patterns, such as for example how different
type of vessels move from one waypoint to the other, and outlier
behaviors that do not match any existing feature vector. Using
the same network abstraction with supervised methods is also
possible, but is harder to find training samples, so it is outside
the scope of this work.

5 PRELIMINARY RESULTS
The basis for building our graph model is a dataset containing
2.9 million AIS records that describe the trajectories of 1,716
distinct “cargo” vessels as they operated in the eastern half of
the Mediterranean Sea during the period Aug. 01, 2015 to Aug
28, 2015. Since we did not have any additional knowledge about
suspicious behaviors concerning this dataset, we decide to employ
unsupervised/descriptive techniques to detect potential outliers.
Each outlier has to be examined separately to understand the
reason for being selected and reveal the specific characteristic of
unusual behavior.

The first step of the preprocessing of the AIS dataset, requires
the identification of keypoints, which represent the major turn
and stop points for the cargo vessels. Using a speed threshold
of 1 knot and a bearing rate threshold of 0.1 degrees per minute,
we located several thousand stops and turns (~500,000) in the
trajectories of the monitored vessels. The next step is the spa-
tial clustering of the keypoints to waypoints. At this step, we
used a minimum number of ten keypoints (MinPts=10) within a
minimum radius of 2km (eps=2000) for distinguishing between
core and noise points. The clustering algorithm resulted in 617
clusters, which are the nodes of our model.

At the second step of the preprocessing, we parsed the dataset
a second time and segmented the trajectory history of each vessel
as follows: i) first we split the trajectory into subtractories when



Figure 6: A zoom of the trajectory of a test vessel in the
dataset, which has been detected as outlier.

the destination port changes assuming that a vessel changes its
destination and begins a new trip when it arrives at the previous
destination, ii) then we split each trip to subtrajectories based on
the points where it enters or exits a waypoint. The result of this
preprocessing step is the distinct edge traversals in the proposed
network model, which for the specific dataset are 53,391. These
traversals correspond to ‘between’ and ‘within’ edges, some of
them being traversed by more than one vessel. For each node
traversal, we compute the distribution percentiles for all the
features as explained in Section 3.1.

Following the structure of the previous section, we found cases
of vessels that had an unusual behavior i) in terms of the sequence
of the waypoints they visited in their course and ii) in terms of
the way they moved between two waypoints.

5.1 Outlier detection using transition
probabilities:

For this type of analysis we employ part of the output of the
preprocessing step, and more specifically only the ids of the
waypoints that have been visited by the cargo vessels of the
dataset. This means that we use the sequence of waypoints in all
the consecutive ‘between’ edges of each vessel trip. This resulted
in 5,782 distinct trips performed by the 1,716 vessels during the
one month period.

Our goal was to simulate a real scenario of training a surveil-
lance model for a period and then using this model to detect
potential outliers. So since the trips contain timestamps, we split
the set of distinct trips sequentially in an 80-20% split using the
least recent trips for training the transition probability matrix
and the most recent to search for outliers. From the 1,156 trips
that have been used as a test only 10 have been found to have
a low transition probability. Figure 6 shows an example of such
trip, which has been found an outlier. The figure focuses on the
problematic section of the trip, in the sea of Marmara, where it is
evident that there is a considerable gap in the vessel trajectory,
either because AIS information is missing or because the vessel
is moving at a very high speed. Also before that gap, we can see
that the vessel does a strange maneuver, which must be further
examined. A detailed examination of the trajectory features re-
veals that the vessel was moving fast before the gap but appeared
with a very slow moving speed after the gap and that it moved
slowly during the maneuver (Figure 7).

5.2 Outlier detection using edge traversal
features:

A second approach in detecting outliers is to use the detailed
information stored with the edges of our semantic networkmodel.

Figure 7: The moving speed details of the trajectory de-
tected as outlier.

Figure 8: A trajectory that has been found as outlier be-
cause of an unusual stop.

This information contains the distribution of values of all vessels
that traveled across the edge and can be used to detect outlier
behaviors that cannot be detected with the method described
previously. These are the cases where a vessel moves across
a frequently traversed path but has an abnormal behavior, for
example, stops and starts, ormoves slowly in some parts or during
the whole path e.g. because of an engine problem.

In order to detect such outliers, we perform a centroid-based
clustering to the feature vectors of all vessels (trips) that traversed
an edge. Based on the distance from the centroid and a percentile
based outlier detection method with a threshold of 95% (this
means that the 5% of the points that lie further than all the others
from the centroid are considered as outliers), we characterize
some vessels as outliers. For a better view of the vessels’ trips and
in order to avoid short-term deviations, we repeat this process
for more neighboring edges.

More specifically, we examine a very frequent sequence of
edges in our dataset that relates to the route of vessels through
the sea of Marmara, near Istanbul. There exist 359 vessel trips
that traversed the same sequence of waypoints - of length 3,
i.e., 2 edges - and among them, we locate 5 trips, for which the
feature vector was in the top-5 percentile for both edges. One
of the outliers was a high-speed vessel that moved at a speed of
20 knots, which is very unusual for cargo vessels in that area. A
second outlier was a cargo vessel (shown in Figure 8) that stopped
for an extended period right after it left the port of Istanbul and
then continued its trip.



6 IMPACT AND FUTURE STEPS
A critical challenge for the detection of abnormal vessel behavior
is to decipher the vessel operations by examining only AIS data,
i.e., data that the vessels themselves regularly and openly transmit
regarding their position at a particular time, their destination, and
essential vessel characteristics such as their name and identity.
Based on this data, more interesting information can be extracted
to enhance a trajectory, such as the heading, speed or bearing rate.
Correlating the trajectory information collected from multiple
vessels can be extremely beneficial to the task at hand. First,
because the collective behavior of multiple-vessels may establish
the behavioral norm in an unknown situation and second because
there are several patterns of abnormal behavior at sea that engage
more than one vessels.

The proposed network model is quite abstract to achieve a
good compression of vast amounts of data collected from thou-
sands of vessels that operate in an area. At the same time, it
is very comprehensive in the information it keeps for vessels’
trajectories and allows more complex analysis to be performed,
such as clustering or classification of movement patterns. The
network abstraction of vessel trajectories for a region, can be
used for processing new AIS data that come as a stream for this
region, and quickly detect vessels that move from one waypoint
to another or deviate from the predefined routes.

In this work, we presented the methodology for constructing
the network abstraction and performed the first analysis using
two unsupervised outlier detection techniques, which show two
simple ways to exploit the network abstraction model. The next
steps in this direction are: i) to identify the different types of
abnormalities that these two techniques can detect and ii) to
compile a dataset of normal and abnormal behaviors and test the
performance of our model in supervised setups.

Themain contribution relies on the network abstractionmodel
and its constructionmethodology and not on the off-the-shelf out-
lier detection methods that we employed. Selecting specific types
of abnormalities to detect and having a human-reviewed dataset
with cases of vessels that performed such abnormal behaviors in
the area ([19], [28]), will allow us to exploit the proposed model,
develop and evaluate new algorithms for the detection of related
events.
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