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ABSTRACT
View recommendation has emerged as a powerful tool to assist data
analysts in exploring and understanding big data. Existing view
recommendation approaches proposed a variety of utility functions
in selecting useful views. Even though each utility function might
be suitable for specific scenarios, identifying the most appropriate
ones along with their tunable parameters, which represent the user’s
intention during an exploration, is a challenge for both expert and
non-expert users. This paper presents the first attempt towards inter-
active view recommendation by automatically discovering the most
appropriate view utility functions in an exploration based on the
user’s preferences. In particular, our proposed ViewSeeker uses a
novel active learning method to discover the view utility function by
interactively refining the set of k view recommendations. The effec-
tiveness and efficiency of ViewSeeker was experimentally evaluated
using both synthetic and real data sets.

1 INTRODUCTION
The ubiquitously available information sources and the advance-
ments in data storage and acquisition techniques have led to an
aggressive increase in the data volumes available for data analysis
tasks. One major challenge in utilizing these abundantly available
data is discovering insights from them effectively and efficiently.
Examples of an “insight” include the structure, patterns, and causal
relationships. To explore these massive and structurally complicated
datasets, data analysts often utilize visual data analysis tools such as
Tableau [2] and Voyager [28]. However, the effectiveness of these
tools depends on the user’s expertise and experience. Coming up
with a visualization that shows interesting trends/patterns is a non-
trivial issue. Consider, for example, a view comparing the player
3-point attempt rate of a selected NBA team with that of all teams
in the league (Figure 1), which could explain why the selected team
on the right (black) outperformed the league average on the left
(gray) and won a championship. The analyst needs to examine the
relationships among various attributes and consider various aggre-
gate functions before any useful visualizations can be discovered.
This approach is typically ad-hoc, labor-intensive, and not scalable,
especially for high-dimensional databases.

To address the shortcoming of the current visual analysis tools,
several methods for recommending visualizations have recently been
proposed (e.g., [5, 6, 11, 12, 16, 18, 27]). These methods automati-
cally generate all possible views of data, and recommend the top-k
interesting views, according to some utility function (e.g., deviations,
data variance, usability) that measures the interestingness of data.
Even though each utility function might be suitable for specific
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Figure 1: Example of a view providing an insight about the per-
formance of an NBA team.

scenarios, identifying the most appropriate ones and their tunable pa-
rameters, which represent the user’s intention during an exploration,
is still a challenge for both expert and non-expert users.

Motivated by the need for supporting visualization recommen-
dation, which is tailored to the user’s exploration task, we propose
an interactive view recommendation tool, called ViewSeeker, that
efficiently assists the user to explore visually large, high-dimensional
datasets. The main idea of the ViewSeeker is to automatically iden-
tify the most appropriate utility function based on the user’s feedback
on selected views. In particular, ViewSeeker iteratively presents a
set of views to the user, and the user is asked to provide simple
feedback to each of the presented views. Utilizing such feedback,
ViewSeeker learns the most appropriate utility function by employ-
ing a novel active learning method. In each iteration, ViewSeeker
effectively predicts and refines the view utility function and identify
those views, from all possible views, which have high values in
their utility functions. ViewSeeker ensures a sub-second runtime
response time for each subsequent iteration, by employing multiple
optimization techniques such as pruning, sampling, and ranking.

To verify the effectiveness of our proposed interactive view rec-
ommendation tool, ViewSeeker, we implemented a prototype system
and experimentally evaluated it using both a synthetic dataset and
a real-world dataset of diabetic patients [1]. Our evaluation results
have confirmed the effectiveness of ViewSeeker, such that on aver-
age only 7-16 user answers (feedback) are required to obtain a set of
highly accurate top-k view recommendations.

Specifically, the contributions of this paper are the following:

(1) Designing an interactive view recommendation tool called
ViewSeeker that iteratively discovers the most appropriate
view utility function and refines the recommended views (i.e.,
histograms or bar charts) with the feedback that the user
provided.
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(2) Proposing a suite of optimization techniques that improve the
efficiency of the system, while minimizes the impact on the
quality of the recommended views.

(3) Implementing a prototype system of the proposed ViewSeeker,
and then verified the effectiveness of our proposed approach
on both synthetic and real-world datasets.

Outline The rest of the paper is structured as follows. Section 2
introduces our problem definitions. Section 3 presents our proposed
approach. Section 4 and 5 describe our experimental testbed and
results. Section 6 discusses related work and Section 7 concludes
the paper.

2 PROBLEM FORMULATION
In this section, we present the necessary background details of our
work. Specifically, we discuss how views can be constructed through
SQL queries, and then explain how the interestingness of a view
may be captured through a pre-defined utility function. Afterward,
we formally present our proposed problem.

2.1 Views & Data Visualization
To begin, we start by describing a view (i.e., histogram or bar chart)
in the context of structural databases. A view vi essentially repre-
sents an SQL query with a group-by clause over a database D. Under
the typical multi-dimensional data models, data can be modeled as
a set of measure attributes M = {m1,m2,m3, ...} and a set of di-
mension attributes A = {a1,a2,a3, ...}. The measure attributes (e.g.,
number of items sold) is the set of attributes that contain measurable
value and can be aggregated. The dimensional attributes (e.g., brand,
year, color, size) is the set of attributes on which measure attributes
are viewed. To formulate an SQL query with a group-by clause, we
need to have some a set of aggregation functions F = { f1, f2, f3, ...}.
Thus, we can represent each view vi as a triple (a,m, f ), such that
one dimension attribute a is applied to one aggregation function f
on the corresponding measure attributem. Consequently, the View
Space (VS), i.e., the total number of possible views is:

VS = 2 × |A| × |M | × |F | (1)

Clearly, VS can be large, especially with high-dimensional data.
In order to recommend the set of k most interesting views from a
large number of views, utility scores are required to rank all the
views. To compute such utility scores, existing literatures have pro-
posed a large number of utility functions, some commonly used ones
includes deviation [27], accuracy [5], usability [5] and p-value [26].
Furthermore, these utility functions also contain their own param-
eters, and any of these functions can further be combined linearly
with others to form composited utility functions, thus leading to an
enormous search space for the utility functions.

We use the family of deviation-based utility functions as an ex-
ample to further explain the potential search space of the utility
function and illustrate how the interestingness of a view may be
measured. For clarity, we call each original view a target view vTi ,
which is represented as a triple (a,m, f ) applied to a subset of the
data DQ that is produced by a given user query Q . In order to define
the deviation, we create a helper view called the reference view vRi
for each target view. The reference view visualizes the results of
grouping the data in the whole database D with the same set of triple

Figure 2: A target view and its corresponding reference view.

(a,m, f ) used by the target view. An example of a target view with
its reference view is illustrated in Figure 2.

Deviation measures the difference between the target view and
the reference view with an underlying assumption that the greater the
distance between the target view and the reference view, the higher
the utility is. In the case of histograms or bar charts, measuring the
distance between two views vi and vj essentially equals measuring
the distance between two normalized probability distributions P (vi )
and P (vj ). Formally, the utility score u (vi ) of a view vi computed
from deviation can be defined as:

u (vi ) = DT (P (vTi ), P (v
R
i )) (2)

where DT is the distance function that measures the distance between
two distributions (e.g., Euclidean, Earth Movers Distance).

Consequently, the typical view recommendation problem can be
defined as follows:

Definition 1. (View Recommendation Problem) Given a database D,
a user-specified query Q , a set of results R produced by Q , a utility
function u (), and the size of the preferred view recommendations K .
Find the top-k views v1, v2, ..., vk constructed from R that have the
highest utilities according to u () among all possible views.

2.2 Problem Settings
The above definition of a typical view recommendation problem
assumes that the utility function is given [19, 21, 28, 29]. In this
section, we will formalize our problem of interactive view recom-
mendation in which the composition of the utility function is not
given but is discovered.

Definition 2. (View Utility Function Selection Problem) Consider a
d-dimensional database D. Further, consider a user-specified query
Q , a set of results R produced byQ , a set of n possible utility function
U = {u1,u2, ...,un }, and the size of the preferred view recommen-
dations K . Find the utility function up (), which produces top-K
views V p = {v

p
1 ,v

p
2 , ...,v

p
k }, constructed from R based on user’s

feedback, such that up () can be any arbitrary combination of the
utility functions in U and most accurately captures the user’s ideal
utility function u∗ ().
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Clearly, view recommendation with dynamic view utility function
selection, is a more challenging problem compared to traditional
view recommendation, given that it has a much higher search space
complexity, because it combines the traditional View Space (Eq. 1)
with the search space of the components of the utility functions.

UtilityVS = VS × |u1 () | × · · · × |un () | (3)

where ui () is a utility function, i = 1, ..,n.
That is, in the context of our problem, we are expanding the

representation of a view vi from a triple (a,m, f ) to be a tuple
(a,m, f ,u1 (), ...,un ()), and central to our solution is discovering the
ideal utility function u∗ (), interactively through user feedback:

u∗ () = β1u1 () + · · · + βnun () (4)

where βi is the weights assigned to the corresponding possible utility
function ui , i = 1, ...,n. It can be seen from this equation that u∗ ()
can be any linear combination of the individual utility functions.
For instance, u∗ () can be mapped to a single utility function ui , in
this case βi = 1 and all other β = 0; or u∗ () can be a combination
of multiple utility functions, where a set of corresponding β of the
utility functions in u∗ () sum to 1 and the remaining β are set to 0.

Since our objective is to predict the user’s most preferred utility
function u∗ () with high precision, we can measure precision by the
distance between the top-K viewsV p , recommended by our solution
using the predicted utility function up (), and those top-K views V ∗

produced by the ideal utility function u∗ (). Particularly, a utility
function up (), which selects top-k views closer to V ∗, is considered
to be more preferred than a utility function up

′

(), which selects top-k
views farther away from V ∗. More details on the evaluation will be
provided later, in Section 4.

Definition 3. (Interactive View Recommendation Problem) Find
the solution of the View Utility Function Selection problem such
as the computational delay between each subsequent interactions
(feedback) with the user is within a time constraint tl .

In each interaction between the system and the user, the user is
presented with a set of M views and expected to provide feedback
on the interestingness of each view. The feedback should reflect
the user’s belief with respect to the interestingness of each view,
which would be a number ranging from 0-1, with 0 being the less
interesting and 1 being the most interesting. Utilizing the feedback
the system would provide better recommendations of views in the
subsequent iterations. Furthermore, to enable fluent user interaction,
the response time between each subsequent iteration must be within
the time constraint tl , which is typically below one second.

3 THE VIEWSEEKER
In this section, we discuss the details of our proposed ViewSeeker, a
novel view recommendation tool, which interactively finds the set
of views that align best with the user’s interest.

As shown in Algorithm 1, the ViewSeeker takes a dataset DR to
use as reference and a subset of the reference data DQ as inputs.
DQ can be specified by any data specification method such as an
SQL/NoSQL query over DR . The output of ViewSeeker is a view
utility estimator trained with user’s feedback that predicts the utility
of any given view generated from DR based on user preference.

Algorithm 1 The ViewSeeker
Require: The raw data set DR and a subset DQ specified by a query
Ensure: The view utility estimator V E

1: Unlabeled view set U ← дenerateV iews (DQ , DR )
2: Labeled view set L ← obtain initial set of view labels
3: V E ← initialize view utility estimator V E using L
4: U E ← initialize uncertainty estimator U E using L
5: loop
6: Choose one x from U using U E
7: Solicit user’s label on x
8: L ← L ∪ {x }
9: U ← U − {x }

10: V E ← refine V E using L
11: U E ← refine U E using L
12: T ← recommend top views using V E
13: if the user is satisfied with T or the user wants to stop then
14: Break
15: end if
16: end loop
17: Return the most recent V E

ViewSeeker operates in two phases: an Off-line Initialization, and
Interactive View Recommendation.

3.1 Off-line Initialization
In the first phase, ViewSeeker generates all possible views in an
offline pre-processing fashion to facilitate the subsequent execution.
This phase proceeds in two stages. During the first, for each view vi ,
ViewSeeker generates two corresponding views: the reference view
vRi and the target view vTi . In particular, vRi shows the aggregate
values from DR and vTi shows the corresponding aggregate values
from DQ . Each view is generated by aggregating the data from a
specific dataset along a dimension attribute A, using an aggregation
function F on a measure attribute M , as discussed above.

To facilitate the computation, ViewSeeker represents each target
and reference view as probability distributions, which are stored in-
ternally as vectors. Consequently, for each view vi , two probability
distributions, P (vTi ) and P (vRi ), are obtained for its target view vTi
and reference view vRi , respectively. The conversion from views to
probability distributions can be achieved simply through normaliza-
tions. As illustrated below, in Equation 5, we normalize each view
vi by individually dividing the aggregate value of each bin in vi by
the sum of the aggregated values of all bins in vi , such that the sum
of aggregated values of all bins in vi would become 1.

P (vi ) = ⟨
д1
G
,
д2
G
, ...,

дb
G
⟩ (5)

where P (vi ) is the probability distribution after normalization; дi are
individual values in each bin; G =

∑b
i=1 дi is the sum of the values

in all bins; and b is the number of bins in the dimension attribute A.
In the second stage, ViewSeeker would produce an internal rep-

resentation for each view, which is needed for the training of the
view utility estimator. As mentioned above, a variety of different
utility functions have been previously proposed. To find the most
appropriate one that matches the user’s intention, ViewSeeker com-
bines each possible utility function into distinct features of views.
Specifically, we noticed that each previously proposed utility func-
tion is essentially a combination of one or more “utility components”
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(e.g., deviations, usability, accuracy). Thus, we incorporate these
components as additional features of the views denoted as utility
features. The value of a utility feature of a view vi is the result of the
corresponding “utility component” (e.g., deviation) computed on vi .

For illustration purposes, in our current tool, we have imple-
mented eight utility features for each view. The first five utility
features are the deviation between target view and reference view
with different distance measures: Kullback-Leibler divergence (KL-
divergence), Earth Mover Distance (EMD), L1 distance, L2 distance
and the maximum deviation in any individual bin. The last three util-
ity features represent the usability [5], accuracy [5], and p-value [26].
Usability refers to the quality of the visualization in terms of provid-
ing the analyst with an understandable, uncluttered representation,
which is quantified via the relative bin width metric. Accuracy refers
to the ability of the view to accurately capture the characteristics (i.e.,
distribution) of the analyzed data, which is measured in terms of
Sum Squared Error (SSE). The p-value is a statistical term defined as
“the probability of obtaining a result equal to or more extreme than
what is actually observed, with the given null hypothesis being true”
[13]. In the problem of view recommendation, the null hypothesis
refers to the reference view, and the extremeness of the results refers
to the interestingness of the target views.

It should be noted that, in general, users may customize the util-
ity features, including adding new ones, for personalized analysis.
The current set of utility features mentioned above are selected to
illustrate the effectiveness of ViewSeeker.

3.2 Interactive View Recommendation
In the second phase, ViewSeeker interactively presents views to the
user and then requests user feedback on each presented view—we
denote such feedback as a label. In each iteration, ViewSeeker would
present M example views (default M = 1) selected from all possible
views to the user, and the user is expected to express their interest
with respect to each example view with a numeric label that ranges
between 0.0 - 1.0 with 1.0 being the most interesting—Example
values would be 0.0 (not interesting), 0.7, 0.9, 1.0.

After each iteration, ViewSeeker would use all collected feedback
to train a Linear Regression model as the view utility estimator that
predicts for each view the corresponding score produced by the ideal
utility functionu∗ (). We choose Linear Regression as the view utility
estimator because the task for predicting the utility score of a view
can naturally be seen as a regression task.

It can be easily noticed that the effectiveness of our approach
depends heavily on the example views being presented to the user
for labeling. However, to measure exactly the benefit of each user
label before obtaining it is difficult, especially given the fact that
the delay between each subsequent iteration cannot exceed the time
constraint tl . Fortunately, our problem of finding the most beneficial
views to be labeled aligned with the objective of Active Learning
techniques [22].

Active Learning is an interactive machine learning framework
that achieves accurate classification with minimum human super-
vision. A typical active learning approach would employ a query
strategy to sequentially select which unlabeled example (i.e., object)
in the database should be presented to the user next for labeling. A
query strategy attempts to minimize the labeling costs by selecting
the most informative examples for building the classification model.

Several query strategies that define the "informativeness" of exam-
ples have been proposed in the literatures (e.g., [14, 22–24]). Due
to the interactive nature of ViewSeeker, we choose to use the most
efficient query strategies, named uncertainty sampling [14], as the
way to measure the benefit of labeling one view.

The intuition underlying uncertainty sampling is that patterns
with high uncertainty are hard to classify, and thus if the labels
of those patterns are obtained, they can boost the accuracy of the
classification models. Particularly, in binary classification models
(with class labels 0 and 1), the most uncertain example x is the one
which can be assigned to either class label z (x) with probability 0.5.

Inspired by such idea of uncertainty, also known as least confi-
dence, we adopted the measurement of uncertainty proposed in [14]
for binary classification models:

u (lc ) (x) = 1 − p (ŷ |x) (6)

where u (lc ) (x) is the uncertainty score with a least confidence mea-
surement of x; ŷ means the predicted class label of the unlabeled
x. Accordingly, after measuring the uncertainty of each unlabeled
sample, the unlabeled sample with highest uncertainty is selected:

x∗ = argmaxxu (x) (7)

where u (x) can be any other measurement of informativeness over
the unlabeled sample x.

Since estimating the uncertainty of a given view requires a proba-
bilistic based machine learning model, the view utility estimator (i.e.,
non-probabilistic linear regression model) cannot be used to obtain
the uncertainty score. To overcome this challenge, we employed
a separate Logistic Regression model trained on the same set of
labeled views as the view utility estimator to serve as the uncertainty
estimator, which estimates the uncertainty of each view.

Machine learning models such as the uncertainty estimator must
be trained with both positive (i.e., interesting) and negative (i.e.,
not interesting) views. For this reason, ViewSeeker splits its second
phase into two stages as well, such that the first stage addresses the
“cold start" issue of the system and the second stage quickly refines
the view utility estimator to discover the set of k most interesting
views.

The “cold start" issue is basically the acquisition of the first
positive view. To facilitate this process, ViewSeeker would first
select views ranked highest according to each utility feature (e.g.,
deviation, accuracy, usability, p-value). Each utility feature would
then be considered in a sequential manner, such that in each iteration
the set of M views ranked highest according to the current utility
feature under consideration would be chosen from all possible views
and then presented to the user for their feedback (i.e., labels). In
the case where no positive or negative feedback has been received
after visiting all dimensions, ViewSeeker will then switch to random
sampling for the subsequent interactions with the user.

In the second stage of the second phase, ViewSeeker uses the
uncertainty estimator to choose the most informative views to be
presented to the user for feedback in each iteration. Specifically,
when the output likelihood p (ŷ |x) of the uncertainty estimator of
a view is closest to 50%, this view is considered to be the most
uncertain, and thus should be preferred to views that are less un-
certain. During each iteration, ViewSeeker would sample as many
distinct views as possible within the given time constraint tl and
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Table 1: Testbed Parameters
Total number of records 10 × 105 (DIAB)

10 × 106 (SYN)
Cardinality ratio of records in DQ 0.5 %
Number of dimension attributes (A) 7 (DIAB), 5 (SYN)
Number of distinct values in A variable (DIAB), 3 and 4 (SYN)
Number of measure attributes (M) 8 (DIAB), 5 (SYN)
Number of aggregation functions 5
Number of view utility feature 8
Utility estimator Linear regressor
Number of views presented per iteration 1
Performance measurement Top-k precision
The number of views to recommend (k ) 5, 10, 15, 20, 25, 30
Optimization partial data ratio α 10%
Optimization time limit per iteration 1 second
Optimization performance measurement Top-k precision, Running time

then present M views with the highest uncertainty scores to the user
for feedback. After each iteration, the newly acquired label(s) (i.e.,
feedback) would be merged with all previously obtained labels for
use as the training data for the refinement of both the view utility
estimator and uncertainty estimator.

After each refinement, the system will show the user the set of
top-k views ranked highest according to the utility score produced
by the most recent view utility estimator. Once the user is satisfied
with the set of recommended views, the entire exploration process
terminates, and the most recently trained view utility estimator up ()
is selected as the estimation of u∗ ().

3.3 Optimizations
In this section, we introduce the key optimizations built in ViewSeeker
to speed up the interactive recommendation process while minimiz-
ing the reduction in the effectiveness of the recommendation.

Recall that in the first phase, ViewSeeker converts each basic
utility component into utility features and embeds them into the
vector representation of the views. During this conversion, each
utility feature needs to be calculated for all possible views, which is
time-consuming. As the majority of the views are typically not of the
user’s interest, it is unnecessary to fully compute these view utilities
with the entire database. Instead, we propose an optimization that
aims to compute only the set of utilities for views that are more
likely to be of interest to the user.

Specifically, our optimization works as follows. During the first
phase, we compute the set of utility features for each possible view
only with α percent of the data, where α is a pre-defined ratio, which
can be tuned based on data size, available system resources, and
time constraint tl . In particular, ViewSeeker will uniformly sample
α percent of data from the underlying database to produce a "rough"
utility score for each utility feature of each view.

Later on, during the second phase, ViewSeeker will incrementally
refine the utility score of each view with the entire set of data when-
ever there is spare computing power available between user labeling
prompts while ensuring the time constraint tl is obeyed. In other
words, the main idea is to quickly compute a set of initial "rough"
values for the utility features of each view to enable subsequent in-
teractions and then incrementally compute the accurate utility scores
for each view while leveraging the user interaction time. This allows

Table 2: Simulated Ideal Utility Functions
# Involved utility features and weights
1 1.0 * KL
2 1.0 * EMD
3 1.0 * MAX_DIFF
4 0.5 * EMD + 0.5 * KL
5 0.5 * EMD + 0.5 * L2
6 0.5 * EMD + 0.5 * p-value
7 0.3 * EMD + 0.3 * KL + 0.4 * MAX_DIFF
8 0.3 * EMD + 0.3 * L2 + 0.4 * MAX_DIFF
9 0.3 * EMD + 0.3 * p-value + 0.4 * MAX_DIFF
10 0.3 * EMD + 0.3 * KL + 0.4 * Usability
11 0.3 * EMD + 0.3 * KL + 0.4 * Accuracy

ViewSeeker to hide the necessary computation, and in turn, makes
the delays transparent to the user.

To utilize spare computing power efficiently, it is important to
determine the order of the incremental view computation. To do so,
ViewSeeker uses the current view utility estimator to rank the views,
and the views ranked highly would have higher priority in computing
the accurate utility features. Effectively, these optimizations allow
ViewSeeker to reduce the unnecessary computation by pruning out
the calculations for views that are less promising.

4 EXPERIMENTAL TESTBED
We evaluated the benefit of using ViewSeeker through a simulated
user study, and measured both efficiency and effectiveness. Here we
present the details of our testbed (Table 1).
Setup We built a ViewSeeker platform in Python. Our experiments
were performed on a Core i5 server with 8GB of RAM.
Data Sets Two datasets were used in the experiments: DIAB & SYN.
DIAB is a categorical dataset of diabetic patients [1]. It contains

100 thousand records. We removed the attributes that have a large
amount of missing data or are very sparse. After preprocessing, the
data set had 7 dimension attributes A, and 8 measure attributes M ,
and a total of 280 distinct views were generated.
SYN is a synthetic dataset with 1 million numerical records that

contains 5 dimension attributes, 5 measure attributes, and 2 bin
configurations (i.e., we create views with 3 bins or 4 bins). The
values of the attributes of each record are uniformly distributed. The
total view space for the SYN dataset is 250 distinct views.
Simulated User Study Initially, we generated the view utility fea-
tures in two-step: 1) we created a hypercube in the recording space
to represent DQ , which is a subset of data specified by a query; and
2) we generated view utility features based on the different utility
functions mentioned in Section 3. Afterward, we simulated different
user utility functions u∗ (), each of which is a weighted sum of one
or more individual utility functions. For each presented view vi , we
simulated the user’s belief with respect to the interestingness of a
view through the normalized utility score produced by the u∗ (vi ),
such that u∗ (vi ) = 0.7 indicates the interestingness of view vi is
about 70% of the maximum.
Performance We evaluated the performance of our system in the
aspect of recommendation precision. In particular, we showed the
effectiveness of our proposed approach by measuring the number
of example views needed to reach 100% precision. Here we define
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(a) Single Component u∗() (b) Two Components u∗() (c) Three Components u∗()

Figure 3: Recommendation precision for DIAB dataset with different ideal utility functions u∗().

(a) Single Component u∗() (b) Two Components u∗() (c) Three Components u∗()

Figure 4: Recommendation precision for SYN dataset with different ideal utility functions u∗().

the precision as the size of the intersection between the top-k views
recommended by the ViewSeeker and the top-k views recommended
by the u∗ (). For two sets of top-k views V p and V ∗ produced by
ViewSeeker and u∗ (), respectively, the precision is calculated as:
|V p ∩V ∗ |

k
.

Simulated Ideal Utility Functions We evaluated the effectiveness
and efficiency using 11 diverse ideal utility functions u∗ () that in-
cluded 3 single component utility functions and 8 multi-component,
composite utility functions (Table 2). We chose the components in
multi-component u∗ () carefully such that they represent different
characteristics of the view. For example, EMD focuses on devia-
tions across bins, KL-divergence indicates the sum of deviation in
individual bins, Usability represents the visual quality of a view, etc.

5 EXPERIMENTAL RESULTS
We evaluated both the effectiveness of ViewSeeker and its optimiza-
tions by contacting three experiments.

5.1 Evaluation of Effectiveness
We contacted two experiments to evaluate the effectiveness of the
ViewSeeker. The first measured the user effort, whereas the second
measured the precision of the predicted utility function.

Experiment 1: Figures 3 and 4 illustrate the effectiveness of the
ViewSeeker by showing the number of example views that need
to be labeled in order for the view utility estimator to reach 100%
precision in the top-k recommended views. Here, the x-axis is the k
in top-k (i.e., the number of views on which the precision calculation

is based), and the y-axis is the number of example views presented,
capturing the user effort required for the precision to reach 100%.

Specifically, in Figures 3a and 4a, we evaluated the effectiveness
of ViewSeeker with respect to the ideal utility functions that contain
only a single utility component (i.e., results are averaged over ideal
Utility Functions 1-3 in Table 2). In Figures 3b and 4b, we repeated
the evaluation for composited ideal utility functions that consists of
two utility components (i.e., results are averaged over ideal Utility
Functions 4-6). In Figures 3c and 4c, we repeated the evaluation for
composite ideal utility functions with three utility components (i.e.,
results are averaged over ideal Utility Functions 7-11).

From these results, we can observe that our proposed ViewSeeker
is extremely effective in discovering the set of ideal top-k views:
for k ranging from 5-30, on average only 7-16 labels were required
before the ViewSeeker reached a precision of 100% for both DIAB
and SYN datasets. Clearly, this indicates that only a small amount
of user effort is needed before a satisfactory set of results can be
obtained by the ViewSeeker.

Experiment 2: We compared the top-k recommended views by
ViewSeeker with the top-k recommended views by the baselines in
terms of the maximum achievable recommendation precision. We
use the 8 individual utility features (e.g., KL, EMD, L1, L2, etc.) as
the baselines. Figure 5 shows the result for ideal Utility Function 11
(i.e., u∗ () = 0.3 ∗ EMD + 0.3 ∗ KL + 0.4 ∗ Accuracy) in the DIAB
dataset. We observe that the ViewSeeker achieved a 3X improvement
against the best-performing baseline (i.e., EMD) in recommendation
precision. This indicates that using single fixed utility features will
not be able to capture a complex ideal utility function, which best
captures the user’s interest, such as the one above.
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Figure 5: Precision comparison with individual utility features

5.2 Evaluation of Optimizations
We evaluated the effectiveness of our optimization techniques by
comparing the recommendation precision and runtime between the
optimizations-enabled ViewSeeker and the optimizations-disabled
ViewSeeker (i.e., baseline model).

When comparing the recommendation precision, in order to elim-
inate the non-determinism in selecting the kth view in top-k we
introduced the concept of utility distance (UD), which is defined as:

UD =
( ∑
vi ∈V ∗

u∗ (vi ) −
∑

vi ∈V p
u∗ (vi )

)
/k (8)

where V ∗ are top-k views recommended by the ideal utility function
u∗ (), and V p are top-k views recommended by ViewSeeker.

To explain the top-k non-determinism that motivated UD, note
that views directly after the kth view may have very close, or even
identical, utility as the kth view. In such cases, changing the order
among these close views should not affect the precision too much, if
any. UD has this desired property because its evaluation focuses on
utility distance instead of the exact inclusion of the top-k views.

Figures 6 and 7 show the number of feedback and runtime, respec-
tively, needed for both models to reachUD = 0 for the DIAB dataset.
On average, the model with optimization achieved 43% reduction in
running time while requiring only 19% more user labeling effort.

The experiment result confirmed that our optimization methods
are effective in reducing computing time by pruning out calculat-
ing for views that are less promising. The increase in the required
labeling effort is because the view utility features computed on par-
tial data is only an estimation and may be discrepant from the true
features, which hinders the learning of the ideal utility function.

6 RELATED WORKS
In this section, we review works that are strongly relevant to ours.

View Recommendation techniques automatically generate all
possible views of data, and recommend the top-k interesting views,
according to some utility function (e.g., [5, 10, 16, 18, 19, 21, 27–
29]). A key difference among these works is the proposed utility
functions. Recent work placed addition constraints, e.g., upper bound
on the number of views to be explored and execution time limit when
computing the recommended views [10]. The most close work to
ours is the use of generic priors (i.e., general knowledge of how
people associate views with different datasets and exploration tasks)

to train a general machine learning model that predicts the utility
score of any given view [16]. The generic priors were obtained by
hiring a large number (i.e., 100) of human annotators to annotate
multiple real-world datasets. The key difference between our work
and all prior work is that all previous works use predefined view
utility functions and do not discover the utility function that best
matches an individual user’s intention and exploration task.

Interactive Visualization Tools have been studied extensively
for the past few years [3, 7, 9, 11, 12, 15, 17, 25]. Unlike visual-
ization recommendation tools such as ViewSeeker that recommend
visualization automatically by searching through the entire views
spaces, traditional interactive visualization tools require the user to
manually specify the views to be generated. Recently, a few interac-
tive visualization tools have attempted to automate part of the data
analysis and visualization process. For instance, Profiler automati-
cally helps analysts detect anomalies in the data [11]. But, unlike our
approach, Profiler is not capable of providing general recommenda-
tions for any group-by queries. Another recent example is VizDeck
[12], which generates all possible 2D views for a given dataset and
allows the user to manually control (e.g., reordering, pinning) these
views through a dashboard, rather than using a utility function. The
work [3] is the closest to our work in the sense that it also uses user
feedback to steer the view exploration. However, the user feedback
is only used to train a classifier, which is not capable to estimate the
ideal utility function and get the top-k views.

Data Exploration techniques that aim to efficiently extract knowl-
edge from data [20] are complementary to our work. In particular,
example-driven data exploration approaches [4, 8] assume mini-
mum prior knowledge of the data and share the same underlying
approach as ViewSeeker. These works aim to iteratively construct
the exploratory query through user interactions as ViewSeeker itera-
tively discovers the utility function using user feedback. ViewSeeker
is well suited to such situations and can enhance example-driven
data exploration by creating visualizations that illustrate interesting
pattern during the construction of the exploratory queries.

7 CONCLUSION
In this work, we addressed the challenge in visual analytics tools
of recommending the set of views most preferred by the user dur-
ing an exploration task. Our contribution, ViewSeeker, is a novel,
interactive view recommendation tool that offers a solution to the
fundamental challenges of: 1) providing effective results with mini-
mum user effort, 2) enabling efficient and scalable computation, and
3) requiring no special expertise from the users.

The crux of ViewSeeker is the discovery of the utility function,
which is used to select the views that best match the user’s explo-
ration task. ViewSeeker employs an active learning-based predictive
model and effectively learns the user’s preferred views through sim-
ple interactions between the user and the system. To enable fluent
user interactions, we proposed a set of optimization techniques that
significantly improved the runtime efficiency of the ViewSeeker. Our
experimental results, using both synthetic and real-world datasets,
showed that our proposed ViewSeeker outperforms the alternative
baseline approaches by a significant margin.

In the future, we plan to conduct a user study to validate the
recommendation effectiveness of ViewSeeker, and to extend it to
support more visualization types, such as scatter plot, line chart etc.
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(a) UD = 0 for Single Component u∗() (b) UD = 0 for Two Components u∗() (c) UD = 0 for Three Components u∗()

Figure 6: Recommendation Precision with optimization for DIAB dataset with different ideal utility functions u∗().

(a) RT for Single Component u∗() (b) RT for Two Components u∗() (c) RT for Three Components u∗()

Figure 7: System Runtime (RT) with optimization for DIAB dataset with different ideal utility functions u∗().
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