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ABSTRACT
Empowered by geo-locating and sensor-based technologies, pre-
cision agriculture brings a data-intensive paradigm into farming.
In this spirit, we investigate the role of outlier detection and
visualization in decision-making for precision agriculture. We
discuss two analysis tasks for visually monitoring fields that ex-
hibit problematic crop growth compared to their neighbors, and
for visualizing problematic areas inside a field. As a proof of
concept, we analyze satellite imagery to case-study our tasks in
the context of the Future Cropping project.

1 INTRODUCTION
The proliferation of the Global Positioning System (GPS) and of
sensor-based technologies have given rise to a different paradigm
of agriculture. Precision agriculture as this paradigm is known,
strikes to improve economic returns and reduce the environmen-
tal impact [4, 7–9]. Harvesters mounted with sensors and GPS
receivers allow for instant collection of position-aware crop data.
Contemporary Geographic Information Systems (GIS) are able to
store and analyze collected crop data, in many cases combined
with other types of information from multiple sources such as
satellites and meteorological stations. Decision-making plays a
key role in the effort of exploiting this abundance of data. Tradi-
tionally, decision-making heavily relies on farmers’ experience
and empirical knowledge. In contrast, in precision agriculture,
information is quantified and decision-making is supported by a
systematic and data-intensive analytical procedure that can be
visualized for novel insights and improved farming decisions.

Anomaly or outlier detection has been widely studied in data
mining to support decision-making; the goal is to identify objects
that significantly deviate from the expected pattern in a dataset
[1]. There exist essentially three types of ourliers. Point outliers
generally studied in multidimensional data management, are ob-
jects inconsistent with the rest of the dataset. Detection of this
type mainly involves statistical and distribution-based methods.
Contextual outliers are defined based on a set of contextual and
behavioral attributes; these objects exhibit significantly different
values on their behavioral attributes compared to dataset objects
with similar values on the contextual attributes. The key for con-
textual outlier detection is to identify those objects with similar
contextual attributes also known as the neighborhood of an object.
Spatial outliers [12] are a type of contextual outliers where the
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context is captured by object geometries and their distance in
space. Finally, a collective outlier is a group of clustered objects
with low variance among them, which are together inconsistent
to the rest of the dataset.

In precision agriculture, outlier detection is mainly studied for
pre-processing and cleaning of the collected data [13]. The focus
has been on detecting errors introduced by measurement failures,
e.g., related to the accuracy and the calibration of sensor and po-
sitioning devices, or even to signal loss. In contrast, anomalies
directly related to poor decision-making, e.g., crop establishment,
fertilization or herbicide application, and to natural causes in-
cluding climate, topography, and soil-landscape features, have
received less attention.

In an attempt to fill this gap, we propose the tasks of inter-field
(i.e., between fields) and intra-field (i.e., within a field) analy-
sis. In the former, our goal is to identify fields, which exhibit a
problematic behavior, e.g., unexpectedly low collected crop mass,
compared to their neighboring fields. 1 The key challenges for
this task are twofold; (i) how to define field neighborhood and (ii)
how to quantify the importance/influence of each neighbor. Dif-
ferent from traditional spatial outlier detection that relies solely
on arbitrary polygon distances, we consider domain-specific data
properties such as soil/crop type and the variation of crop-growth.
On the other hand, intra-field analysis is triggered in an effort to
interpret the results of inter-field analysis. The goal is to identify
and visualize the areas inside a particular problematic field that
significantly deviate from the average or normal behavior of the
field. Practically, these are the areas where the farmer may need
to take action [4, 7], e.g., by increasing fertilization, changing
crop type or building drains. Overall, the proposed tasks are
of great value not only to farmers but also to contractors and
consultants of agriculture.

Recent studies [5, 6] showed how precision agriculture may
benefit from processing satallite imagery. Imagery datasets have
become readily available by open access to NASA Landsat in
2008 [14] and to ESA Sentinel satellites. In line with this trend,
we conduct a case study for our inter- and intra-fields tasks in
the context of the Future Cropping project. Our study employs
satellite imagery in two manners. First, we calculate a vegetation
index to monitor the crop growth on the fields. Second, our intra-
field task properly partitions a field to take full advantage of the
detail and the resolution of the available imagery data.

1Note that besides problematic, we can also identify fields that outperform their
neighbors; in other words, we are able to detect both negative and positive outliers.



Table 1: Notation

symbol description
α Attribute of interest
f .α Value for the attribute of interest on field f
f .α̂ Predicted value for the attribute of interest on field f
Nf Neighborhood of field f
wi Weight of neighbor field ni
Pf Partitioning of field f
p .α Value for the attribute of interest on partition p

dist (f1, f2) Spatial distance between fields f1 and f2
MAX _DIST Maximum allowed distance between two fields

2 ANALYSIS TASKS
Besides spatial geometries (e.g., polygons and/or point data), our
outlier detection methodology uses for every field (or parts of
it) a set of numerical attributes that store measurements such as
the collected crop mass, and a set of categorical attributes which
store properties of the field such as its soil and crop type. Our
analysis focuses on a particular numerical attribute of interest
denoted by α , which monitors the crop growth on a field; Table 1
summarizes the notation used throughout the rest of this paper.

2.1 Inter-field Analysis
We model inter-field analysis as a spatial outlier detection task
[12] with attribute of interest α as the behavioral attribute of
our analysis while the geometry (polygon), the categorical at-
tributes and the rest of the numerical attributes are the contextual
attributes used to define the neighborhood around each field.

Conceptually, the process of inter-field analysis involves three
steps. First, the neighborhood of each field f is defined on the
basis of the contextual attributes. Under this, selecting the proper
distance measure dist between two fields is critical; dist takes
into account the spatial proximity of the fields and potentially
the values of other contextual attributes, e.g., the soil type. Let
Nf be the set of neighbors for a field f . The second step is to
predict the value for the attribute of interest α on f by aggregat-
ing the values on f ’s neighbor fields in Nf ; typically, the mean
value is used for this purpose. 2 In our study, we calculate f .α̂ as
the weighted mean value, which allows us to weight the impor-
tance and the contribution of each neighbor, considering both
the spatial distance to field f and other factors as discussed in
Section 3.2. Formally, we have:

f .α̂ =
Σ
|Nf |

i=1 {wi · ni .α }

Σ
|Nf |

i=1 wi

(1)

wherewi denotes the weight of neighbor field ni . The third step
is to report the outlying fields. The value of | f .α̂ − f .α | quantifies
the deviation of α ’s predicted value from the actual value on a
field f . In practice, there exist two approaches for determining
outliers. We can either rank the fields in decreasing order of their
| f .α̂− f .α | deviation and output the top k , or return all fields with
an extreme deviation value. Probabilistic and statistical models
can be used to determine such extreme deviation values [1].

The above procedure allows us to identify fields whose pre-
dicted value on attribute of interest α significantly deviates from
the actual value. In fact, we distinguish between two types of out-
liers based on the sign of the f .α̂− f .α deviation. If f .α̂− f .α > 0

2As an alternative, median can be used to smooth the impact of extreme α values.

then field f behaves worse than expected based on its neighbor-
hood; we call f a negative outlier in this case. Otherwise, f is
a positive outlier that exceeds our expectations. Both cases are
important for decision-making in precision agriculture as nega-
tive outliers may require immediate action by the farmers and
positive outliers may provide important feedback to improve
crop growth in other fields.

2.2 Intra-field Analysis
Conceptually, the process of intra-field analysis involves three
steps. First, the extent of each field is split into a number of
partitions; each partition represents an area of interest. In practice,
such a partitioning may for instance be provided by the farmer
or generated by a partitioning process. For instance, in our case
study of Section 3, we used the image resolution to partition our
satellite data. Similar to the entire field, we assume that each
partition is associated with the same attribute of interest α . 3
We next define |pi .α − f .α | as the deviation of α ’s value on a
particular partition pi , from the value on the entire field f . Last,
we can employ the two approaches discussed in the previous
subsection for the inter-field analysis to report the outlying areas
of a field, i.e., either by ranking the partitions by their |pi .α − f .α |
deviation value, or by reporting the partitions with an extreme
deviation value.

3 CASE-STUDY
We case-studied our outlier detection tasks for the inter- and the
intra-field analysis in the context of the Future Cropping project,
which collects and analyzes agricultural data in Denmark. 4 Our
study involves two types of data; (i) the geometries (i.e., the
polygons) of all 590,490 fields in Denmark and their crop type,
and (ii) a 6.3GB vegetation map derived from ESA Sentinel-2
satellite imagery captured on May 8, 2016. 5 We conducted our
case-study on QGIS. 6

3.1 Processing Satellite Imagery
In the past, a number of vegetation indices [2, 3, 10, 11] has been
proposed to monitor the crop growth on fields, primarily by
estimating properties of vegetation such as the concentration
of biomass or chlorophyll. Similar to previous studies [5, 6], we
consider the Normalized Difference Vegetation Index (NDV I ) for
our case-study. ESA Sentinel-2 satellites provide 13-band multi-
spectral images with a spatial resolution down to 10m × 10m.
NDV I values can be calculated combining two particular spectral
bands:

NDV I =
NIR −V IR

NIR +V IR
(2)

where NIR and V IR are the near-infrared and the visible red
bands, respectively.

For our analysis, we use NDV I as the attribute of interest α .
Specifically, we first calculate the index value on every pixel of
the satellite images using Formula 2. Then, for each field f , we
compute mean µf and standard devation σf of its NDV I values
based on the overlapping pixels, and set f .α = µf . Figure 1b

3Essentially, the value of attribute α on both the entire field and a partition is
computed by aggregation. For instance, harvesters store position-aware crop data for
the collected mass on specific geographic locations inside a field; we can aggregate
these values to compute the overall collectedmass for the entire field or for particular
areas.
4https://futurecropping.dk
5https://kortdata.fvm.dk/download/Index?page=Markblokke_Marker,
https://scihub.copernicus.eu
6https://qgis.org



(a) (b)

Figure 1: Inter-field analysis on winter rapeseed crop fields: (a) distribution of f .α̂ − f .α values withmean value µd = 0.0013
and standard deviation σd = 0.1645, (b) example of a negative outlier (in red) with f .α = 0.176 and f .α̂ = 0.671.

Table 2: Top-10 most important neighbors of f in Fig-
ure 1b.

field α (NDV I ) dist(f ,ni ) (in meters) σi wi

f 0.176 – – –
n1 0.183 14 0.071 0.928
n2 0.764 264 0.054 0.921
n3 0.762 311 0.056 0.914
n4 0.777 452 0.056 0.901
n5 0.724 435 0.059 0.900
n6 0.604 75 0.098 0.895
n7 0.629 5 0.110 0.889
n8 0.753 1,277 0.067 0.814
n9 0.787 1,644 0.028 0.813
n10 0.347 408 0.169 0.797

shows a snapshot of our NDV I map for the fields in Denmark;
the greener a field (or parts of it) appears, the higher its f .α (i.e.,
NDV I ) value is.

3.2 Inter-field Analysis
We now present our case-study for the inter-field analysis and
exemplify its results. We apply Formula 1 on each field f in
Denmark to predict its NDV I value, i.e., f .α̂ . For performance,
previous works in outlier detection typically define neighbor-
hood Nf as the k closest fields. However, these neighbors (or
part of them) could be in fact very distant to field f , which will
potentially affect the quality of the results. Instead, we narrow
the extent of a neighborhood; hence, Nf contains all fields of the
same crop type as f within a radius of 10km, as suggested by our
agricultural project partners. Formally, we define the distance of
f to a neighbor field ni as:

dist(f ,ni ) =

{
ED(f ,ni ) if fields f ,ni have same crop type
MAX_DIST otherwise

(3)
where ED(f ,ni ) is the Euclidean distance of fields f , ni polygons
andMAX_DIST is the maximum 10km distance.

To weight the importance of a neighbor ni ∈ Nf , we take into
account two factors; (1) its spatial distance dist(f ,ni ) to f and
(2) the variation of crop growth inside the field. 7 Essentially, we
prioritize neighbors located close to field f , with crops evenly
7The importance of low-variation fields has been previously studied e.g., in [5].

grown on their entire extent. These are fields with a similarNDV I
value (visually, with a similar shade of green) on the majority of
their overlapping pixels; hence, low variance in crop growth for
neighbor ni can be captured by a low σi standard deviation of
the NDV I values. Formally, weightwi is defined as:

wi =

[
1 −

dist(f ,ni )

MAX_DIST

]
· [1 − σi ] (4)

With Formulas 1, 3 and 4, we compute the f .α̂ − f .α deviation
of the predicted value from the actual f .α NDV I value, on every
field f . As discussed in Section 2.1, one option for our inter-field
analysis, would be to rank all fields by their deviation and rec-
ommend the ones with the k highest values as potential negative
outliers and those with the k lowest deviation values as positive
outliers. However, such recommendations have little practical
merit for the end-user; for instance, even the highest f .α̂ − f .α
value may in fact be too low to mark field f as problematic. In-
stead, we focus on identifying the fields that exhibit the most
extreme deviation values.

Figure 1a reports on the distribution of the f .α̂− f .α values for
a particular type of crop called winter rapeseed. The mean value
and the standard deviation for this distribution are µd = 0.0013
and σd = 0.1645, respectively. We observe that over 99.5% of
the fields have a f .α̂ − f .α value inside [µd−3·σd , µd+3·σd ]. A
similar conclusion was drawn for the rest of the crop types in
our case-study. Based on this observation, we follow a typical
statistical approach for identifying extreme f .α̂ − f .α values [12],
namely those that deviate from mean µd at least three times the
standard deviation σd , i.e.,

|f .α̂−f .α−µd |
σd

≥ 3 holds. 8 The nature
of the outlier (positive or negative) is determined by the sign of
f .α̂ − f .α .

Figure 1b visually exemplifies our inter-field analysis for the
winter rapeseed crop; the negative outlier field f is highlighted by
a red border while a subset of its neighborhood is given in black.
Further, Table 2 lists the characteristics of the 10 most important
neighbors of f , sorted by their weightwi (Formula 4); notice how
the closest field to f , n7, is not its most important neighbor as
n7 exhibits a higher variation of crop growth compared to fields
n1 to n6. For field f , we have its actual NDV I value f .α = 0.176
while using Formula 1, we predict that f .α̂ = 0.671. The extreme
deviation of the predicted from the actualNDV I value is captured
in Figure 1b where the majority of the shown neighbors are

8Note that µd , σd are statistics computed for the particular crop type of field f .



Figure 2: Intra-field analysis on a winter rapeseed crop
field: (a) pixel grid partitioning and (b), (c) outlying par-
titions.

significantly greener than field f , indicating that f ’s actualNDV I
value should have been higher than 0.176.

3.3 Intra-field Analysis
We briefly discuss our case-study for the intra-field analysis. As
mentioned in Section 2.2, the first step is to partition a field. For
this purpose, we use the pixel grid of the satellite imagery in order
to best exploit the 10m × 10m resolution. Figure 2a illustrates
the partitioning of a winter rapeseed crop field; each partition
(grid cell) pi corresponds to a pixel of the NDV I map and its
pi .α is set to the NDV I value of that pixel. For every partition
pi , we then compute the |pi .α − f .α | deviation of its NDV I from
the value of the entire field. Last, we employ the approach of
Section 3.2 to find outliers. Figure 2b visualizes the results of
our analysis; the |pi .α − f .α | value of the partitions drawn in
the figure deviates from mean µd , at least 3 times the standard

deviation σd . Observe how our analysis is able to report the
partitions that cover the light colored problematic areas of the
field. Additional problematic areas can be identified by reporting
partitions with a |pi .α − f .α | value deviating 2 times, as shown
in Figure 2c.

4 CONCLUSIONS
We studied the role of outlier detection in decision-making for
precision agriculture and how such tasks can benefit from pro-
cessing satellite imagery. For this purpose, we discussed the tasks
of inter- and intra-field analysis, addressing the special challenges
raised by the agricultural domain. As a proof of concept, we con-
ducted a case-study supported by ESA satellite images within
the Future Cropping project.

In the future, we plan to extend our study in multiple direc-
tions; (i) incorporate more types of data, e.g., collected from har-
vesters or rain distribution data, (ii) employ visualization tools to
collect and evaluate farmers’ feedback, (iii) enhance intra-field
analysis for recommending explicit actions to farmers, (iv) fur-
ther analyze satellite imagery to monitor the outlying fields or
problematic areas through the course of time and (v) investigate
techniques from Machine Learning for predictive analytics.
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