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ABSTRACT
In this vision paper we present a direction for visualizing the
implicit schema of a loosely-defined RDF graph in different zoom
levels. RDF datasets do not necessarily adhere to strict structural
guidelines, even though a schema in the traditional sense (e.g.,
an underlying ontology or simple rdf:type declarations) usually
exists. Instead, there can be many different ways that instances
of a particular type can appear in the same dataset. For example,
two instances of the same type can have different properties, thus
making their type equality semantically ambiguous. Visualizing
this schema can lead to either non-intuitive depictions of the
implicit types, or over-generalized visualizations that lack infor-
mative detail. In this paper, we propose our vision of an approach
that tackles this issue by embedding the implicit schema into a
vector space that captures generalizations and specializations of
the implied types and relationships in an RDF graph.

1 INTRODUCTION
The Linked Open Data cloud offers increasingly large amounts of
RDF1 datasets, covering a wide range of domains and topics that
include life sciences, demographics, government data and general
encyclopedic knowledge. In contrast with the more traditional
tabular data management paradigm that usually enforces struc-
tural restrictions, RDF represents relationships between concepts
in the form of a graph that is often loosely defined; that is, arbi-
trarily diverse types of concepts and relationships can co-exist in
the same RDF dataset without loss of consistency. Unfortunately,
this heterogeneity in the schema, while diverse and dynamic,
can lead to problems not only in storage, indexing and querying,
but to schema comprehensibility and user-friendliness as well,
as users cannot intuitively explore the dataset schema.

As an example, consider Figure 1(a), where two instances of
rdf:type foaf:Person are depicted. While Alice and Claire are both
instances of the foaf:Person class, they do not share the same
properties, except for the rather generic rdf:type property. A
question worth asking is: how do we visualize the foaf:Person
class? In a relational context, this would amount to two different
table definitions for the implied types of Alice and Claire, even
though in the RDF dataset they are declared to belong in the
same class. If we were to visualize just one class (i.e., foaf:Person),
this would hide the fact that the structure of the instances of this
class is vastly different2. Thus, it may be more intuitive to have
two classes in the visualization, which would better capture the
sets of relationships, or properties, coming out of each implied
type.

Similarly, consider the case depicted in Figure 1(b). In this
case, Alice and Claire again belong in the same class, but this

1https://www.w3.org/RDF/
2In this example, it appears that Alice is represented by her professional attributes,
while Claire is not.
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(a) Alice and Claire have entirely different property sets

(b) Alice and Claire have overlapping property sets

Figure 1: Instances of the same class with different property sets

time there is an overlap in their properties. More specifically,
Alice and Claire both share the worksFor property, but Alice is
also described as a supervisor of Beth. This can be interpreted
as follows: the two instances belong in the same class at some
height of the class’s hierarchy, before they branch out to different
specializations. For instance, Alice appears to be a supervisor
or a manager, while Claire appears to be a more generic type of
employee. Therefore, asking how to visualize the foaf:Person class
is again worthwhile. Visualizing the schema with just one class is
misleading, as there may be more hidden specializations. While
this latter point can be addressed with merging/splitting the class
node in different zoom levels, the examples aim to show that a
somewhat trivial RDF dataset can hide more detailed schema
information that what is explicitly declared.

Recent works in the state of the art in RDF data manage-
ment have shown that exploitation of an implicit schema of the
data can be beneficial in several different directions, such as
storage, querying and schema exploration [7, 9, 11, 13]. These
works heavily rely on a well-known structural RDF abstrac-
tion, namely the notion of characteristic sets[12], i.e., the sets
of unique properties that extend from all subject nodes. For ex-
ample, in 1(a), the characteristic sets (CSs) of Alice and Claire
are c1 = {rd f : type,worksFor , supervises} and c2 = {rd f :
type,дraduatedFrom, livesIn} respectively, while in 1(b), their
CSs are c1 = {rd f : type,worksFor , supervises} and c2 = {rd f :
type,worksFor } respectively.

In this sense, CSs can be thought of as implied types of nodes.
However, they do not necessarily capture compact and compre-
hensible structural information. For example, some commonly



used and heavily cited RDF datasets include CSs in the order of
103 − 104 3. Thus, while using CSs to visualize the RDF schema of
such a dataset is more informative than just showing the struc-
tural definitions that explicitly exist in the dataset (e.g., all objects
of rdf:type), such a visualization would neither be intuitive, nor
comprehensible, as it would lead to huge graphs of implied types
and relationships between them.

In order to both use CSs and CS relationships for schema
summarization and consequent visualization, and address the
issue of large amounts of implied types, in this paper we envision
an approach that embeds CSs in a continuous vector space and
uses the distances between vectors in order to provide ameans for
merging similar CSs (when zooming out) and splitting merged
CSs to their different specializations (when zooming in). Our
approach aims to take into account latent semantic similarities
between implied types (CSs). For this reason, we propose to use
a continuous vector space model where CSs can be embedded.

There are two main directions that can be followed here; first,
we can use a pretrainedmodel of word vectors, such as the Google
News Corpus model, which contains a vocabulary of 3 million
unique words, trained on an input corpus of 100 billion words.
Second, we can build a vector space directly by embedding CSs,
by following a graph embedding approach as is done in recent
works[2, 15] and more recently in [16].

This paper is structured as follows. Section 2 describes the
main concepts of the approach, section 3 describes different em-
bedding methods and section 4 concludes the vision paper.

2 APPROACH OVERVIEW
In this work, we consider characteristic sets CSs as nodes in a
graph, with an edge between two CSs denoting that there is a
property that connects two subjects that belong in two different
CSs. Formally, given an input RDF datasetD, a CS graphGD is an
ordered pair GD = (VD , ED ), where VD is the set of all CSs in D,
and ED ⊆ VD ×VD is the set of all properties that connect pairs of
CSs. The key idea of our approach is to extract the CSs of an RDF
dataset, derive an implied schema and visualize the resulting im-
plied schema. In this sense, we consider a CS to define an implied
type, i.e., a non-explicitly defined class of instances. However, as
was discussed in the introduction, this entails several problems.
It does not suffice to extract all CSs and visualize them in a graph
of CS nodes and CS-to-CS edges, because their heterogeneity in
real-world datasets makes the approach prohibitive. It would not,
for example, make sense to show 150 different CSs that all essen-
tially describe the same class, but with slight variations in their
property sets, especially when exploring the schema visually and
at a distance (e.g., in high zoom levels); instead, it would be more
meaningful to specialize/generalize the multiple CSs in different
zoom levels. Consider the example of Figure 1(a) and 1(b). The
CSs and how they are merged in different zoom levels can be
seen in Figure 2.

Of course, it would not be reasonable to merge all CSs in
one node at the top zoom level, because many of them describe
different types, either implicit or explicit. For this reason, we need
to apply a similarity metric that can be parameterized with the
zoom level. Based on this metric, we can merge together only the
CSs that are close to each other at each level of visualization. This
procedure can be interpreted as a form of hierarchical clustering.

While graph visualization, hierarchical visualization and vi-
sual LOD exploration have been thoroughly studied recently

3DBPedia has more than 10,000 CSs, while Geonames and WordNet have ~1000

Figure 2: The CSs of the example. Dashed lines denote merging
of similar CSs (i.e., generalizing). The zoom level is denoted with
Z on the left.

[1, 3, 4, 14], there exist several problems when trying to merge
different CSs. These have been discussed in recent works [8, 13].
These works rely on exploiting the property sets that define CSs,
and merging closely related sets based on set overlaps and set
hierarchies; that is, they only consider CS similarity when two
CSs actually share common properties, or are subsets/supersets
of one-another. However, this prevents CSs that do not share
common properties to be associated, as these works mainly focus
on exploiting CSs and their merging in order to derive a rela-
tional representation of RDF datasets in the hopes of improving
storage and querying. In this work, we are not interested in such
data management aspects and for this reason, we can loosen our
definition of CS similarity and instead look for similar CSs based
on their distances in a different space.

In this direction, we propose to use embeddings in order to
position the CSs in a continuous space, and then rely on their
geometric distances in order to attribute similarity or difference.
The advantage of the use of the embedded space is that it can
provide latent semantic similarity characteristics to the CSs and
thus associate even seemingly unrelated CSs. For example, con-
sider two CSs, c1 = {worksFor , specializesIn,hasSalary} and
c2 = {hasPro f ession,hasIncome, isEmployedAt} that share no
common properties. As can be seen though, there is a latent se-
mantic association between the two CSs, as we can assume that
they both describe people that are professionals. Thus, it would
make sense to merge c1 and c2 together when visually exploring
the schema at a distance. This type of similarity is easily cap-
tured with the help of embeddings [10]. In the following section,
we describe two methods for embedding CSs, and discuss their
tradeoffs.

3 EMBEDDING CHARACTERISTIC SETS
INTO A CONTINUOUS VECTOR SPACE

The two main directions that will be pursued are (i) mapping CS
nodes to an existing vector space, and (ii) embedding CS nodes
directly in their own respective vector space. In what follows,
these two cases will be discussed.

3.1 Mapping CSs to Word Embeddings
An embedding of an item (a word, a concept, a graph node etc.)
in a continuous vector space is essentially the positioning of the
item in a multidimensional space of arbitrary dimensions, where
its locality is affected by the similarity of the neighboring items.
In other words, the item is assigned a vector that represents its



position in the space, so that all surrounding items that are also
represented by vectors are semantically similar.

There are many different ways to define similarity. One of the
most adapted and promising ways is to define the similarity of
two items based on their context. In the case of text, where each
item is a word or a phrase, the context is defined as the word’s
or phrase’s surrounding words. Thus, two words that commonly
coexist in the same sentences will generally result in neighboring
vectors. The word2vec model [10] takes into account this notion
of context in order to produce vectors, and interestingly enough,
it turns out that these vectors retain latent semantics that can be
interpreted as geometric operations between them. A commonly
cited example in this regard is something of the form v(kinд) −
v(man) +v(woman) = v(queen), which loosely means that if we
replace theman characteristic of kinд withwoman, we will get
its female counterpart, i.e., queen.

In our approach, the key idea is to directly map CSs to vectors
in a pre-trained linguistic vector model that already contains
latent semantics for the whole English language. In order to do
so, we need to follow the following steps:

(1) Assign a set of descriptive words to each CS
(2) Aggregate the vectors of the assigned words to derive a

single vector
(3) Map the CS to the aggregate vector
For step (1), we can use the property set and the assigned

rdf:type classes (if any) of the CS to come up with descriptive
words. For example, for c1 in Figure 1(b), we can use the words
person, works and supervises. Then, for step (2), we first look up
the existing word2vec model to find the vectors for person, works
and supervises. Then, we can find a single vector representation
of the three words by performing an operation such as mean
or sum of their respective vectors. Finally, this aggregate vector
will be the embedding of the CS. We can then define appropriate
distance thresholds to find similar or dissimilar CSs.

3.1.1 Google News Corpus Example. To highlight the advan-
tage of using such an NLP model to associate CSs in contrast
with strictly relying on set operations on the CSs’ property sets,
let us study an example. As a pretrained NLP model, we will use
the vectors created by word2vec for the Google News Corpus.
This model contains vectors for a vocabulary of 3 million English
words in a 300-dimensional continuous vector space, and was
trained over more than 100 billion English words from news
articles. Thus, it provides ready-to-use English language vectors
with general, context-independent associated semantics.

For our example, let us consider an RDF dataset, whose result-
ing CS graph contains the following CSs:

(1) c1 = {worksFor , specializesIn,hasSalary}
(2) c2 = {hasPro f ession,hasIncome, isEmployedAt}
(3) c3 = {worksFor ,name,aдe}
(4) c4 = {hasSubOrдanization, reдisteredAt,hasCEO}

(5) c5 = {hasMinister ,belonдsInGovernment}

By inspecting the CSs, a human analyst can conclude that
c1, c2 and c3 describe people, while c4 and c5 are more related
to organizations (companies and ministries). Let us also assume
that the first three CSs are also associated with the foaf:Person
class in the RDF dataset, i.e., the subject nodes of the RDF graph
that belong in these CSs are of the type foaf:Person, while c4 and
c5 are of types Company and Ministry respectively. In recent
approaches such as [8, 13], c1, c2, c4 and c5 would be completely
unrelated with each other, while c1 and c3 would be deemed

c1 c2 c3 c4 c5
c1 1 0.61 0.42 0.37 0.21
c2 0.61 1 0.47 0.36 0.24
c3 0.42 0.47 1 0.17 0.16
c4 0.37 0.36 0.17 1 0.56
c5 0.21 0.24 0.16 0.56 1

Table 1: Pair-wise cosine similarities of mean vectors for c1 − c5

Figure 3: Visualization of the implied types in different zoom lev-
els. In the lower zoom level, each CS is shown individually. In the
middle zoom level, c1, c2 are grouped together, as are c4, c5. In the
higher zoom level, c1, c2, c3 are all grouped together to represent
the Person type.

similar, because they share one common property (worksFor).
However, to a human analyst, several conclusions can be drawn,
such as that the first three CSs define implicit types that describe
some aspects of human beings, while the latter two describe some
form of legal organizations.

After some preprocessing for step 1 that was described before,
we can derive descriptive words for the five CSs. Let us assume
that these are c1 : {works, specializes, salary, person}, c2 : {profession,
income, employed, person}, c3 : {works, name, age, person}, c4 :
{suborganization, registered, CEO, company} and c5 : {minister,
government, ministry}. Feeding these into the pretrained Google
News word2vec model and computing the mean vector for each
of the five sets, we get the pair-wise similarity matrix shown in
Table 1.

As can be seen, c1 and c2 are more closely related with each
other than with c3, even though they do not share any com-
mon properties. Interestingly, c1 and c2 are more similar than c1
and c3 even though the latter actually share a common property.
Furthermore, c1, c2c3 are closer with each other than with c4, c5,
while c4 and c5 are more similar to each other than with the rest
of the CSs. This intuitive knowledge that can be used to cluster
together similar CSs based on their latent semantics would not
have been captured using traditional methods that rely on prop-
erty set operations. Using this approach, a potential visualization
of this schema in different zoom levels can be seen in Figure 3.

Concluding this example, it should be mentioned that in or-
der to serve more context-dependent data, such as specialized
scientific data, we can define and configure the training corpus
accordingly. For example, for life sciences datasets, it might not
make much sense to use the Google News Corpus. Instead, it
could be more useful to build a corpus by combining life science
text sources, such as UMLS, Drugbank and related Wikipedia
subsets, than rely on a generic and multi-purpose vector model.



3.2 Using graph embedding techniques
A recently growing body of work focuses on so called graph
embeddings. The objective of these approaches is to embed a
graph of nodes and edges into a continuous vector space, while
preserving the inherent structure of the graph. Most of the related
work focuses on preserving this structure for the nodes of the
input graph [2, 5, 15], however, recent approaches also focus on
encoding relationships (i.e., edges) between the graph’s nodes.
For example, in [16] the authors define the context of a node in an
RDF dataset as the nodes that are adjacent to this node by either
incoming or outgoing edges, and they construct the vector model
by minimizing a customized error function based on this context.
As a consequence, the properties (i.e., edges) of the RDF graph
become mathematical translations between two nodes, much like
the king and queen example of word2vec.

However, these approaches operate on the instance level and
are not applied to the schema of the graph, as is our case. As a
consequence, they train on the whole dataset’s instance, and thus
they rely on much larger corpora to build their vector models,
in contrast with our case where the implied schema is usually
orders of magnitude smaller than the size of the dataset. Thus, the
encoded information and relationships will be supported by an
abundance of data and hence will potentially be more accurate.

On the other hand, training on just the CS graph can be a
computational advantage of using graph embedding techniques,
in that the training of the model and construction of the vector
space will be based only on the input CS graph, where in our case
it is expected to be small and proportional to the amount of CSs in
a dataset4. Thus, it would not be computationally costly to train
the vectors or perform neighbourhood queries for a given CS. A
problem with this approach, however, is that the output model is
dependent on the input and will be very limited in discovering
latent semantic similarities between seemingly unrelated CSs.

4 CONSIDERATIONS AND FUTUREWORK
In this vision paper, we have presented a potential approach for
visualizing a loosely-defined RDF schema by combining charac-
teristic sets with embeddings. To this end, we have proposed two
directions, (i) by using NLP embedding models such as word2vec,
and (ii) by using graph embedding techniques. We focus our
vision on taking advantage of the latent semantics that can be
provided by embeddings in order to provide visual generaliza-
tions and specializations of an RDF dataset’s implied types in
different zoom levels.

So far, we have only discussed grouping and visualizing im-
plied types based on CSs. In the case of relationships between
CSs, we can perform the same steps, but this time instead of CSs
we will consider groups of properties that connect two CSs in
the dataset. Then, we can group/ungroup the resulting edges
accordingly, based on the same methodology as above.

Another point that requires addressing is the fact that proper
differentiation of the implied types is not possible by just relying
on metric distances. For example, the cosine similarity between
c1 and c4, i.e., between human professionals and companies in
our example is actually not very different than the similarity be-
tween c1 and c3. Thus, we would not be able to place humans and
organizations in different groups by just relying on their similar-
ity in the vector space. This would require auxiliary knowledge

4Theoretically, a CS graph with n CSs can have up to n2 edges, but this would
mean that each implied type of concept is associated with all of the rest of the types,
which is not realistically expected in common datasets

or better vector assignment. In our case, the existence of rdf:type
properties can serve as the auxiliary knowledge. However, this
information will not always be available, thus this point needs
proper addressing in the future.

Finally, grouping at different levels will be addressed by an
appropriate clustering approach, which will require tuning of
the required hierarchical thresholds, or the ranges of similarities
serving each zoom level. For example, in preliminary experimen-
tation, trivial methods such as linear partitioning of similarity
ranges can be used in order to assign ranges of similarity for
different zoom levels (e.g., for the lowest zoom level we group
together all CSs with centroid-based similarity larger than 0.9),
and loosen this value the higher we go in the zoom level. As a
final note, appropriate hierarchical or centroid-based clustering
methods will be studied for the above purposes.

In conclusion, it is worth mentioning that the proposed ap-
proach can be applied in more fields than schema visualization.
Schema summarization, indexing and query planning are a few
domains that can take advantage of the proposed technique. For
example, in [6] the authors utilize CSs and their relationships
between them in order to provide better join cardinality esti-
mations for query planning. Furthermore, this approach can be
complemented by the CS merging works mentioned earlier to
provide better grouping of implied types in different zoom levels.
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