
PySnippet: Accelerating Exploratory Data
Analysis in Jupyter Notebook through
Facilitated Access to Example Code

Alex Watson, Scott Bateman and Suprio Ray

University of New Brunswick

awatson@unb.ca,scottb@unb.ca,sray@unb.ca

ABSTRACT
Interactive environments like Jupyter Notebook, Mathematica,

RStudio, and MATLAB are used to ease development in the grow-

ing fields of data science and data analytics. These systems allow

users access to many open-source technologies, packages, and

libraries, which include functionality such as big data analytics,

machine learning, statistical analysis, data wrangling, and large-

scale scientific calculations and visualization. The variety and

complexity of these libraries mean that data analysts are not as

productive as they might be, because they must spend substantial

time learning the libraries and their programming interfaces. This

learning typically requires a significant amount of time to find

and review documentation, and/or find example code. To address

these inefficiencies, we propose an automatic code snippet fea-

ture that is built directly into the Jupyter Notebook environment.

To illustrate the effectiveness of our proposal, we developed a

prototype called PySnippet. In an initial user-study, participants

were able to complete several exploratory data analysis tasks

with both familiar and unfamiliar libraries significantly faster

with PySnippet.

1 INTRODUCTION
More and more data science and data analysts employ interac-

tive environments as the primary tool in their analysis activities.

Popular interactive data analysis environments include Jupyter

Notebook
1
, Mathematica

2
, RStudio

3
, and MATLAB

4
. These inter-

active environments ease development [5, 6] effort for both new

and experienced data analysts and scientists, by (among other

things) providing easy access to a multitude of open source pack-

ages and libraries, which include functionality such as big data

analytics, machine learning, statistical analysis, data wrangling,

and large-scale information visualization.

While interactive data analysis environments facilitate access

tomany powerful libraries andAPIs (application programming in-

terfaces) to support analysis and visualization, this power comes

with an increase in complexity. The variety and complexity of

libraries mean that data analysts are not as productive as they

could be, because they must spend substantial time learning the

libraries. As a result, if an analyst wants to perform a common

task with an unfamiliar API, she will need to spend time to re-

search, find and review documentation, and/or to find example

code (a code snippet) that demonstrates how she can complete

1
Jupyter Notebook : https://jupyter.org/

2
Wolfram Mathematica http://www.wolfram.com/mathematica/

3
RStudio https://www.rstudio.com/

4
MATlab https://www.mathworks.com/products/matlab.html

© 2019 Copyright held by the author(s). Published in the Workshop Proceedings

of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on

CEUR-WS.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

her task. In this paper, we refer to a code snippet as a small piece

of reusable source code that completes a desired analytic task.

Finding snippets to complete tasks may be faster than reading

through the documentation, but it can still be time-consuming.

Searching for a desired snippet likely requires time browsing

through online documentation or searching online repositories

like StackOverflow
5
. Furthermore, after finding the desired code

snippet, an analyst must integrate it into her own solution. Inte-

grating example code can also be time-consuming, code snippets

need be adapted to the current context of existing code (i.e., vari-

ables must be renamed, dependencies must be included). Further,

beginners and intermediate developers may lack the expertise

to successfully interpret and transfer code snippets into their

solutions.

To address these common situations we have developed PyS-
nippet. PySnippet aims to reduce the overall development time

for users by providing an automatic, easy-to-access code snippet

feature directly in the Jupyter Notebook environment. PySnippet

is implemented in Jupyter Notebook, an open-source, web-based,

interactive data analysis environment/tool, which allows users

to create and share documents that contain live code, equations,

visualizations, and narrative text. While Jupyter Notebook al-

ready supports auto-completion, however, it only assists with

finding known functions and objects and does not provide as-

sistance with many common needs, such as, how methods can

work together or how common tasks can be accomplished with

a library. PySnippet addresses these shortcomings by allowing

rapid access to code snippets that illustrate how common tasks

can be completed, integrating them directly into an analyst’s

current workbook.

To demonstrate the baseline utility and advantages of using

PySnippet, we report the findings of an initial experiment, where

we asked 8 participants to complete representative tasks using

either normal Jupyter or Jupyter with PySnippet. Our results

show that PySnippet makes common analytics and visualization

tasks using Jupyter faster, reduces the need for using search

engines and is preferred by analysts.

The rest of this paper is organized as follows. Section 2 exam-

ines relevant research. Section 3 describes PySnippet and its im-

plementation in detail. Section 4 presents our experimental eval-

uation. Section 5 mentions our findings, describes the strengths

and weaknesses of our current implementation, and highlights

directions for future work.

2 RELATEDWORK
Many modern IDEs (Integrated Development Environments) pro-

vide code completion features; e.g., IntelliJ
6
and Eclipse

7
. Code

5
StackOverflow: https://stackoverflow.com/

6
IntelliJ, https://www.jetbrains.com/idea/

7
Eclipse, https://www.eclipse.org/

completion features speed up development time by reducing com-

mon mistakes that arise due to input errors (e.g., typos) and the

difficulty of remembering function names [5, 6]. Research has

also recognized the importance of code snippets in the day to day

practices of programmers, both to accelerate development [6]

and to improve learning [3, 4]. As such, research has focused on

several aspects, including how novices use snippets [4], novel in-

terfaces for accessing and incorporating snippets [5, 6], improved

discovery of snippets [1, 2, 5], and the improvement of snippet

authoring [3, 6].

CodeMend [5] is a system that also targets Jupyter as a basis

for providing access to code snippets without the added overhead

of searching through online search engines and documentation.

CodeMend provides the ability to use natural language to try and

find the desired snippets. However, it is a fundamental redesign

of the Jupyter environment that incorporates new workflow for a

limited set of activities. In other words, it re-designs the interac-

tion with Jupyter with an additional user interface and dashboard,

as well as it is implemented to only work with the matplotlib

library. In contrast, PySnippet is a lightweight tool that was de-

signed to easily fit within the current practices of developers

that has little or no overhead to learn. The work that is most

closely related to ours is SnipMatch [6], which works similarly

to PySnippet but is intended for Java snippets in Eclipse. While

some work exists that is similar to PySnippet, unlike previous

work, our goal is to provide a tool that can easily be incorporated

into current data analysis and visualization practices.

3 OUR SYSTEM
Jupyter Notebook provides an auto-complete feature that can be

used by hitting the TAB key beside an incomplete identifier. This

action pops up a list of potentially matching methods, variables

or parameters to finish the incomplete identifier. The list is based

on the current identifier, as well as the current context of the code

(e.g., which object the identifier is attached to). Our implemen-

tation of PySnippet extends the existing auto-complete feature

to work based on keywords. For example, if a user presses TAB,

PySnippet parses the current line as a set of keywords; if snip-

pets matching the keywords is found, code snippets are added

as options in the code completion list. The list can be navigated

using the arrow keys. When a snippet is highlighted in the list,

a small description of the code snippet appears in a pop-up to

the right of the list showing the corresponding code snippet as

shown in Figure 1(a). The rest of this section will provide more

detail on how and why we implemented PySnippet.

PySnippet is built directly into Jupyter Notebook 5.4.0
8
. Like

the existing code completion system, PySnippet is activated using

the TAB key. PySnippet co-exists with the current code comple-

tion functionality, allowing users to easily access the conven-

tional or PySnippet’s functionality.

PySnippet was implemented with a data analysis or data sci-

ence work-flow in mind. This is why our current implementation

focuses on four common Python libraries typically used in data

analytics and visualization. Our current version of PySnippet pro-

vides snippets for matplotlib
9
, NumPy

10
, Pandas

11
and timeit

12
. Pandas is a package that provides data structures and tools

for data analysis. NumPy is a package for scientific computing

8
Github: https://github.com/jupyter/notebook

9
matplotlib: https://matplotlib.org/

10
Numpy: http://www.numpy.org/

11
Pandas: https://pandas.pydata.org/

12
timeit: https://docs.python.org/2/library/timeit.html

(a) After an analyst has pressed the TAB key after typing the keywords ‘plot scatter’,

the matching code snippet descriptions are shown in the list, and the code Snippet of

the currently selected description in the list is displayed on the right.

(b) The result after the analyst pressed ‘Enter’ on the code snippet description in (a)

above. The user’s keywords ‘plot scatter’ are replaced with the selected code Snippet.

The user runs the corresponding notebook to get the resulting scatter plot.

Figure 1: Example of PySnippet used to easily access a code
snippet that employs matplotlib to create a scatter plot.

and it has a powerful N-dimensional array object. Matplotlib is

a plotting and data visualization library, which produces many

figures and graphs. Lastly, timeit measures the execution time of

code snippets.

Figure 1 displays an example of an analyst using PySnippet

to quickly create a scatter plot using the matplotlib library. The

analyst simply types a few keywords: ‘plot’ and ‘scatter’. These

keywords are similar to what might be googled in an attempt to

find a code snippet. Then the analyst presses the TAB key, and

PySnippet uses the keywords ‘plot’ and ‘scatter’ to search through

a dictionary of code snippets. It then returns all code snippets

matching these keywords, as well as a title and description for

each snippet. Short descriptions of the snippets are shown in a

list, which the user can navigate to explore and select a snippet.

This is shown in Figure 1(a), in which the smaller pop-up on

the left shows a list of text descriptions. When a description

is highlighted, it shows its corresponding code snippet in the

pop-up on the right of Figure 1(a). For example ‘plot.scatter’ is

the highlighted description on the list, so its corresponding code

snippet is shown in the pop-up to the right. Once the analyst has

chosen the snippet she would like to use, she can press ‘Enter’

to insert it into their notebook. Running the Jupyter Notebook

with the newly incorporated snippet would result in the scatter

plot in Figure 1(b).

All the code snippets that were added to PySnippet were di-

rectly copied fromwebsites like StackOverflow or from the partic-

ular library, package or technology online documentation. Minor

modifications were only done to these code snippets to make

them more general. Thus, PySnippet is not creating any novel

custom code snippets for users, it is simply taking code snippets

that already exist online and providing users with a quicker and

more direct way to access them. In our future work, we plan

to extend this functionality to allow users to author their own

snippets [6] and to access snippets from online sources [1].

4 EVALUATION
The goal of our initial evaluation of PySnippet was to under-

stand how it fared in the typical uses of Jupyter. In particular,

whether analysts would find any important problems with PyS-

nippet, and, if not, whether PySnippet would allow participants

to complete common tasks faster than without it. To this end,

we designed a formal experiment that compared two versions

of Jupyter: normal Jupyter (referred to as normal) and Jupyter

with PySnippet (referred to as PySnippet). Both versions differed

only in the availability of PySnippet. Regardless of the version

used, participants had access to the Internet, so they could search

online for anything they needed.

4.1 Participants
Eight participants were recruited, who were graduate students or

recent graduates of a local university. Of the eight participants,

seven had programming experience at an undergraduate level,

and five had programmed in a professional environment. Only

one participant had little to no programming experience. Four

of the eight participants had no or minimal experience program-

ming in Python and had never worked with Jupyter, while the

other four had varying degrees of experience with Python and

had previously used Jupyter or were familiar with it. Three of

the participants were familiar with the Python libraries used in

the experiment.

4.2 Experimental Task
Throughout the experiment, participants completed a series of

eight common data analytics tasks (four with each version). For

each version, one of the tasks was considered a practice task (it

was not used in the analysis, and alternated between participants).

The practice task was used to help participants get used to each

version without the pressure of being timed, as well as, provide

them with an opportunity to ask questions about functionality.

We made it clear in the practice task that the participants should

work on their own to complete the experimental tasks, and that

the experimenter would not provide any help. The presentation

of task and version was balanced using a Latin square to minimize

any bias in our results due to presentation ordering.

The tasks were created to be fairly straightforward and in-

volved introductory and common data wrangling, analytics or

visualization tasks. Tasks included, "create a scatter plot of the

provided data with matplotlib", "merge two Pandas dataframes,

then perform a groupby", "create and multiply two NumPy ar-

rays", "filter Pandas dataframe, then perform simple statistical

analysis" and "determine the execution time of the code below

using timeit". Of the eight tasks, four tasks used Pandas, two used

matplotlib, one used NumPy, and one used timeit. The tasks were

grouped in a way so that each version would be used in two tasks

with Pandas, one task with matplotlib and one of either timeit or

NumPy. For each of the tasks, the import statements involving

the mentioned libraries were provided. Also, clear directions of

which packages to be used were provided in the task description.

To achieve a correct answer the participant needed to provide

a code snippet (either through using PySnippet, searching the

Web or reading documentation) that met all of the requirements

of the particular task. It is important to note that not all snippets

available in PySnippet were relevant to tasks in the experiment;

we provided approximately 20 additional snippets.

4.3 Procedure
At the beginning of the experiment, all participants were given a

15 minute introductory tutorial about Jupyter Notebook, Python,

and the libraries involved in the experiments. This provided

participants, who were new to Jupyter, Python or any of the

libraries an introduction, so that they would have an idea about

how to use Jupyter, as well as where to find online documentation

for each of the libraries. Participants were evenly assigned to

start with either the normal or PySnippet versions of Jupyter.

Participants were then asked to complete the four task trials,

after which they completed four tasks with the other version. A

time limit of ten minutes was given for each task trial, and when

the time limit was reached, a participant’s number of incorrect

submissions was increased by one and the completion time was

set to ten minutes for that particular task. At the end of the tasks

involving each version a questionnaire, which solicited opinions

on both versions, was provided.

4.4 Analysis
Our experiment was designed with one independent variable

with two levels (System version: normal Jupyter, and Jupyter with

PySnippet). There were three dependent variables: completion

time, number of incorrect submissions and number of Google

searches. The completion time was collected by the system as

the amount of time it took for a participant to complete a given

task. The number of incorrect submissions was a count of how

many times a participant submitted an incorrect or incomplete

answer for a given task. The number of Google searches was

the number of times a participant performed a search on Google

(and used to represent the need for finding information outside

of Jupyter). The data was analyzed to determine whether there

were significant differences in the dependent variable as a result

of differences in the two conditions using a repeated-measure

ANOVA.

4.5 Results
Task Completion Time. The mean task completion time for

PySnippet was 222.7s. This was approximately 30.5% less than

the mean completion 327.8s observed for normal Jupyter. The

differencewas statistically significant (F1,7 = 8.314, p < .05). Figure
2(a) displays the mean task completion time of each participant.

All but one participant showed an improvement in completion

time using PySnippet. The mean completion time for every trial

was faster using PySnippet.

Google Searches. The mean number of Google searches for

each task using PySinppet was 0.198. This was 92.8% less than

the mean 2.75 observed normal Jupyter. The difference was sta-

tistically significant (F1,7 = 159.2, p < .05). Looking at figure 2(c),

the mean Google searches for each version, we can see that six

out of the eight participants did not use Google at all while us-

ing PySnippet. Thus, PySnippet provided sufficient information

0
100
200
300
400

P1 P2 P3 P4 P5 P6 P7 P8Co
m
pl
et
io
n	
Ti
m
e	
(s
)

Participants

Normal PySnippet

(a) Mean completion time of each participant

0
1
2
3
4
5
6

P1 P2 P3 P4 P5 P6 P7 P8

#	
of
	In
co
rr
ec
t	S

ub
m
is
si
on
s

Participants

Normal PySnippet

(b) Mean number of incorrect submissions for each par-

ticipant

0
1
2
3
4

P1 P2 P3 P4 P5 P6 P7 P8#	
of
	G
oo
gl
e	
Se
ar
ch
es

Participants

Normal PySnippet

(c) Mean number of google searches for each participant

Figure 2: Results of the user study.

about the desired code snippets in most cases, and no further

explanation was needed through a Google search.

Incorrect Submissions. The mean number of incorrect sub-

missions was 1.687 for PySnippet and 1.875 for normal Jupyter.

As there was substantial variation across participants as shown in

2(b), the difference was not statistically significant (F1,8 = 0.229).

The number of incorrect submissions dropped slightly in the PyS-

nippet version. This showed that the participants were able to

comprehend the code snippets provided by PySnippet, at least in

a similar way as if they had found the snippets elsewhere online.

At the end of the experiment, participants were given a final

questionnaire to gauge preference opinions about the two ver-

sions. Seven out of the eight participants preferred PySnippet

over normal Jupyter; one of the participants was indifferent and

none preferred normal Jupyter. Additionally, two out of the four

participants that completed the PySnippet tasks first stated that it

was frustrating to have to go back and search online for snippets

instead of just using PySnippet from within Jupyter, which they

found much easier.

Participants also provided feedback on how PySnippet could

be improved. Two participants wanted to use the mouse to click

on descriptions rather than using the keyboard to explore snip-

pets. Further, clicking on a description would automatically insert

the snippet (even if it was not the one currently selected/ high-

lighted). Another participant mentioned that they would prefer

if a snippet would not replace the whole line of text (only back

to the equal sign), so they could assign the snippet to a variable

when inserting it. These comments highlighted minor usabil-

ity issues that could easily be improved in future iterations of

PySnippet.

5 CONCLUSION AND FUTUREWORK
Our initial evaluation of PySnippet suggests that it works as it was

intended to; it allowed participants in our study to spend less time

searching online for code snippets and rapidly find the solutions

they were looking for. It was able to reduce overall development

time and reduce the numbers of times a participant needed to

search for a code snippet or find other documentation online.

While a few participants encountered minor usability issues,

the results showed that participants had little difficulty making

use of the system to accomplish the realistic data analysis and

visualization tasks they were given. PySnippet was also preferred

over normal Jupyter by all but one participant.

The current implementation of PySnippet performed extremely

well on the limited set of tasks we evaluated. Extending our solu-

tion further would entail new challenges with new complexities.

For example, future work will have to deal with issues associated

with finding snippets in a repository of potentially thousands of

entries. Based on the results of our study, we believe that this

effort would be worthwhile and that PySnippet would be ben-

eficial in many common analytics and visualization scenarios.

Our future plan is to build PySnippet into an actual extension

that would be available to download with the Jupyter Notebook

kernel. We have several ideas about how we can further improve

PySnippet and extend our features further. For example, we are

developing a feature that allows users to highlight code and right

click to "add a new snippet", so they can easily create and save

useful snippets for future use, as well as improve on the minor

usability issues as suggested by participants. For the longer term,

we imagine an online repository, where users could actively share

and curate snippets for the community.

When considering the implications of work more broadly, we

believe that there is a huge potential for simple, well-designed

tools, like PySnippet, to improve data analysis and visualiza-

tion activities. Working with large data sets is a complex task,

with many concerns to attend to. By facilitating the data analysis

process, through better and easier to use tools, we reduce the cog-

nitive load and time requirements on data analysts and scientists

incurred while attending to the mundane and non-sophisticated

tasks. Simple tasks such as learning how to create simple plots,

currently require more attention than they should. Improved

tools lead to improved processes, and enhance the ability to focus

on bigger and more important challenges. In our future work,

we will continue to look for opportunities that provide new and

improved tools that empower data scientists to make new dis-

coveries and provide new insights.

REFERENCES
[1] Balachandran, V. Query by example in large-scale code repositories. In 2015

IEEE International Conference on Software Maintenance and Evolution (ICSME)
(Sept. 2015), pp. 467–476.

[2] Diamantopoulos, T., Karagiannopoulos, G., and Symeonidis, A. CodeCatch:

Extracting Source Code Snippets from Online Sources. In 2018 IEEE/ACM 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE) (May 2018), pp. 21–27.

[3] Ginosar, S., De Pombo, L. F., Agrawala, M., and Hartmann, B. Authoring

Multi-stage Code Examples with Editable Code Histories. In Proceedings of the
26th Annual ACM Symposium on User Interface Software and Technology (New

York, NY, USA, 2013), UIST ’13, ACM, pp. 485–494.

[4] Ichinco, M., and Kelleher, C. Exploring novice programmer example use.

In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (Oct. 2015), pp. 63–71.

[5] Rong, X., Yan, S., Oney, S., Dontcheva, M., and Adar, E. Codemend: Assisting

interactive programming with bimodal embezdding. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (New York, NY,

USA, 2016), UIST ’16, ACM, pp. 247–258.

[6] Wightman, D., Ye, Z., Brandt, J., and Vertegaal, R. Snipmatch: Using source

code context to enhance snippet retrieval and parameterization. pp. 219–228.

	Abstract
	1 Introduction
	2 Related Work
	3 Our System
	4 Evaluation
	4.1 Participants
	4.2 Experimental Task
	4.3 Procedure
	4.4 Analysis
	4.5 Results

	5 Conclusion and Future Work
	References

