
VESEL: VisuaL Exploration of Schema Evolution Using
ProvenanceQueries

Christos Athinaiou

Computer Science Department,

University of Crete,

Heraklion, Greece

csd3258@csd.uoc.gr

Haridimos Kondylakis

Institute of Computer Science,

FORTH,

Heraklion, Greece

kondylak@ics.forth.gr

ABSTRACT
Database schemata are not static artifacts but subject to continu-

ous change as new requirements daily occur and the modeling

choices of the past should be updated or adapted. To this direc-

tion, multiple approaches available already try to keep multiple

co-existing schema versions in parallel or model schema evolu-

tion through Schema Modification Operations, known as SMOs.

However, to the best of our knowledge, in the era of big data,

where thousands of SMOs might appear, it is really hard for devel-

opers to identify the modeling choices of the past and to explore

how a specific column or table has been evolved. In this demo, we

present VESEL, the first system enabling the VisuaL Exploration

of Schema Evolution using provenance queries. Our approach
relies on a state of the art database evolution language, and can

efficiently answer queries about when a specific table or column

has been introduced, how - with which SMO operation and why
- which is the sequence of changes that led to the creation of

the specific table/column. In the demonstration we will present

the architecture of our system and the various algorithms imple-

mented, enabling end-users to visually explore schema evolution.

Then we will allow conference participants to interact directly

with the system to test its capabilities.

1 INTRODUCTION
As recent databases do not proactively support schema evolu-

tion, developers have to migrate data from one database version

to another using error-prone and complex Extract-Transform-

Load scripts [1–3]. The problem has been recognized by multi-

ple research works that try to offer tools for the uninterrupted

evolution of either semantic [4] and relational schemata. More

specifically for the relational world, the Model Management ap-

proach provides tools to match, diff, merge and extract mappings

between schema versions [5]. PRISM and PRISM++ [6, 7] allow

the developers to specify the evolution steps using Schema Mod-

ification Operations (SMOs). Those SMOs are then implemented

for data migration and for rewriting past queries to work in the

new versions. PRIMA [8] proposes SMOs that enable forward but

not backward query rewriting and data migration, CoDEL [9]

presents relationally complete SMOs whereas Symmetric Re-

lational Lenses [10] define bidirectional SMOs not relationally

complete. Finally, BiDEL [11] presents SMOs that are relationally

complete, inversible and enable forward and backward query

rewriting and data migration, whereas they can guarantee bidi-

rectionality.

© 2019 Copyright held by the owner/author(s).

Published in the Workshop Proceedings of the EDBT/ICDT 2019 Joint Conference

(March 26, 2019, Lisbon, Portugal) on CEUR-WS.org.

Independent of the database evolution language used, com-

plex evolution scenarios can easily lead to hundreds of schema

modification operations, e.g. the evolution ofWikipedia’s schema

through 171 schema versions [12], making it extremely difficult

for developers to identify the modeling changes of the past and

to be able to observe specific decision paths over this complex

evolution.

In this demonstration, we present the VisuaL Exploration of

Schema Evolution (VESEL) system, enabling developers to issue

provenance queries, in order to actively explore the evolution of

the schema. The database evolution language on top of which

our system works is BiDEL, but the modular nature of the system

makes it possible to be extended with other languages in the near

future. It supports how (which schema modification operation),

when (which version) and why (sequence of schema modification

operation) provenance queries for a specific table or column and

enables the graphical visualization of the results. As the selected

database evolution language guarantees bidirectionality, queries

can be issued using a recent or a past schema version and we can

track the evolution of the specific table/column through multiple

schema versions.

To the best of our knowledge, our approach is the only visual

approach enabling active exploration of schema evolution. A

preliminary work to the same direction is [13]. However it lacks a

visual exploration interface, the corresponding algorithms are not

presented, and it uses PRISM/PRISM++ SMOs not guaranteeing

backward query rewriting and datamigration. A similar approach

but for ontologies has already shown the benefits of such an

approach [14, 15].

The remaining of this paper is structured as follows: In section

2 we describe system’s architecture, the various components used

and the implemented algorithms. Then, in Section 3 we present

an outline of our demonstration. Finally, Section 5 concludes this

paper and presents directions for future work.

2 ARCHITECTURE
VESEL has been implemented using python and flask micro-

framework [16], whereas for the visualization the Cytoscape

library [17] has been used. VESEL employees a three layer archi-

tecture, shown in Figure 1.

On the top layer, we find the graphical user interface (GUI), in

the middle the query engine and at the bottom the persistence

layer. In the sequel we introduce the various components used

and we describe their functionality.

2.1 Graphical User Interface
The whole process is started as soon as a file with BiDEL SMOs

is uploaded to the system or an existing one is selected. The

BiDEL database evolution language includes SMOs for creating a

Figure 1: High-level system architecture.

table with specific fields, dropping and renaming tables, adding

and updating columns and merging and decomposing tables.

The complete list of the SMOs available are depicted in Table 1.

We have to note that such files can be manually generated or

generated by tools like the InVerDa
1
[18]. For more information

on the SMOs and the corresponding rules that add and delete

specific schema information, the interested reader is forwarded

to [11].

Table 1: The SMOs of the BiDEL schema evolution lan-
guage.

EVOLUTION START [FROM nameOld]

EVOLUTION COMMIT AS nameNew;

CREATE TABLE R(c1,....,cn)
DROP TABLE R
RENAME TABLE R INTO R′

ADD COLUMN a AS f (r1,...rn) INTO Ri
DROP COLUMN r FROM Ri DEFAULT f (r1,...,rn)
RENAME COLUMN r IN Ri TO r ′

MERGE TABLE R(cR), S(cS) INTO T
DECOMPOSE TABLE R INTO S(s1,...,sn)
[,T(t1,...,tn) on (PK|FK fk|cond)]

As soon as the file is uploaded, it is parsed and stored to the

internal database. Instead of the database, the uploaded file could

also be directly parsed, but for reasons of efficiency we selected to

store the SMOs in a database. Then the system is able to answer

provenance queries. The queries available to the end-users are

the following:

(1) How. Which was the operation that introduced a specific

table or a specific column?

(2) When. At which version the specific table/column was

introduced?

(3) Why. Which was the sequence of operations that led to

the introduction of a specific table/column?

When the answers are returned, both a graphical and a textual

overview of the answer are presented to the user. A screenshot of

the system is shown in Figure 2. Each node in the graph represents

an SMO in its short form. When the mouse hovers on top of a

node, it additional information is presented as a tooltip, whereas

thewhole list with the retrieved SMOs is shown on the right panel.

A user can click on a specific SMO and refine the exploration

based on this specific SMO. This will redraw the canvas and the

1
https://db47122.inf.tu-dresden.de/

textual overview, enabling the user to actively move between

versions and SMOs.

In the example, shown in Figure 2, we demonstrate the evo-

lution of the "revision" table from the wikimedia dataset. The

"revision" table has been the result of merging two tables, i.e.

the "revisiona" and the "revision_old" table. Before that the table

"revisiona" had been created out of the decomposision of the

table "revisionb" into "revisiona" and "text". On the other hand

the table "revision_old" was the result of a decomposition of the

table "old". The graph continues until the tables "cur" and "old"

are created for the first time.

2.2 Query Engine
The query engine receives requests by the GUI and subsequently

answers the issued queries. To answer queries about the evolution

of a specific table/columnwe define first the notion of an affecting
schema modification operation.

Definition 2.1. Let t be a table/column of a schema versionm,

namely the Sm , and ∆Sk ,Sm , (k < m) be the sequence of schema

modification operations between Sk and Sm . In addition, let δa (s)
be the new schema information introduced with the SMO s and
δd (s) the schema information that is being deleted using s . An
SMO s ∈ ∆Sk ,Sm affects the table/column t , denoted by af (t), if
t ∈ Sm and t ∈ δa (s) .

An affecting schema modification operation captures the way

a table/column was introduced between two schema versions.

The intuition behind this is that, as we usually use the latest

schema version, we base our exploration on this version and we

would like to track how a specific table/field has been introduced.

2.2.1 Answering how provenance queries.

Assuming that we have the ∆Sk ,Sm available, it is trivial to

identify the affecting SMO by just scanning the delta log once.

This affecting SMOwill be the answer to how provenance queries.

As BiDEL guarantees that neither the rules for a single SMO, nor

the version genealogy have cycles, the affecting SMO if it exists

is unique.

2.2.2 Answering when provenance queries.

Next, for answering when provenance queries we are inter-

ested in identifying the version at which the affecting SMO ap-

peared. This is again trivial as for each evolution step, we have

the complete list of SMOs and we can easily identify the specific

evolution step that included the specific affecting SMO.

2.2.3 Answering why provenance queries.

Presenting only answers to when and how provenance queries

is not enough when complex evolution has occurred and we

would like to see the sequence of events that led to the creation

of a specific table or column. This sequence can be identified by

answering why provenance queries. To be able to answer such

queries we first define the change sequence of a specific SMO.

Definition 2.2. A change sequence for a schema modification

operation s ∈ ∆Sk ,Sm , denoted by CSs , is the minimal sequence

of schema modification operations in ∆Sk ,Sm such that s ∈ CSs

and that whenCSs is applied to version k we get the fields/tables

participating in s .

https://db47122.inf.tu-dresden.de/

Figure 2: Showing the evolution of the "revision" table from the wikimedia dataset .

As in essence the whole ∆Sk ,Sm is a set of changes that lead to

the fields/tables participating in s , we are looking for the minimal

sequence of SMOs, in the sense that one cannot remove any of

the SMOs in it, and still when applied to the version k you get

the fields/tables participating in s . As such, a change sequence is
providing the minimal information in order to understand how

the specific table or column has been evolved to reach versionm.

Similarly to an SMO , δa (CS) is the new schema information

introduced whenCS is being applied to Sk and δd (CS) the schema

information that is being deleted from Sk using CS .
It can be easily proved that a change sequence for the BiDEL

language if it exists, is unique.
Next we present an algorithm that given a sequence of SMOs

capturing the ∆Sk ,Sm , it produces the change sequence for an

SMO s . The algorithm is shown in Algorithm 1. The idea is

that the algorithm starts by an input SMO and identifies the

tables/columns that are also added to the schema, possibly by

deleting other schema parts. Then it searches for the SMOs that

delete the added information in order to add new information

and so on.

Algorithm 1 Compute Change Sequence

Input: s,∆Sk ,Sm
Output: CSs

1: procedure ComputeChangeSeq(s,∆Sk ,Sm)

2: CSs ← []

3: CSs .push(s)
4: for each s ′ ∈ ∆Sk ,Sm do
5: if δa (s

′) ∈ δd (CS
s) then

6: CSs .push(s ′)
return CSs

The algorithm is immediately proved by construction and has

a complexity ofO(N)where N is the number of SMOs in ∆Sk ,Sm .

As such we argue that exploring the evolution of big schemata

with multiple changes is feasible and efficient.

It is quite easy to adapt the aforementioned algorithm for pre-

senting the change sequence for a specific table/column instead

of a specific SMO. The idea is first to look for the affecting SMO

and then to use Algorithm 1 for identifying the corresponding

change sequence.

The aforementioned algorithm is not only applicable for vi-

sualizing the change sequence of a table/column of the latest

schema version, but can be also used to visualize the change se-

quence of a table/column from an arbitrary schema version of the

past. In that case, instead of providing as input to our algorithms

the ∆Sk ,Sm we could provide the ∆Sk ,Sn where n < m.

2.2.4 Exploiting bidirectionality and inversibility.

In addition, since BiDEL guarantees bidirectionality and in-

versibility (e.g. the inverse of the merge SMO is the decompose

SMO), we could get the evolution steps for a table/column of a

past schema version till we reach the most recent version by pro-

viding as input the ∆Sm,Sk to our algorithms. This can be directly

constructed from the ∆Sk ,Sm using the inverse SMOs of those in

the ∆Sk ,Sn . Although bidirectionality and inversibility are not

properties of all database evolution languages, if available, they

contribute to a richer exploration experience on the available

schema versions.

3 DEMONSTRATION OUTLINE
For demonstrating the functionality of the system, the wikimedia

dataset will be used. The dataset contains more than 170 schema

versions with the corresponding SMOs and offers a rich real

dataset for experimentation. The demonstration will proceed in

four phases.

(1) Exploring wikimedia’s schema and raw evolution log. The

demonstration will start by visualizing the latest version of

the schema and exploring the various tables and columns.

Then the raw evolution log will be opened and the diffi-

culty to identify the actions that led to the generation of

specific column/tables will be explained.

(2) System overview. Then an overview of the system will be

presented along with the corresponding components. The

ideas behind how, when and why provenance queries will

be explained and the algorithms will be briefly described

as well.

(3) Small tutorial. Next the users will be informed about the

functionalities provided through the graphical user inter-

face and some examples will be executed demonstrating

various how, when and why provenance queries. More

specifically, we will demonstrate how and when queries

for selected tables and fields and then we will focus on an-

swering why queries on tables that have been constructed

with multiple SMOs. This will enable users to better depict

the tool’s usage and usefulness.

(4) "Hands-on" Phase. In this phase the conference partic-

ipants will be invited to directly interact with the sys-

tem, having the chance to explore the evolution of ta-

bles/columns through all versions available for the wiki-

media dataset.

We also intend to release the system online before the con-

ference, so that the conference participants to have a chance of

exploring system’s functionalities at their own pace and location.

4 CONCLUSIONS
In this demonstration we present a novel system enabling the

VisuaL Exploration of multiple Schema Versions (VESEL) using

provenance queries. The system gets as input the change log

with the BiDEL SMO’s over multiple schema versions and is then

able to visually answer queries about how a specific table/field

was introduced, in which schema version and which was the

sequence of operations that led to the creation of the specific

table/field.

As future work, several challenging issues need to be fur-

ther investigated. For example, we already see BiDEL as just a

language describing SMO’s, with nice features. It is worth investi-

gated the other proposed languages as well. This would obviously

lead to a redefinition of some of our algorithms. In addition we

intend to combine our approach with statistical information on

the evolution, further guiding the user understanding on the

schema evolution through multiple versions. Finally, it would be

interesting to to study the effects of visualizing schema evolu-

tion in collaborative/multi-user or distributed environments that

usually are prone to schema conflicts.

5 ACKNOWLEDGMENTS
Work presented in the paper is part of the BOUNCE project

(H2020 #777167) that has received funding from the European

Union’s Horizon 2020 Research and Innovation Programme. Any

opinions, results, conclusions, and recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of BOUNCE or the European Commission.

6 REFERENCES
[1] H. Kondylakis and D. Plexousakis, “Ontology evolution in data integration:

Query rewriting to the rescue,” in ER, vol. 6998 of Lecture Notes in Computer
Science, pp. 393–401, Springer, 2011.

[2] H. Kondylakis and D. Plexousakis, “Ontology evolution: Assisting query mi-

gration,” in ER, vol. 7532 of Lecture Notes in Computer Science, pp. 331–344,
Springer, 2012.

[3] H. Kondylakis and D. Plexousakis, “Exelixis: evolving ontology-based data

integration system,” in SIGMOD Conference, pp. 1283–1286, ACM, 2011.

[4] H. Kondylakis and D. Plexousakis, “Ontology evolution without tears,” J. Web
Semant., vol. 19, pp. 42–58, 2013.

[5] P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating richer

mappings,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007, pp. 1–12, 2007.

[6] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the database

schema evolution process,” VLDB J., vol. 22, no. 1, pp. 73–98, 2013.

[7] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update rewriting and

integrity constraint maintenance in a schema evolution support system:

PRISM++,” PVLDB, vol. 4, no. 2, pp. 117–128, 2010.

[8] H. J. Moon, C. Curino, M. Ham, and C. Zaniolo, “PRIMA: archiving and query-

ing historical data with evolving schemas,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009, Providence,
Rhode Island, USA, June 29 - July 2, 2009, pp. 1019–1022, 2009.

[9] K. Herrmann, H. Voigt, A. Behrend, and W. Lehner, “Codel - A relationally

complete language for database evolution,” in Advances in Databases and
Information Systems - 19th East European Conference, ADBIS 2015, Poitiers,
France, September 8-11, 2015, Proceedings, pp. 63–76, 2015.

[10] M. Hofmann, B. C. Pierce, and D. Wagner, “Symmetric lenses,” in Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pp. 371–384, 2011.

[11] K. Herrmann, H. Voigt, A. Behrend, J. Rausch, and W. Lehner, “Living in

parallel realities: Co-existing schema versions with a bidirectional database

evolution language,” in Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pp. 1101–1116, 2017.

[12] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema evolution inwikipedia

- toward a web information system benchmark,” in ICEIS 2008 - Proceedings of
the Tenth International Conference on Enterprise Information Systems, Volume
DISI, Barcelona, Spain, June 12-16, 2008, pp. 323–332, 2008.

[13] S. Gao and C. Zaniolo, “Supporting database provenance under schema evolu-

tion,” in Advances in Conceptual Modeling - ER 2012 Workshops CMS, ECDM-
NoCoDA, MoDIC, MORE-BI, RIGiM, SeCoGIS, WISM, Florence, Italy, October
15-18, 2012. Proceedings, pp. 67–77, 2012.

[14] H. Kondylakis and N. Papadakis, “Evordf: evolving the exploration of ontology

evolution,” Knowledge Eng. Review, vol. 33, p. e12, 2018.

[15] H. Kondylakis, M. Despoina, G. Glykokokalos, E. Kalykakis, M. Karapiperakis,

M. Lasithiotakis, J. Makridis, P. Moraitis, A. Panteri, M. Plevraki, A. Provi-

dakis, M. Skalidaki, A. Stefanos, M. Tampouratzis, E. Trivizakis, F. Zervakis,

E. Zervouraki, and N. Papadakis, “Evordf: A framework for exploring ontology

evolution,” in ESWC (Satellite Events), vol. 10577 of Lecture Notes in Computer
Science, pp. 104–108, Springer, 2017.

[16] M. Grinberg, FlaskWeb Development - DevelopingWeb Applications with Python.
O’Reilly, 2014.

[17] M. Franz, C. T. Lopes, G. Huck, Y. Dong, S. O. Sümer, and G. D. Bader, “Cy-

toscape.js: a graph theory library for visualisation and analysis,” Bioinformatics,
vol. 32, no. 2, pp. 309–311, 2016.

[18] K. Herrmann, H. Voigt, T. Seyschab, and W. Lehner, “Inverda - the liquid

database,” in Datenbanksysteme für Business, Technologie und Web (BTW 2017),
17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"
(DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceedings, pp. 619–622, 2017.

	Abstract
	1 Introduction
	2 Architecture
	2.1 Graphical User Interface
	2.2 Query Engine

	3 Demonstration Outline
	4 Conclusions
	5 Acknowledgments
	6 References
	References

