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ABSTRACT
The task of analyzing the permeability of soil to natural gas and
oil has been studied by experts for many years. This analysis is
typically achieved by inspecting samples of terrain, called thin
sections. An important procedure of this task is the categoriza-
tion/clusterization of pores, which are microscopical cavities in
thin sections. This operation is manually carried out by domain
experts through the analysis of high-resolution images retrieved
with Scanning Electron Microscopes (SEM). Since the number of
pores is very high (more than 10,000 for each thin section), the
manual categorization procedure is performed on a small subset
of pores and hence the achieved estimations can be imprecise.

To address the pore analysis problem, we propose a custom
clustering pipeline that automatically groups pores inside thin
sections. The work has been conducted with the help of ENI,
a leading company in oil and gas extraction. Specifically, we
have designed the Adaptive Multi-level Dendrogram Cut method,
a customized version of hierarchical clustering. The proposed
method is able to cut the hierarchical dendrogram at multiple
levels, being guided by both automatic metrics and domain expert
knowledge. In this paper, we show that our methodology pro-
duces higher quality results with respect to standard hierarchical
clustering algorithms. We also defined a set of techniques to gen-
erate interpretable descriptions of the pore clusters. According
to ENI’s experts, the obtained clusters have a good quality from
a geological point of view and help to automatize a very slow
process that was carried out manually.

1 INTRODUCTION
Petrography is the branch of petrology focused on classifying and
describing rocks from both a microscopical and a megascopical
point of view [3]. With the diffusion of Scanning Electron Mi-
croscopes (SEM), optical analyses for petrography reached good
quality results due to the high resolution of the images. Indeed,
SEM images can reveal features that are invisible with optical
microscopy [8, 12, 15]. In particular, they allow distinguishing dif-
ferent mineral phases based on variations of gray intensity. Other
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Figure 1: Example of thin section analysis. On the left the
image retrieved with SEM, on the right the result after ap-
plying our clustering method.

information such as the size, distribution, shape, orientation and
textural relationships of minerals can be retrieved.

Specifically, SEM images are highly useful for pore charac-
terization in rocks [2, 16]. Petrographic Image Analysis (PIA)
studies the presence and distribution of pores, which is impor-
tant for analyzing the permeability of rocks to natural gas and
oil [6, 9]. Within this process, SEM images are retrieved from
ground samples called thin sections. After acquisition, image pro-
cessing algorithms can extract different characteristics of pores,
for example their size and shape. [4, 13]. Finally, domain experts
use these results to inspect rock properties such as their perme-
ability.

Since each thin section possibly contains from thousands to
millions of pores, their manual categorization is applicable only
to a small subset. This entails an approximated result that highly
depends on the sampling performed over the initial data. An au-
tomatic categorization/clusterization method may help avoiding
most of the manual effort that is required to perform the analysis.
Both classification and clustering methods could be taken in con-
sideration. However, classification requires having a sufficient
amount of training data with manually generated labels. This
implies that domain experts should label large quantities of pores
to model the characteristics of different categories. Since there
are no public datasets with labeled pores and generating new
labeled data is very time consuming, we adopted a clustering
based approach. Clustering methods are able to learn the data



Figure 2: Big Petro pipeline.

distribution and automatically derive a set of groups, which then
can be more easily and quickly mapped to geological categories
by domain experts. Clustering algorithms do not need training
labels and can be applied to thousands of samples. With the
proposed methodology, domain experts can concentrate their
efforts only on the geological interpretation of each cluster, while
leaving to the algorithm the most time consuming task.

In this paper, we propose the Big Petro pipeline, a clustering
methodology specifically designed for automatically categoriz-
ing pores inside thin sections. The proposed pipeline has been
designed and evaluated on real datasets with the support of the
domain experts of ENI, a leading company in oil and gas ex-
traction. The contribution of our paper can be summarized as
follows:

• Development of a customized semi-automatic process for
clustering geological pores. This methodology helps do-
main experts to avoid manually categorizing all pores.

• Definition of a variant of the standard usage of hierarchical
clustering. Specifically, we propose to obtain clusters with
an Adaptive Multi-level Dendrogram Cut, being guided by
both automatic metrics and domain experts knowledge.

• Inspection of different methodologies to describe the gen-
erated clusters in terms of characterizing attributes distri-
bution for each cluster. The description approaches allow
domain experts to interpret the different groups and derive
interesting insights from the analyzed thin sections.

2 RELATEDWORK
Clustering techniques [11] are widely used in many application
fields. To the best of our knowledge, this is the first attempt to
apply clustering techniques to automatize pore analysis. During
our preliminary study of geological pores categorization, we
inspected the behavior of the following algorithms: DBSCAN [5],
KMeans [7], and agglomerative hierarchical clustering [10].

DBSCAN [5] is a density based algorithm. Its driving idea is
joining points in the same cluster when they exceed a minimum
neighborhood density. The main issue with this technique is that
the distribution of our data shows variable densities. Setting a
low minimum density results in a single cluster containing all
the pores, while when setting a high density many pores are
considered as noise. Multiple runs of DBSCAN with different
configurations could potentially allow identifying clusters with
different densities. However, also the self-tuning techniques that
use multiple runs of DBSCAN [1] did not yield good quality
results on our data.

K-means [7] is a well-known centroid based clustering algo-
rithm, which requires specifying the (fixed) desired number of
clusters. The results with this technique were not satisfactory,

as this method builds globular clusters with a balanced number
of points, but the types of pores in our datasets present more
complex shapes and are very imbalanced in number. For example
the category of small pores is typically an order of magnitude
more numerous than the one containing bigger pores.

Hierarchical clustering [10] techniques allow defining clusters
by inspecting the cluster hierarchy with a structure called den-
drogram. By cutting the dendrogram at a fixed level, k clusters
are generated. The generated clusters can be characterized by
different densities and imbalanced cardinalities. This technique,
already in its standard version, allowed us to obtain the best re-
sults, according to the analysis performed by ENI domain experts.
For this reason, we selected hierarchical clustering as preferred
method to be customized and integrated in our Big Petro pipeline.

3 BIG PETRO PIPELINE
The objective of our work is to automatically discover different
categories of geological pores in SEM images of rock samples by
means of the proposed Big Petro pipeline. The Big Petro pipeline
is composed of different blocks, depicted in Figure 2. In the fol-
lowing paragraphs we describe the characteristics of each block.

Data extraction. Each dataset to be analyzed consists of a
single thin section acquisition, represented as a grayscale image.
Figure 1a shows an example of a small portion of thin section,
where the black irregular spots are the pores to be categorized.
In this first step, a tool developed by ENI processes the grayscale
image that automatically selects the darker regions representing
pores. Afterwards, the tool analyzes each pore and extracts a set
of geometrical features describing the pore shape and size. The
result of this operation is a structured dataset, with a record for
each pore, characterized by 32 numerical attributes. Section 5
describes more in detail the characteristics of the considered
datasets, extracted from different thin section samples.

Data preparation. The second step of the pipeline involves
the preprocessing of the datasets obtained in the data extraction
phase. Each dataset is typically characterized by the presence
of many small pores represented by only few pixels. The low
pixel resolution of these pores does not allow computing most of
the geometrical characteristics necessary for the analysis. Hence,
we filter out the smaller pores by applying a domain provided
threshold on their size. This operation also yielded smaller, more
manageable datasets (frommillions of pores to thousands), which
allowed a reduction of the clustering algorithm processing time.
In Section 5, Table 1 shows further details of the dataset cardi-
nality before and after this filtering procedure.

Next, attribute values are normalized by applying the z-score
normalization, after which each attribute domain range is char-
acterized by mean equal to zero and unitary variance. This step



is necessary to guide the distance metric used for clustering to
treat all the attributes in the same way, independently of their
value range.

Adaptive Multi-level Dendrogram Cut. Pore clustering
takes place in this phase. It is composed of four steps: (i) den-
drogram construction, (ii) super-clusters generation, (iii) domain
experts analysis, and (iv) sub-clusters generation. The first task is
addressed by running an agglomerative hierarchical clustering
algorithm, which builds the dendrogram describing the hierarchy
of the pore aggregations. The second step consists of generating a
first set of clusters by cutting the dendrogram at a specific height.
These clusters correspond to macro-groups of pores, called super-
clusters and provide an initial coarse-grain aggregation of pores.
Their number is chosen by analyzing the silhouette score [14],
as described in Section 5.

Next, each super-cluster is manually analyzed by domain ex-
perts to decide if further partitioning is needed. The standard
approach consisting of one single cut of the dendrogram may
generate some clusters already containing homogeneous pores
and some other clusters grouping heterogeneous pores. Simply
cutting the dendrogram at a different height will split also the
already high-quality macro-clusters. For this reason, only for the
subset of super-clusters that are deemed by the domain experts
to need further split in sub-clusters, the sub-cluster generation
step is executed. Specifically, given a cluster to be further divided,
we analyze its corresponding dendrogram sub-tree and cut the
hierarchy at a new level of depth. The process continues with a
loop involving the domain expert analysis and the sub-clusters
generation. At each iteration, new levels of sub-clusters are added
until the results are satisfactory. Further details on this process
are provided in Section 4.

Cluster description. In this step, the obtained clusters are
analyzed with different descriptive techniques. In Section 5, we
show how, by inspecting the attribute distribution in the obtained
clusters and the aggregation hierarchy in the dendrogram, inter-
esting insights are obtained. We also consider PCA plots to show
the distribution of the cluster labels along the directions where
data have maximum variance.

4 ADAPTIVE MULTI-LEVEL DENDROGRAM
CUT

The dendrogram is generated by an agglomerative hierarchical
clustering algorithm. Since our datasets consist of continuous at-
tributes, the euclidean metric is used for computing the distance
between pore pairs. After inspecting the results obtained with
different linkage techniques, we selected Ward’s method [17]. In
particular the single linkage criterion did not fit our purposes, as
it is sensible to noise and the points belonging to lower density
clusters are not merged properly in the dendrogram. More specif-
ically, single linkage connects two clusters when they present
a pair of points which are very close together. For this reason
higher density clusters are merged together in the first stages of
the dendogram and points in lower density regions appear in dif-
ferent isolated clusters. Instead, complete linkage tends to break
bigger clusters to have equal-sized groups. The algorithm be-
haviour with this metric is approximately similar to K-means and
does not produce good quality results. Average linkage produces
a trade-off result between the single and complete methods. How-
ever, by inspecting the first levels of the dendrogram together
with ENI domain experts, we observed that Ward’s method yields
a better separation of the main pore groups.

Figure 3: Dendrogram for Dset1.

As mentioned before, agglomerative hierarchical clustering
yields a binary tree structure, called dendrogram. The leaves
of the tree represent single pores to be clustered, while nodes
describe the merging points of clusters at different hierarchical
levels. The height of each merging point is defined by the linkage
distance between the two nodes to be merged.

Let Ch be the set of k clusters obtained by cutting the dendro-
gram at a specific height h:

Ch = {ch0 , ..., c
h
i , ..., c

h
k−1}

The dendrogram cut at height h is exploited to generate the first
level of groups, denoted as super-clusters. For example in Figure 3
the obtained super-clusters are tiny-pores, small-pores, big-pores1
and big-pores2 (these names have been conventionally assigned
by domain experts after the analysis of the macro-clusters). The
value of h is selected by inspecting the silhouette value of the
obtained groups. In Section 5 we further discuss how this value
is chosen for the different analyzed datasets.

When the domain experts deem the granularity of somemacro-
clusters as insufficient, the iterative generation of sub-clusters is
activated. Sub-clusters are generated by inspecting the descen-
dants of their corresponding super-cluster. The set of sub-clusters
of a cluster chi obtained by cutting the dendrogram at height h′
is defined as:

subclustersh′(chi ) = {ch
′

j : ch
′

j ∈ descendants(chi )}

where descendants(chi ) is the set of descendants of chi in the
tree hierarchy and ch

′

j are the nodes obtained by cutting the
dendogram at the new height h′. For example, in Figure 3 the
set subclustersh′(tiny- pores) is composed of sub-clusters tiny-a,
tiny-b, tiny-c. The definition of subclustersh′(chi ) can be applied
recursively to obtain multiple sets of subclusters, at different
levels of the hierarchy for different cluster subsets, until the
results are satisfactory (see Figure 2).

5 EXPERIMENTAL RESULTS
ENI provided us three different datasets (Dset1, Dset2 and Dset3),
whose samples were extracted from three thin sections mostly
composed by carbonates. As described in Section 3, the smallest
pores in each dataset are filtered out using a threshold specified
by ENI domain experts. Consider the left part of Table 1. The
biggest dataset, Dset3, presents 1.3M pores, while after filtering
its size is 4K rows. The smallest dataset, Dset2, changes from
300K to 5.9K pores. Note that, even if the original size of the
datasets can be quite different, the number of pores after filtering
takes similar values, ranging between 4K and 6K .



Datasets size Super-clusters size
Dataset # pores # filtered pores # tiny-pores # small-pores # big-pores1 # big-pores2 # big-pores3
Dset1 330346 6771 6194 489 74 14
Dset2 301828 5880 5025 634 213 7 1
Dset3 1349554 4164 4034 103 2 25

Table 1: Datasets and super-clusters size.

Figure 4: Super clusters generation. Silhouette varying the
number of clusters k .

Figure 5: Silhouette for different methods.

Super-clusters generation. After building the dendrogram
on the three datasets, we selected the proper values of h to cut
the hierarchy tree and obtain the super-clusters. In particular,
Figure 4 plots the silhouette values against the number k of
super-clusters in each dataset. For all datasets the silhouette
score decreases when k grows. However, even if the silhouette
is higher with lower values of k , a very low number of super-
clusters does not provide meaningful groups from a geological
point of view. Datasets Dset1 and Dset3 show stable silhouette
values in the range k = 3 to k = 4. Hence, we selected k = 4, the
maximum value of k before the silhouette rapidly decreases, for
these two datasets. Instead, dataset Dset2 shows stable silhouette
values for k = 2, 3 and k = 4, 5. For the same motivation, we set
k = 5, i.e., the highest number of clusters in the region of stable
silhouette values.

Table 1 shows the size of the obtained super-clusters. All
datasets are characterized by two big clusters (tiny-pores, small-
pores) and two smaller ones (big-pores1, big-pores2). Moreover,
Dset2 shows a cluster (big-pores3) with a single pore, which can
be considered an outlier. This confirms that the choice k = 5 for
dataset Dset2 produces similar results to the ones obtained with
the other two datasets.

Figures 6a, 6b, and 6c show the results of a Principal Component
Anaysis (PCA) on the pores of the three datasets by visualizing
the projection of the points on the first three components. The
different colors represent points belonging to the generated super-
clusters. For all three datasets, the two biggest clusters (tiny-pores,
small-pores) are characterized by the highest density, while the
others are sparser. Furthermore, the cluster structure is similar
for all datasets. The biggest clusters are characterized by lower
values of component pc1, while the smaller ones by higher values
of pc1. Finally, the outlier in Dset2 is clearly visible as an isolated
point in Figure 6b (big-pores3).

Sub-clusters generation.According to the analysis performed
by ENI domain experts, clusters big-pores1 and big-pores2 are pure
and well characterized for all datasets. Instead, clusters tiny-pores
and small-pores need to be further separated. Being guided by
ENI domain experts we generated k ′ = k ′′ = 3 sub-clusters
from tiny-pores and small-pores respectively. Figure 3 depicts the
resulting dendrogram for dataset Dset1. The names of the sub-
clusters are obtained by appending a suffix (-a,-b,-c) to the name
of their corresponding super-cluster (e.g., tiny-a, tiny-b). Note
that the cut point for the sub-clusters of small-pores is deeper in
the dendogram than the one for the three sub-clusters of tiny-
pores. This result cannot be obtained with a single dendrogram
cut and motivates the need for the proposed Adaptive Multi-level
Dendrogram Cut. To reach the granularity of the small-pores sub-
clusters with a single dendrogram cut we need to choose a height
H corresponding toK = 22 clusters. However, thisK value would
break the clusters big-pores1, big-pores2, tiny-a, tiny-b, tiny-c and
would produce a lower quality clustering.

Figure 5 shows the silhouette value for the final clusters ob-
tained with Adaptive Multi-level Dendrogram Cut and those
generated with a single dendrogram cut. The number of clusters
for the single dendrogram cut is K = 22, 19, 13 for Dset1, Dset2
and Dset3 respectively. The silhouette of the clusters obtained
with our method is clearly higher than the one based on one sin-
gle cut. This entails that our method not only produces a better
partition from a geological point of view, but also a better domain-
agnostic quality. A further discussion on the results shown in
Figure 5 is provided in Section 6.

Cluster description. We provide a description of the ob-
tained clusters by inspecting the attributes that allow charac-
terizing them. The PCA representation in Figure 6 shows the dis-
tribution of the different super and sub-clusters. We inspected the
attributes which are most representative of each of the three prin-
cipal components, by considering the ones with highest eigen-
values. For example, the first component, pc1, is characterized by
size attributes. In particular, higher values of pc1 entail higher
size of the pores. In Figures 6a, 6b, 6c, the super-clusters tiny-
pores and small-pores are characterized by lower values of pc1,
while big-pores1 and big-pores2 present higher values. Figure 7a
shows the distribution of one of the size attributes inDset1 for the
different super-clusters. It confirms that the distinction between
super clusters is partially driven by the size of the pores.



(a) Super-clusters of Dset1. (b) Super-clusters of Dset2. (c) Super-clusters of Dset3.

(d) Final clustering of Dset1. (e) Final clustering of Dset2. (f) Final clustering of Dset3.

Figure 6: Clusters obtained with hierarchical clustering for all datasets. PCA plots.

(a) Super-clusters of Dset1. (b) Sub-clusters of Dset1. (c) Sub-clusters of Dset1.

Figure 7: Cluster distributions.

Figures 6d, 6e, 6f show the final clustering, including both the
sub-clusters and the super-clusters that have not been further
divided. It can be noticed that sub-clusters present a finer sepa-
ration that also involves components pc2 and pc3. For example
in Dset1 clusters tiny-b and tiny-c are well separated by pc2. The
most relevant attributes for pc2 describe how much pores are
stretched, obtaining a non circular shape. Looking at Figure 7b it
is possible to see that pores in tiny-c show a higher stretching
than those in tiny-b that are more circular. The third principal
component, pc3, is related to pore irregularity, instead. From Fig-
ure 6d pores in cluster small-a present a lower shape irregularity
than those in small-c. This is also confirmed by the histograms
in Figure 7c. Following this methodology, ENI domain experts
are able to derive interesting insights, describing the geological
characteristics of the analyzed thin section.

6 LESSONS LEARNED
The analysis conducted in the previous sections highlights the
following results. First, the silhouette score, a domain-agnostic
quality index for evaluating clusters, is not always a good metric
from a domain driven point of view. Consider Figure 5. The
silhouette score computed on the super-clusters is higher than
the one obtained with the Adaptive Multi-level Dendrogram Cut.
For example, in Dset3 super-clusters reach a silhouette score
of 0.73, while Adaptive Multi-level Dendrogram Cut clusters
score 0.2. However, the quality of the clusters from the domain
experts point of view is higher for the proposed method, as the
super-clusters show an excessively coarse subdivision. In fact,
super-clusters have a strong correlation with the pore size, but
cannot capture more complex characteristics of the pore shape.

Second, the cluster description confirmed that sub-clusters
represent a finer subdivision of the initial groups according to



more complex characteristics, such as the pore stretching and
shape irregularity. According to the domain experts, this group-
ing has a good quality from a geological point of view, because it
generates groups that are distinguished by both geometrical and
genetic characteristics. These characteristics are fundamental for
geologists to inspect the structure of the analyzed thin section
and its permeability. Hence, the role of domain knowledge is
fundamental in driving the clustering process to obtain higher
quality results.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed the Adaptive Multi-level Dendrogram
Cut method for clustering geological pores in thin sections and
we evaluated its results on three different real datasets provided
by ENI. We demonstrated that the Adaptive Multi-level Den-
drogram Cut allows obtaining sub-clusters that capture more
complex characteristics of the pore shape and have higher sil-
houette values than the sub-clusters that would be obtained with
the corresponding single level dendrogram cut. Currently, the
Big Petro pipeline is under further evaluation by ENI domain
experts, which are planning to deploy it shortly.

As future work, we plan to integrate this pipeline with domain
driven self-tuning techniques that will allow fully-automatic pore
clustering. Furthermore, we will work on improving the cluster
description step to help domain experts in interpreting clustering
results.
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