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ABSTRACT
This paper proposes a new structural change point detection

method for time series using our new matrix decomposition

method. We propose YMN decomposition which decomposes

one time-series data matrix into a large random matrix and a

sparse matrix. YMN decomposition can obtain the information

about the latent structure from the sparse matrix. Thus our struc-

tural change point detection method using YMN decomposition

can detect the change in higher-order moments of a mixing ma-

trix as well as typical structural changes such as the change in

mean, variance, and autocorrelation of time series. We also partly

theorize our methods using existing theories of random matrix

and statistics. Our experiment using artificial data demonstrates

the effectiveness of our change point detection techniques and

our experiment using real data demonstrates that our methods

can detect structural changes in economics and finance.

1 INTRODUCTION
Unveiling the model of time-series data is necessary to explain

the causal relationships and to forecast the future. In economic

and financial modeling, the models of time-series data are not

apparent in many cases; moreover, their models are time varying

[2, 28, 32, 34]. Under such obscurity and instability of the models,

explaining the causal relationships among data and forecasting

the future are difficult but central problems in these fields [14, 16].

One straightforward method to overcome the instability is using

change-point detectionmethods. Change-point detection methods

divide piece-wise stable time-series data into several stable time-

series data [38]. Moreover, detecting the change point of the

structure is an essential task in time-series modeling in economics

and finance [2]. Research with a similar purpose can be found in

many fields such as biology [8], neuroscience [40], and computer

network analysis [1].

Structural change point detection is difficult because we do

not know the structure of the time-series before/after the change

point, and how the change occurs. However, factor modeling is

typically used to unveil the partial structures in economics [6]

and finance [33]. Economic or financial data such as GDPs and

stock prices are observed as high-dimensional time series data.

Assume that we observe a vector yt at time t . A factor model

assumes that a few typical “factors” generate the observed data.

It formally introduces two latent variablesA and zt and assumes

that the linear equation holds:

yt = Azt .
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Table 1: Examples of observed data y , latent data z and
mixing matrix A in several research fields

Field yt (observed) zt (latent) A (structure)

Robotics Sensor data

Motion

of parts

Structure

of data

Neuro-

science

EEG/fMRI

Waves

from

parts

Structure

of brain

Network Traffic data Packets

Network

Structure

Economics Macro data Factors

Economic

Structure

Finance Stock prices Factors

Structure

of Market

zt is a low-dimensional time-variant vector of factors, whileA is

a time-invariant coefficient matrix. A is called “factor loadings”

in the context of econometrics and “mixing matrix” in the context

of computer science. A implies the latent “structure” behind the

observed data. However, the structure may be changed abruptly

in reality because of major economic or political events such

as Brexit or the Global Financial Crisis. Most of the work per-

formed by economists and quantitative financial analysts, such

as the prediction and explanation of time-series, strongly rely on

their models [19, 37]. It is, therefore, crucial for them to detect

changes in their structures. As summarized in Table 1, the struc-

tures (i.e. the relationships between observed and latent data) are

important, and similar types of problems occur in many fields.

The change exhibits several patterns. The simplest one is the

change in the mean and variance ofA’s entities; it can be detected

by merely calculating the mean and variance of y . The change
in the numbers of factors and the change in the autocorrelation

of y are also the essential but straightforward ones [9, 12, 20].

The third- and fourth-order moments are also significant in the

literature of finance and econometrics, which attach special im-

portance to them [15]. However, they are difficult to be detected

because in high-dimensional cases, they approach the normal

distribution by the central limit theorem
1
and the change cannot

be observed in y . To the best of our knowledge, nonparametric

methods that detect changes of such skewness and kurtosis do

not exist, whereas many parametric methods do exist. [4, 30, 31].

Many previous studies showed the effectiveness of linear

models in detecting the structural changes of high-dimensional

data. Well-known methods such as principal component analysis

(PCA), non-negative matrix factorization (NMF), and indepen-

dent component analysis (ICA) can be interpreted as methods to

1
This interpretation of the central limit theorem is often used in ICA literature

[23]. In this literature, skew and kurtosis are interpreted as non-Gaussianity and by

using many samples, the non-Gaussianity of data will decrease by the central limit

theorem.



decompose one data matrix into two matrices that satisfy specific

properties. Moreover, a variant of these methods that specializes

in change point detection is developed such as OMWRPCA [41],

ILRMA [24], and TVICA [13].

We herein propose a new non-parametric change point detec-

tion method of the structures of multidimensional time series.

Our method decomposes the observed data matrix into a large

random matrix and a sparse coefficient matrix. First, we use ran-

domly generated large matrices as latent time series. However,

when a large random time series row vectors is generated, most

of its row vectors are not related to the latent time series, and

some are close to the latent time series. Therefore, we select good

row vectors by applying a sparse matrix to this. Finally, we can

detect the structural changes by calculating the difference of the

sparse matrix. Some previous works reported similar frameworks

such as latent feature Lasso [42] or extreme learning machine

[22]; however, studies using both the random matrix and the

sparse matrix have not been reported.

Moreover, we defined a new
2
type of change point, i.e., “the

third or fourth moment of factor loading changes”. Our experi-

ment showed that ourmethod can detect these change points. Our

framework does not exert power in other tasks such as prediction

and factor analysis. Meanwhile, in the context of non-parametric

change point detection, it has a high expressive power.

The main contributions of this paper are as follows.

• We propose YMN decomposition, which decompose one

time-series data matrix into a product of a random matrix

and a sparse matrix.

• We propose a structural change point detection method

using YMN decomposition.

• We demonstrate the effectiveness of our structural change

point detection techniques using experimental data and

real data.

The remainder of the paper is organized as follows. In the

next section, we present the related work. In Section 3, we clearly

define the problems to solve. In Section 4, we propose the method.

Themethod is evaluated in Section 5.We discuss the experimental

results, issues, and future work in Section 6. Finally, we conclude

the paper in Section 7.

2 RELATEDWORK
This paper proposes a new structural change point detection

method using nonparametric matrix decomposition. In this sec-

tion, we review the previous research that is related to ours in

terms of (1) method and (2) purpose. We do not review the works

that are not directly related to ours. Therefore, we refer to the

survey by Truong et al. [38] for a general review of change point

detection methods.

2.1 Non-parametric change point detection
As mentioned in the introduction, change point detection can

be divided into two types: (1) parametric and (2) nonparametric

change point detection.

Because parametric change point detection places strong as-

sumptions on the distribution of time series, it exhibits strong

capability within the assumption of the model users, but any

unexpected change point cannot be detected. Meanwhile, non-

parametric change point detection methods place only a few

assumptions on the time-series distribution of data. Therefore,

2
This concept is not new. However, no research in econometrics has defined this

type of change yet.

the model is free and can present a robust result; however, their

results often cannot be interpreted, and they can be less accurate

than parametric methods in some situations, e.g., the observed

time-series data completely follows one stochastic model.

Nonparametric change point detection methods are primar-

ily divided into two types. One type uses matrix decomposition

and the other uses kernel methods. The kernel methods [21, 26]

demonstrate a high ability when handling data with nonlinear

models; however, they are similar to parametric methods in that

the results strongly depend on the choice of the kernel functions.

On the other hand, methods that fit each purpose and each data’s

property are developed in each field, such as Robust PCA [41],

NMF [24], and ICA [3]. However, because a unique method to

decompose one matrix into two matrices does not exist, it is

necessary to place some assumptions on both matrices. These

assumptions significantly restrict the degree of freedom of the

model. PCA assumes no covariance on latent data,ICA assumes

independence on latent data. Hence, the method of matrix de-

composition used in each field differs significantly.

2.2 Structural change point detection
Next, we will explain the structural change point detection meth-

ods. In the parametric method, it is possible to assume a graph

structure or a time-series structure such as auto-regressive (AR)

and moving average [25, 40]. Meanwhile, in nonparametric meth-

ods, such a strong assumption cannot be made originally, but

many empirical studies indicate the magnitude of the expressive

power of the linear model. Among them, research to verify the

magnitude of the changes in the linear model factor loadings is

not attracting much attention; however, it is valuable in many

fields including economics, finance, biology, neuroscience, and

computer network analysis. However, economics and finance con-

tain rich multidimensional time-series data from the beginning,

and they unveil both their economic structure and structural

changes. Changes in the number of factors are the most popular

research topics [5], and the structural changes in AR models are

also popular [39]. Recently, a method using wavelet transform

and PCA has been developed, and this method can be applied

to both structural changes above [7]. Meanwhile, in the finance

literature, a method that uses ICA has been developed [13].

Finally, we clarify our position. First, our method is an on-

line change point detection method using nonparametric matrix

decomposition. Our method can be considered a matrix decompo-

sition method; meanwhile, it is close to the kernel method in that

it assumes that the latent time-series follows some model. How-

ever, in the context of online change point detection, time-series

are generated within a small window width; therefore, the ran-

domly generated time-series variation is large, and our method

can be considered as model-free. Meanwhile, our purpose is to

detect the change point of the structure, and can be applied to

all the structural changes defined above. It is also applicable to

new types of changes such as changes in higher moments of the

mixing matrix. Under such circumstances, our method can be

regarded as a new nonparametric method to detect structural

changes.

3 PROBLEM STATEMENT
In this section, we mathematically and clearly explain the models

that we will investigate, define the structural change that we

want to detect and explain the change according to the real-world

applications.Table 2 summarizes the notations used herein.



Table 2: Notation.

Notation Definition
D dimension of observed data

K dimension of latent data

t index of time: t ∈ {0, 1, . . . ,T − 1}

t∗ time of the change point

yt D-dimensional observed data at time t ,
ytd d-th element of yt
y observed time series: y = ⟨y0,y1, . . . ,yT−1⟩,
At a constant mixture matrix at time t
zt i.i.d. latent time series, which is a real

K-vector, at time t
Nt large random matrix used in Algorithm 1

Q dimension of large random matrix

We begin from the generative model. We observe a vectoryt ∈
RD at every time t . We assume that the vector yt is generated as
a mixture of latent time series

yt = Atzt ,

where At ∈ RD×K
is a mixing matrix and zt ∈ RK is a latent

time series. We can observe only yt and that both At and zt are
latent.

As is often the case in an econometric setting zt is assumed to

follow one stable deterministic or stochastic model.At is assumed

to be piece-wise constant with respect to time and shows the

structure behind data. Therefore,At may change abruptly because

major events occurred and the relation between the latent and

the observed changed. In this study, we denote t∗ as the time of

a structural change point if the following holds:

At =

{
A(1) (t < t∗),

A(2) (t ≥ t∗),

where A(1),A(2) ∈ RD×K
are constants and A(1) , A(2)

. Mean-

while, latent random signal zt is assumed to follow a Gaussian

distribution at any time, and it is independent and identically

distributed (i.i.d.) with respect to time:

zt ∼ N (0, IK ).

where IK is an identity matrix in RK×K
. Finally, the problem

is to obtain the time of the structural change point t∗, and the

estimation of At is of no interest.

As for the type of changes that we will detect, we will follow

the literature of econometric and finance [5, 7]. The structural

changes defined in this literature can be divided into three types,

that is

(1) change in the n-th moment of At
(2) change in the dimension of At and zt
(3) change in the autocorrelation of yt

Finally, we will explain the real-world applications and interpre-

tation of these three changes.

Change (1) is the simplest change. For example, the 1st-order

moment change in the At means the abrupt increase and de-

crease of the values. The 2nd-order moment change in the At
means some of the latent factors are increasingly or decreasingly

correlated to the observed data. The 4th-order moment change in

theAt means the increase or decrease in the number of non-zero

entries of At .

Change (2) is also under intense investigation in econometrics

because a new connection between the latent and observed time-

series are recognized and the explanation capability of the old

model decreased if the number of factors increased. Although

this is contrary to the setting, “The dimension of latent data K is

a constant,” we will address this type of change point similarly.

Change (3) appears not related to our models, but by substitut-

ing ⟨zt ,yt−1,yt−2, · · · ⟩ for zt , we can also address the time-series

models. This change is also important in many literature because

the time-series becomes less predictable from the observed time-

series if the autocorrelation of the y decreased and vice versa.

4 METHOD
In this section, we propose our structural change point detec-

tion method. Our goal is to detect the change in the matrix At .

Although both coefficients At and factors zt are latent, the the-
ory of random matrix and statistics [10, 11, 36] suggests that we

can approximate zt by selecting some vectors in a large random

matrix, and that At can be determined by Lasso regression. We

first decompose the matrix of observed vectors based on this sug-

gestion, and subsequently evaluate the change in the estimated

At .

4.1 Theory of Random Matrix and Lasso
In this section, we describe the methodology and the theory of

our method. First, we will explain the problem, and how and why

that problem can be solved.

As described in the previous section, our goal is to detect

the change in At . Most of the existing methods such as PCA,

NMF, and ICA solve this problem by estimating theAt and subse-

quently detect the change in the estimated At . However, we will

directly calculate the change d(At ,At−1) for an ideal distance of

matrix d , and we are not interested in estimating At .

To calculate the change in structure d(At ,At−1), our method

decomposes the observed data yt into a sparse matrixMt and a

large random matrix Nt , and subsequently calculates the change

inMt . How our method operates can be explained by the follow-

ing three basic ideas.

(1) If we generate many random vectors {N
(i)
t }

Q
i=1, the linear

combination of {N
(i)
t }

Q
i=1 may be similar to the true latent

variables zt .
(2) If we perform a Lasso regression analysis, setting Nt (ran-

dom vectors) as explanatory variables and yt (observed
time-series) as explained variables, then random vectors

in Nt that are similar to zt may be automatically chosen

and used to explain yt .
(3) If we perform such a Lasso regression analysis and ob-

tain Mt as a sparse coefficient matrix (i.e., yt = MtNt ),

the change in Mt may be related with the change in At
(structural change = true coefficient matrix’s change).

We explain our basic ideas briefly but they are mathematically

formulated and confirmed by the existing random matrix theory

and statistical theory in this section. For idea (1), we can use

the random matrix theory. Suppose we generated K-dimensional

random vectors denoted by {N
(i)
t }

Q
i=1 for Q times. As above, we

are considering the case where Q is much larger than K . For
example, in our experiments, we consider the case with Q =

100max{D,K}. If the matrix ⟨N
(1)
t , · · ·N

(Q )
t ⟩ is full rank (i.e.,

rank = K), some of the {N
(i)
t }

Q
i=1 are linearly independent and

we can obtain any vector in RK (including Zt ) by the linear



combination of {N
(i)
t }

Q
i=1 . The situation where the matrix is full

rank can be interpreted in that any singular value of the matrix

is non-zero. Many studies regarding the singular value of the

random matrix have been conducted [35], and we used the result

of Tao and Vu [36].

Proposition 4.1 (Theorem 1.3 [36]). Let ξ be a real random
variable,Mn (ξ ) be the random n × n matrix whose entries are i.i.d.
copies of ξ , and σi (M) be the i-th largest singular value of a matrix
M .

Suppose that E[ξ ] = 0,E[ξ 2] = 1 and E[ξC0 ] < ∞ for some
sufficiently large absolute constant C0. Subsequently, for all t > 0,
we have

p(nσn (Mn (ξ ))
2 ≤ t) = 1 − e−t/2−

√
t +O(n−c )

where c > 0 is an absolute constant and implied constants in the
O(.) The notation depends on E[ξC0 ] but are uniform on t

This proposition can be used in any normalized square, ran-

dom matrix (i.e., each entry are i.i.d. random variables whose

mean and variance are 0 and 1, respectively). The stronger result

is obtained in the Gaussian case (Theorem 1.1 in [11]). Moreover,

these results can be extended to rectangular matrices (Theorem

6.5 in [11]).

Idea (2) is mathematically formulated as follows.

Proposition 4.2 (mathematical formulation of idea (2)).

Let

• zt1, · · · , ztn ∈ R be i.i.d random variables.
• a1, · · ·an ∈ R be constants.
• yt := a1zt1 + · · · + anztn for all t = 0, 1, · · · ,T − 1

• wt1, · · · ,wtm ∈ R be i.i.d random variables
• where each pairs zt i ,wt j are independent.

and we estimate the coefficients by Lasso, such that

yt = b1zt1 + · · · + bnztn + bn+1wt1 + · · · + bn+mwtm

holds. Then,

• bi → ai for i = 1, · · · ,n
• bi → 0 for i = n + 1, · · ·n +m

as T → ∞.

To prove this proposition, we use a seminal work by Can-

des and Tao [10, 11]. They proved this proposition within this

assumption (restricted isometry constants)

Definition 4.3 (Definition 1.1 [10] Restricted Isometry Constants).
Let F be the matrix with the finite collection of vectors (vj )j ∈J ∈

Rp as columns. For every integer 1 ≤ S ≤ |J |, we define the

S-restricted isometry constants δS to be the smallest quantity

such that FT obeys

(1 − δS )∥c ∥
2 ≤ ∥FT c∥

2 ≤ (1 + δS )∥c ∥
2

for all subsetT ⊂ J of cardinality |T | ≤ S , and all real coefficients

(c j )j ∈T . Similarly, we define the S, S ′-restricted orthogonality

constants θS,S ′ for S + S
′ ≤ |J | to be the smallest quantity such

that

|⟨FT c, FT c
′⟩| ≤ θS,S ′ · ∥c ∥∥c

′∥

holds for all disjoint sets T ,T ′ ⊂ J of cardinality |T | ≤ S and

|T ′ | ≤ S ′.

The numbers δS and θS,S ′ measure how close the vectors are

to behaving as an orthonormal system. Subsequently, Proposition

4.2 can be proven as follows.

Proposition 4.4 (Theorem 1.1 [11]). Consider the linear model
y = Xβ + z where X ∈ Rn×p ,y ∈ Rn , z ∼ N (0,σ 2In )
Suppose β ∈ Rp is a vector of parameters that satisfies

• ||β ∥L0 = |{i | βi , 0}| = S
• δ2S + θS,2S < 1

where δ2S ,θS,2S are the constants defined in Definition Def4.3.
Here, we will estimate β ′ by setting λp =

√
2 logp

β ′ = argmin
˜β ∈Rp ∥

˜β ∥L1 subject to ∥X ∗(y − X ˜β)∥L∞ ≤ λpσ

Then β ′ obeys

∥β ′ − β ∥2L2 ≤ C2

1
· (2 logp) · S · σ 2

where C1 = 4/(1 − δS − θS,2S ) with large probability. 3

4.2 YMN Matrix Decomposition and
Structural Change Point Detection

Idea (1) can be interpreted as, "we can generate the true latent

time series zt ;" idea (2) can be interpreted as "we can obtain the

true latent time series zt ". Therefore, by combining ideas (1) and

(2), we will obtain idea (3), "we can generate and obtain the true

latent time-series and the true latent mixing matrix."

Conjecture 4.5 (mathematical formulation of idea (3)).

Let
• yt = Atzt
• yt ∈ RD×T be an observed matrix,
• zt ∈ RK×T be a latent matrix,
• At ∈ RD×K be a mixing matrix,
• Nt ∈ RQ×T be a large random matrix.
• Mt ∈ R

D×Q be the sparsest matrix such that
∥yt −MtNt ∥ ≤ (1−θ )∥yt ∥ holds for a given hyperparam-
eter θ .

Then, distances d1 and d2 exist in RD×K and RD×Q such that

d1(At1 ,At2 ) ≃ d2(Mt1 ,Mt2 )

holds for all 0 < t1 < t2 < T

This conjecture suggests that we can approximate the change

of mixing matrix d1(At1 ,At2 ) by the change of the sparse matrix

d2(Mt1 ,Mt2 ) and that we don’t have to directly identify A in

change point detection problems. In the remainder of this section,

we show the matrix decomposition algorithm and the change

point detection algorithm based on this conjecture. We do not

know the properties of the distances d1andd2. However, we used
the function d2(Mt1 ,Mt2 ) := ∥Mt1 ∥L2/∥Mt2 ∥L2 , which is not a

distance but is robust under the permutations of the row vectors

ofM .

Algorithm 1
4
shows how our matrix decomposition using a

large random matrix is conducted. Our ultimate goal is to de-

compose the observed data yt into a random matrix Nt and

sparse matrix Mt such that the change in the Mt is related to

the change in At . To obtain a sparse matrixMt , we first gener-

ate a large random matrix Nt ; subsequently, our method mini-

mizes the sparseness of the coefficient matrix within a constraint

∥Y −MtNt ∥ ≤ (1−θ )∥Y ∥ whereY is theD×T matrix whose row

vectors are yt . Algorithm 2 shows our change point detection

3
The term "with large probability" is used in the original paper [11]. This term

means that the probability that the equation holds is above 1 − 1√
π logp

4
We name this algorithm "YMN" after the equation Y = MN .M is the first initial

of the mixing matrix and mechanism, and N is the first initial of the normalized

random matrix.



Algorithm 1Matrix decomposition using a large randommatrix

(YMN)

Definition
Y : D ×T matrix that we want to decompose

M : D × K sparse matrix

N : K ×T large random matrix

Ni : 1 ×T i-th row vector of N
E[x],V [x]: the mean and variance of vector x ’s entities
θ : threshold value of Lasso fitting score

α : hyperparameter of Lasso, i.e., the coefficient of the L1 term
δ : step value of α , used during hyperparameter optimization

Lasso(X ,T ;α ): matrixW that minimizes | |T −WX | |2+α | |W | |1

End Definition
N = ⟨N0, · · · ,NK−1⟩ ∼ N (0, I )
for i = 0, · · · ,K − 1 do

Ni ⇐ (Ni − E[Ni ])/
√
V [Ni ]

end for
M ⇐ Lasso(Y ,N ;α )
while ∥Y −MN ∥ ≤ (1 − θ )∥Y ∥ do
α ⇐ α + δ
M ⇐ Lasso(Y ,N ;α )

end while

algorithm. First, we use the series of window frames Yt for each
time and perform the matrix decomposition of Yt . At this time,

we have a series of matrix Mt . We calculate the change point

score using the distance betweenMt andMt+1.

Algorithm 2 Change point detection algorithm using YMN de-

composition

Definition
w : window size, t : current time

yt : series vector, st : change point score
⟨, ⟩: concatenation of vectors into a matrix.

MatrixDecomp(Y ): Decompose Y into two matrices by YMN

decomposition.

End Definition

for t = 0, · · · ,T −w − 1 do
Yt ⇐ ⟨yt ,yt+1, . . . ,yt+w−1⟩

NtMt ⇐MatrixDecomp(Yt )
st ⇐ d2(Mt ,Mt+1)

end for

5 EXPERIMENT
To demonstrate that our methods can detect structural change

points, we conducted two experiments. First, we conducted ex-

periments in artificial settings where their structures and changes

are clear. We demonstrate which type of structural change points

can be detected and how these changes are detected clearly by

these experiments.

Subsequently, we conducted experiments in real-world set-

tings where the structures and changes in structures are not clear.

We used economics [18] and financial [17] data that are popular

in the literature of structural change point detection. We demon-

strate that our method can be used in the real-world through

these experiments.

Table 3: Settings of Experiment.

Notation Setting Definition
D 100 dimensions of observed data

K 10 dimensions of latent data

T 100 max index of time 0 ≤ t < T
t∗ 50 time of the change point

At see below a mixture matrix at time t
zt N (0, IK ) i.i.d. latent time series

yt Atzt observed data at time t ,
Q 10000 dimension of random matrix

θ 0.99 fitting score in Algorithm 1

w 10 time window in Algorithm 2

d2(X ,Y ) ∥X ∥L2/∥Y ∥L2 d2 in Conjecture 4.5

5.1 Artificial Data
To verify that our method can detect the structural changes de-

scribed above, we conducted experiments with artificial data and

compared the AUC scores to those of the existing methods (PCA,

ICA, and NMF). All of the experiments were conducted in an "on-

line" setting. In other words, we fetched the time-series data yt
forw times and decomposed the matrix ⟨yt ,yt+1, . . . ,yt+w−1⟩

into two matricesMt ,Nt and detected the change inMt . Change

point detection algorithms using PCA, ICA, and NMF are exe-

cuted in the same manner as Algorithm 2, that is, by defining

MatrixDecomp in Algorithm 2 as PCA, ICA, and NMF. For exam-

ple, if we perform a dimensional reduction from Yt to Zt such
that Zt = MtYt holds by PCA, then we calculate d2(Mt ,Mt+1).

In addition, if we perform a matrix decomposition by ICA or NMF

such thatYt = MtNt holds, then we calculated2(Mt ,Mt+1). Note

that if we perform NMF , we consider Yt +C instead of Yt where
C is a constant such that Yt + C > 0 holds for all t . Table 3

summarizes the settings of these experiments.

In this experiment, we detected the following types of changes.

(1) Mean of Factor Loadings’ Change

At =

{
A (t < t∗),

A +W (t ≥ t∗),

where

Ai, j ∼ N (0, 1),Wi, j ∼ N (µ, 1) , µ ∈ {0.5, 1.0, · · · , 4.5, 5.0}

(2) Variance of Factor Loadings’ Change

At =

{
A (t < t∗),

A +W (t ≥ t∗),

where

Ai, j ∼ N (0, 1),Wi, j ∼ N (0,σ ), σ ∈ {0.5, 1.0, · · · , 4.5, 5.0}

(3) Skew and Kurtosis of Factor Loadings’ Change

At =

{
A (t < t∗),

A +W (t ≥ t∗),

where

Ai, j ∼ N (0, 1),Wi, j ∼ tdf (0, 1),d f ∈ {1, 3, 5, · · · , 19}

(4) Number of Factors’ Change

At =

{
A(0) ∈ RD×K (t < t∗),

A(1) ∈ RD×(K+k ) (t ≥ t∗),

where A(0)

i, j ,A
(1)

i, j ∼ N (0, 1), k ∈ {2, 4, 6, 8, 10}

(5) Coefficient change in AR(1)

yt+1 = αtyt + βt 1 + γtϵt



Table 4: Comparison of AUC scores. Experiments (1)-(5) shows our methods are effective and Experiments (6) shows we
cannot detect that type of changes.

Methods (1) (2) (3) (4) (5) (6)

PCA 0.877 ± 0.0502 0.961 ± 0.0239 0.671 ± 0.0566 0.729 ± 0.0470 0.707 ± 0.0524 0.628 ± 0.0548

ICA 0.881 ± 0.0474 0.949 ± 0.0335 0.701 ± 0.0508 0.800 ± 0.0418 0.701 ± 0.0425 0.611 ± 0.0560

NMF 0.629 ± 0.0705 0.804 ± 0.0642 0.583 ± 0.0500 0.721 ± 0.0541 0.614 ± 0.0502 0.659 ± 0.0507

Ours 1.000 ± 0.0000 1.000 ± 0.0000 0.952 ± 0.0204 0.998 ± 0.0010 0.999± 0.0001 0.552 ± 0.0637

αt =

{
α0 (t < t∗),

α0 − δ (t ≥ t∗),

where α0 = 0.9 and δ ∈ {0.1, 0.2, · · · , 0.8} and βt = 1 − αt and
γt =

√
1 − αt and ϵt ∼ N (0, 1). By this settingsyt always satisfies

normal conditions E[yt ] ≡ 0,Var[yt ] ≡ 1.

(6) Resample from same distribution

At =

{
A (t < t∗),

B (t ≥ t∗),

where

Ai, j ∼ N (0, 1), B i, j ∼ N (0, 1),i.i.d.

Table 4 shows the mean and standard deviation of the AUCs for

each task.

The hyperparameters in all experiments in Table 4 are those

of the easiest tasks, i.e., (1) µ = 5.0, (2) σ = 5.0, (3) d f = 1, (4)

k = 10, (5) δ = 0.8. The AUC score in each cell is the score to

classify whether a given yt is the point before/after the change
where t ∈ {t∗, t∗±10, t∗±20, t∗±30}. For each task, we generated
100 samples at random and detected the change points.

Experiments (1) and (2) are easy tasks, and we can detect the

change points with no mistakes. Experiments (3), (4), and (5) are

relatively difficult tasks, but we can detect the change points with

higher accuracy than the existing methods. Experiment (6) is the

most challenging task, and all of the methods cannot detect the

change points accurately because there is no change in moments

nor distributions.

Figure 5.1 shows the L2 norm of theMt and we found that the

change in the original mixing matrix At and the change in the

sparse matrixMt are highly correlated.

5.2 Real-world Data
To verify that our method can be used in the real world, we con-

ducted experiments with two famous datasets in economics [18]

and finance [17]. First, we calculated d2(Mt+1,Mt ) at each t . We

then listed A points whose d2(Mt+1,Mt ) are in the top A. Finally,
we clustered these A points into B points using k-means cluster-

ing. Note that the listing and clustering are performed by off-line

settings, whereas our change-point detection method is an online

method. Because no ground truth of change points exists in eco-

nomic or financial data, we only consider true- and false-positive

cases. In other words, we listed change points detected by our

methods and checked whether a major event occurred in finance

or economics.

5.2.1 US macroeconomic dataset. We analyzed the US repre-

sentative macroeconomic dataset of 101 time series, collected

monthly between 1959 and 2006 (T = 576), for the change points.

We listed 10 remarkable changes resulting from the aforemen-

tioned off-line listing method with P = 30,Q = 10 in Figure 5.2.

Our change point detection methods clearly show the following

major change points in the US economy.

• the Great Moderation period that started in 1983

• major economic recession in early 1970s

• major economic recession in early 1980s

• Internet Bubble between 1999 and 2001

• the oil crisis at 1973

These change points are consistent with the existing research

on business cycles [29]. Moreover, the Internet Bubble and the

oil crisis are not detected in previous research in econometrics

[5, 7, 9, 27].

5.2.2 US 48 Industry Portfolios. We analyzed the US 48 indus-

try portfolio collected daily between 1926 and 2018 (T = 24350)

for the change points [17]. We listed five most significant changes

by the same clustering methods as Figure 5.2 in Figure 5.3. Our

change point detection methods clearly show the following four

major change points in the US stock market history: Wall Street

Crash of 1929, Kennedy Slide of 1962, Black Monday of 1987, and

financial crisis of 2007. Moreover, we observed that the magni-

tudes of these change by the scores.

6 DISCUSSION
We demonstrated that our method can detect all three types of

structural changes defined in Section 3. This is because Conjec-

ture 4.5 is true to some degree. That is, by Proposition 4.1, we can

generate the same latent time-series by combining the random

time-series; further, by Proposition 4.2, we can detect true latent

time series by Lasso. Table 4 shows that this method is much

more accurate than the existing matrix decomposition methods.

This is because our method was initially created to detect the

structural changes that we defined, but the existing methods

cannot detect these changes.

Figure 5.1 shows the L2 norm of theMt and we can see that

the change of the original mixing matrix At and the change of

the sparse matrix Mt are highly correlated. Hence this figure

supports our Conjecture 4.5.

However, we could not detect the change (6). This is because

the distance we used does not consider the permutation of the

row. In other words, we consider only ∥Mt ∥L2 at each time t .
Therefore, we cannot detect changes in swaps of elements of At .
We expect that our methods can detect these changes by choosing

some of the row vectors and by performing our decomposition

repeatedly. From the facts above, it is clear that our method can be

applied to the detection of structural changes in economics and

finance. As mentioned in the Introduction, econometrics is an

advanced research field in handling the change points; therefore,

we think that this method can be applied to the detection of

structural changes in many fields. For example, neuroscience and

network analysis have similar objectives to ours because they

cannot detect the exact model of the time-series, and structural

changes are important to them.



0 20 40 60 80
time

1.0

2.0

3.0

4.0

L2
 n
or
m
 o
f M

t

Δμ=Δ.0
Δμ=4.Δ
Δμ=4.0
Δμ=3.Δ
Δμ=3.0
Δμ=2.Δ
Δμ=2.0
Δμ=1.Δ
Δμ=1.0
Δμ=0.Δ

(a) Experiment (1) Mean of At ’s Change

0 20 40 60 80
time

1.0

2.0

3.0

4.0

L2
 n
or
m
 o
f M

t

Δσ=Δ.0
Δσ=4.Δ
Δσ=4.0
Δσ=3.Δ
Δσ=3.0
Δσ=2.Δ
Δσ=2.0
Δσ=1.Δ
Δσ=1.0
Δσ=0.Δ

(b) Experiment (2) Variance of At ’s Change

0 20 40 60 80
time

1.0

1.1

1.2

1.3

1.4

L2
 n
or
m
 o
f M

t

ddof=19
ddof=17
ddof=15
ddof=13
ddof=11
ddof=9
ddof=7
ddof=5
ddof=3
ddof=1

(c) Experiment (3) Skew and Kurtosis of At ’s Change

0 20 40 60 80
time

1.0

1.2

1.4

1.6

1.8

L2
 n
or
m
 o
f M

t

Δr=0.8
Δr=0.7
Δr=0.6
Δr=0.5
Δr=0.4
Δr=0.Δ
Δr=0.2
Δr=0.1

(d) Experiment (4) Number of Factors’ Change

0 20 40 60 80
time

1.0

1.1

1.2

1.3

1.4
L2
 n
or
m
 o
f M

t

δ=10
δ=8
δ=6
δ=4
δ=2

(e) Experiment (5) Coefficient change in AR(1)

0 20 40 60 80
time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L2
 n
or
m
 o
f M

t

(f) Experiment (6) Resample from same distribution

Figure 5.1: L2 norm of the sparse coefficient matrixMt at each time t . The change of the original mixing matrixAt and the
change of the sparse matrixMt are highly correlated.
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Figure 5.2: Change point score of US macroeconomic data
with time window = 6months and 12months. We pointed
A = 30 largest change points by circles and labeled B = 10

selected change points by (year-month, score) and pointed
them by stars for a better understanding.

7 CONCLUSION
We herein proposed a new nonparametric change point detection

method of the structures of multidimensional time series. We
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Figure 5.3: Change point score of US stock data with
time window = 3 days. We identified 100 most significant
change points and labeled five selected change points by
(year-month-day, score) and pointed them by stars for a
better understanding.

used a large random matrix to generate the latent time series,

and Lasso to obtain good row vectors and to select the related

row vectors. We also demonstrated that our method could detect

not only typical structural changes used in econometrics and

finance but also new types of structural changes such as the

changes in the higher moment of the mixing matrix. With the

random matrix theory and statistical theory of Lasso, we partly

unveiled the mechanism and theory of our methods. However, a

conjecture that fully supports our methods remains unproven.

We demonstrated the effectiveness of our change point detection

techniques by artificial data and real-world data in economics and

finance. Similar structural changes may occur in many fields, but

we have allocated comparison with the state-of-the-art methods

and specialization in other fields as future work.
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