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ABSTRACT 
 

Wildfire smoke from forest fire is a major 
source of air pollution in Canadian cities. 
Wildfire smoke includes different types of 
gases and particles that adversely affect 
human health. Particulate Matter (PM), as 
the predominant pollutant in wildfire 
smoke, poses the greatest risk to human 
health. Accurate investigation of wildfire-
related PM2.5 is critical to understand 
health-related effects. This research 
investigated PM2.5 concentration of wildfire 
smoke drifting over parts of Alberta in 
August 2017 from British Columbia, 
Montana, Idaho, and as far away as 
Washington State. We developed OLS and 
GWR land use regression models, which 
integrate the use of MODIS Aerosol Optical 
Depth data and temporal indicators to 
model PM2.5 concentration. The results 
provide estimates of PM2.5 at finer spatial 
resolution than ground-based records; these 
estimates could aid epidemiological studies 
to assess the health effects of wildfire 
smoke. 

1. Introduction 
Intensity and frequency of wildfire events 
have increased in recent decades and is 
likely to be aggravated by climate change. In 
the past decade, wildfires have come to the 
attention of public health and ecosystem 
studies (Youssouf et al. 2014). Wildfire PM 
and gaseous products can lead to acute and 
long term health impacts on exposed 

populations. Among these pollutants, fine 
particles are the most harmful (WHO 2000)  
During the summer of 2017, Alberta 
experienced a severe smoke episode 
associated with different wildfires. In mid-
August, smoke from wildfires in British 
Columbia, Montana, Idaho and Washington 
State has drifted over parts of Alberta, 
making the air quality (AQ) so poor that it 
made the headlines (e.g. CBC 2017). 
AQ ground stations provide the most 
accurate data on PM2.5 concentration near 
the ground. However, due to their high 
operational cost, they have sparse 
distribution and limited spatial coverage, 
especially in remote rural area. 
Land Use Regression (LUR) models and 
satellite observation based models can 
address these limitations. A variety of 
studies have used LUR and remote sensing 
based models to estimate PM2.5 
concentration (Van Donkelaar et al. 2006; 
Liu et al. 2007; Van Donkelaar et al. 2015; 
Li et al. 2016); however, few studies 
reported smoke-based PM2.5 estimation 
during fire periods (Mirzaei et al. 2018; 
Hodzic et al. 2007). 
Spatial data tend to exhibit spatial non-
stationarity, defined as inconstant spatial 
variability (Anselin 1988). This spatial 
property can lead to spatial instability of 
regression coefficients (Fotheringham et al. 
1998). Spatial non-stationarity can be 
addressed by geographically weighted 
regression (GWR) (Fotheringham et al. 
1998). 



 

 

The present study aimed to assess the 
performance of local GWR LUR to estimate 
PM2.5 concentration associated with 
wildfire in Alberta in August 2017 compared 
to the linear method. 

2. Methods and Data 
2.1 Study area and ground-based 
PM2.5 measurements 
The study area (Figure 1) includes all 
Alberta Airshed Zones (AAZ). Twenty-four-
hour PM2.5 concentration were collected at 
49 continuous AQ stations located in AAZ1 
over an extended period (Aug 7 to 22), 
centered on the fire event (August 13-18) 
and including 6 days before and 4 days after 
the event. Daily PM2.5 concentrations 
(Figure 2) were averaged for the fire event 
period in each station.  

 
Figure 1. Distribution of the 49 Air Quality 

monitoring stations within the study 
area. 

2.2 Predictors 
The LUR model relied on the following 
predictor categories. 

                                                        
1http://airdata.alberta.ca/RelatedLinks.asp
x 

2.2.1 Temporal and spatial predictors 
Temporal variables were wind speed, 
temperature, and humidity collected hourly 
at each monitoring station and averaged 
over the study period.  
Spatial variables were industrial PM2.5 
emission sources, road length, vegetation 
index, elevation, and distance from sources 
of fires. Industrial sources and road length 
were calculated over circular buffers of 5 
and 10 km for industrial and 1 km for the 
road around each station. The Alberta road 
network was acquired from the National 
Road Network (NRN 2015), and industrial 
emission sources from the National 
Pollutant Release Inventory (NPRI 2016). 
Normalized Difference Vegetation Index 
(NDVI) images (MOD13C2) were used as an 
indicator of vegetation cover. The 3 km 
spatial resolution (SR) images for August 
2017 were collected from the NASA 
Giovanni website (Acker & Leptoukh 2007). 
Elevation data were acquired from DMTI 
Spatial (DMTI 2010). 
As the 2017 wildfire originated in different 
locations, three points were considered as 
sources of fire: one in BC, one in 
southwestern Alberta on the Canada-USA 
border, and one in Idaho (USA) (Figure 1). 
The Euclidean distance between each AQ 
station in the study area and each source of 
the fire was calculated and included in the 
model as a predictor.   
The predictor variables pertaining to each 
AQ station location are presented in Table 1.  

2.3 AOD images 
Daily AOD images at 10x10 km SR, derived 
from MODIS terra collection data (NEO 
2017) for the period of interest, were used as 
the AOD predictor. Further, averaged AOD 
product of MODIS at 1 degree, about 100 
km, SR were collected from the NASA 
Giovanni website (Acker & Leptoukh 2007). 
They were used to fill some of the gaps in 
the 10x10 AOD images: 5x5 mean filter was 
applied, wherever possible, to calculate the 
missing values of the finer resolution images 
from their surrounding pixels; in areas 
where no surrounding pixels existed, the 
coarser resolution images were used to 
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simply fill gaps of the finer resolution image 
with its values.  

2.4 Prediction Models 
Traditional LUR models are described by 
standard regression equations (Eq.1), where 
the response variable yi, i.e. observed PM2.5 
concentration at location i is expressed as a 
function of k land use predictors, i.e., xi1 
through xik, such as those detailed in Table 1. 

The 0 through k coefficients are estimated 
using ordinary least squares (OLS). 

      ∑        
 

( ) 

Since global Moran’s I spatial statistical test 
(Florax et al. 2003; Getis and Aldstadt 
2004) of the PM2.5 concentration (Table 1) 
indicated that there was significant spatial 
autocorrelation, showing a likelihood of a 
clustered pattern, GWR was applied. 
GWR applies a spatial weighting function on 
the spatial coordinates of each data point, 
i.e. (ui, vi), to subdivide the study area into 
local neighbourhoods, where local 
regressions are calculated (Eq. 2). 
Consequently, GWR produces n local 
regressions, each of them linear, and each 
one over a neighbourhood defined by the 
kernel function. A fixed bandwidth with a 
Gaussian kernel was selected. The 
bandwidth was determined automatically by 
minimizing a leave-one-out cross-validation 
(CV) score (Fortheringham et al. 2002). 

     (     )  ∑  (     )        
 

( ) 

Forward stepwise multiple linear regression 
(SMLR) was employed as a variable 
selection procedure to identify the 
significant predictors in the regression 
model.  
LUR models were calculated in R (R Core 
Team 2018) using mainly the ‘spdep’ 
(Bivand & Piras 2015; Bivand et al. 2013), 
‘GWmodel’ (Gollini et al. 2013), ‘car’ (Fox & 
Weisberg 2011), and ‘lmtest’ packages 
(Zeileis & Hothorn 2002). 

3. Results and Discussion 
Figure 2 shows the daily variability of PM2.5 
concentration recorded at the 49 AQ 
stations. The figure shows that PM2.5 

concentration is under background level (20 
µg/m3) almost for all stations before and 
after the smoke event. It can also be seen 
that the daily averaged PM2.5 concentration 
raised dramatically on August 13 and 
remained elevated until August 18.  
Descriptive statistics of PM2.5 concentration 
over the study period are presented in Table 
1. 
 

 
Figure 2. Daily variability of PM2.5 concentration at the 49 

stations located in the study area. 

Table 1. Descriptive statistics of response 
(PM2.5) and predictor variables  

Response 

Variable 
Min Max Moran’I P(I) 

PM2.5 9.85 57.9 0.6 0.00 

Predictors Name/ Description 
Unit/ 

Resolution 
Range 

AOD 
Merged Aerosol 
Optical Depth 

10x10 km 0.57 

NDVI Vegetation Index 3x3 km 0.59 

TEMP Temperature Celcius 20.31 

RH Relative humidity Percentage 75.30 

WSP Wind speed 
km/hr at 10 

m height 
17.62 

Ind_5km/ 
10km 

Industrial points 
around each station 
within 5 and 10 km  

Points in 
buffer 

29 / 41 

Road 1km 
Road length around 
each station 

Length in 

buffer 
(meter) 

46,711 

ELV Elevation meter 1171.28 

BC-Dis 
Distance from fire 
in BC 

kilometre 628,725 

Idaho-Dis 
Distance from fire 
in Idaho  

kilometre 997,808 

BC-US-dis 
Distance from fire 

in BC_USA border 
kilometre 749,683 

 
The variables identified by SMLR included 
AOD, wind speed, temperature, elevation, 
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and BC-distance. AOD, followed by wind 
speed and temperature, were the three most 
significant variables in both OLS and GWR 
models. 
 
Table 2 and Table 3 present the statistical 
results of OLS and GWR models 
respectively. The OLS LUR yielded a 
relatively high goodness-of-fit, with R2 of 
0.74 and adjusted R2 of 0.71. However, the 
model performance was improved 
substantially by the use of GWR, with 
higher R2, and lower AIC and RSS values 
compared to the OLS model. 
 
Table 2: OLS results 

 Coef Std.Error P-Value 

Intercept 34.4 8.52 0.00 

AOD 14.9 7.33 0.04 

WSP -1.23 0.28 0.00 

TEMP 0.67 0.23 0.00 

ELV 9.8E-03 5.3E-03 0.07 

BC-Dis -3.8E-05 7.1E-06 0.00 

R
2
 0.74 Adj.R

2
 0.71 

AIC 313 RSS 1306 
LMerr Res 0.005 Res Moran’s I -0.006 

 

Roads and industries are known as two 
important sources of PM2.5 in cities; 
however, these two variables were not 
significant in these models and were 
removed on the SLRM variable selection 
procedure. This result indicates that the 
presence/absence of wildfire smoke affects 
the model’s predictors, as meteorological 
variables dominate the model, extruding 
those variables normally associated with 

PM. Similar results were obtained by our 
recent study of LUR models before, during, 
and after wildfire events (Mirzaei et al. 
2018).  

 

Table 3: GWR results 

 
Coef 

median 
Coef 

range 
t-Value 
mean 

t-Value 
range 

Intercept 37.4 25.5 3.98 2.2 
AOD 16.4 42.6 1.72 4.79 

WSP -1.14 1.28 -3.6 0.05 
TEMP 0.67 0.48 2.8 2.91 

ELV 9.0E-03 8.6E-03 1.63 1.17 
BC-Dis -4.4E-05 4.8E-05 -5.5 3.78 

R2 0.84 Adj.R2 0.77 
AIC 288 RSS 830 

LMerr Res 1.92 Res Moran’s I -0.11 

 
Observed versus GWR predicted PM2.5 
concentration, as well as OLS and GWR 
residuals are shown in Fig. 3. 
The observed PM2.5 concentration is higher 
in the western parts of Alberta mainly due 
to the longer distance to the fire(s) of 
interest. The GWR fitted concentration 
follows this pattern through its association 
with the selection of distance to BC wildfire 
among all three sources of fire. 
It can be seen in the residuals maps that not 
only did the GWR model performed better 
than the OLS model, but also that this 
difference is greater for lower PM2.5 
concentration (shown in grey), relative to 
higher concentration. Over- and under-
estimates do not present any spatial pattern 
but demonstrate that more work needs to be 
done for a more accurate model. 
 

 
 



LUR modelling of wildfire smoke in Alberta 5 
 

 

  

   
Figure 3 Observed and GWR predicted PM2.5 concentration, as well as OLS LUR and GWR LUR residuals 

(orange corresponds to underfitted values and blue to overfitted ones) 

 
 

4. Conclusion 
Due to wildfire events from BC and the 
USA, some parts of Alberta experienced a 
high level of smoke and PM2.5 
concentration in August 2017.  
In the present study, we modelled the 
spatial distribution of PM2.5 concentration 

due to wildfire smoke using OLS and GWR 
land use regression that integrated MODIS 
AOD, meteorological data, and spatial 
variables. The OLS results indicated that the 
global model performed relatively well; 
however, the GWR LUR has achieved a 
better model performance, as shown by 
higher R2 and lower AIC and RSS. 
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Overall, we have demonstrated the potential 
of integrating satellite AOD data with spatial 
and temporal variables to accurately predict 
PM2.5 concentration during wildfire smoke 
events. Building on these promising results, 
our models can be further improved by 
using more spatiotemporal variables and 
better methodology to fill AOD images’ 
gaps, so that we can develop daily models of 
the PM2.5 plume. 
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