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ABSTRACT 
 
Contemporary landscape regionalization 
approaches, frequently used to summarize 
and visualize complex spatial patterns and 
disturbance regimes, often do not account 
for the temporal component which may 
provide important insight on disturbance, 
recovery, and change in ecological 
processes. The objective of this research was 
to employ novel statistical approaches in 
functional data analysis to quantify and 
cluster spatial-temporal patterns of 
landscape disturbance and recovery in 223 
watersheds using a Landsat disturbance 
time series from 1985 – 2011 in western 
Alberta, Canada. Cumulative spatial 
patterns of disturbance, representing the 
proportion, arrangement, size, and number 
of disturbances per watershed, were 
modelled as functions and scores from a 
functional principal component analysis 
were clustered using a Gaussian finite 

mixture model. The resulting eight 
watershed clusters were mapped with mean 
functions representing unique temporal 
trajectories of disturbance and recovery. 
There was considerable variability in 
disturbance amplitude among the clusters 
which increased markedly in the mid-1990’s 
while remaining low in parks and protected 
areas. The regionalization highlights unique 
temporal trajectories of disturbance and 
recovery driven by anthropogenic and 
natural disturbances and enables insight 
regarding how cumulative spatial 
disturbance patterns evolve through time.   
     

1. Introduction 
 
Terrestrial ecosystems are subject to a range 
of natural and anthropogenic disturbances 
that influence landscape dynamics and 
heterogeneity. In North America, the 
frequency, extent, and severity of natural 
disturbances, including forest fires and 
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insect infestations, has been increasing due 
to anthropogenic influences and climate 
change (Turner, 2010). Similarly, 
anthropogenic activities and anthropogenic 
pressures on many terrestrial ecosystems 
are growing as resource extraction activities, 
including forest harvest, road network 
development, and energy development and 
mining contribute to land use change and 
landscape fragmentation (Pickell et al., 
2016). Cumulatively, landscape disturbance 
is temporally dynamic given post-
disturbance recovery, regeneration, and 
succession. As such, monitoring and 
quantifying how spatial patterns of natural 
and anthropogenic landscape disturbance 
change over time is critical for 
understanding how ecological processes are 
influenced by disturbance and recovery. 
 
Change detection and attribution of 
disturbance from remotely sensed time 
series data provide opportunities to develop 
new hypotheses on disturbance recovery 
and land cover change. The spatial 
resolution and longevity of the Landsat 
mission, in particular, allows detection of 
landscape alterations that are the result of a 
given management or land use decision over 
large areas in a systematic fashion (Wulder 
et al., 2012). While regionalization 
approaches, where geographic entities are 
grouped based on common factors to 
summarize complex landscape and 
environmental factors (Hargrove and 
Hoffman 2004), have been developed to 
characterize spatial patterns of landscape 
disturbance (e.g., Long et al., 2010), the 
temporal dynamics of disturbance and 
recovery are often left unaccounted which 
can influence interpretation of resulting 
patterns (Pickell et al., 2016). 
 
The goal of this study is to characterize 
disturbance as a temporally dynamic, 
allowing us to quantify and map cumulative 
patterns of landscape disturbance while 
simultaneously accounting for recovery. To 
this end, we develop a novel functional data 
analysis regionalization of landscape 
disturbance in 223 watersheds in western 

Alberta, Canada from 1985 to 2011 using 
Landsat disturbance time series data 
(Hermosilla et al., 2015). Methods in 
functional data analysis (FDA) are 
specifically designed to characterize 
multivariate high-dimensional time series 
data (Ramsay & Silverman, 2005). Using 
the FDA framework, our regionalization 
identifies unique temporal trajectories of 
cumulative disturbance patterns 
representing underlying distributions and 
spatial-temporal dynamics of specific 
natural and anthropogenic disturbance 
types, including forest fires, harvest, and 
roads (Bourbonnais et al., 2017). 
 

2. Methods and Data 
 

2.1 Landsat data and disturbance 
pattern metrics 
 
The study used a novel Canada-wide 
landscape disturbance time series derived 
from a best-available pixel Landsat data 
product where disturbances, including 
forest harvest, oil and gas well-sites, roads, 
forest fires, and non-stand replacing 
disturbances (e.g., insects and drought) 
were detected and attributed annually from 
1985 – 2011 (Hermosilla et al., 2015). Using 
the Landsat disturbance time series, spatial 
patterns of landscape disturbance were 
quantified annually using the proportion 
area disturbed, the probability of 
disturbance adjacency, the mean 
disturbance patch area, and the number of 
disturbance patches in 223 watersheds in 
western Alberta. Watersheds were selected 
as the landscape unit of analysis for the 
regionalization as they are commonly used 
as an environmentally relevant scale for 
monitoring forest and land cover changes 
(Wulder et al., 2009). The disturbance 
pattern metrics were adjusted annually to 
account for recovery by comparing the 
normalized burn ratio (NBR = (B4-
B7)/(B4+B7) where B4 and B7 correspond 
to Landsat bands 4 – near-infrared – and 7 
– short-wave infrared, respectively) from 
the pre- and post-disturbance periods (Key 
& Benson, 2006). A disturbance pixel was 
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considered recovered, and subsequently 
masked from the annual disturbance 
pattern metrics, when the post-disturbance 
NBR values reached 80% of the mean pixel 
NBR values from the two years preceding 
disturbance (Pickell et al., 2016). 
 

2.2 Functional data analysis 
regionalization 
 
In the FDA framework, discrete time series 
observations (i.e., disturbance pattern 
metrics) are considered to arise through the 
regular sampling of a smooth function (i.e., 
curve) rather than thought of as a 
realization from a multivariate distribution 
(Ramsay & Silverman, 2005). Following the 
FDA approach, the time series of discrete 
disturbance pattern metrics in each 
watershed were converted to curves using B-
splines as the basis function. We used a 
functional principal component analysis 
(FPCA), which estimates a set of eigenvalue-
eigenfunction pairs, to quantify the primary 
modes of temporal variation among the 
curves for each of four disturbance pattern 
metrics (Ramsay & Silverman, 2005). For 
each of the four disturbance pattern metrics, 
we computed the minimum number of 
FPCA scores, representing the difference 
from the mean disturbance pattern curve, 
required to explain 90% of the functional 
variance in the curves. The FPCA scores (n = 
11), which represent the primary modes of 
temporal variation in the disturbance 
pattern metric curves, formed the basis for 

our regionalization. We regionalized 
watersheds with common disturbance 
patterns by clustering the FPC scores using 
Gaussian finite mixture models with the 
optimal number of groups selected using the 
negative of the Bayesian Information 
Criterion (Fraley & Raftery, 2002). The 
clustered watersheds were then mapped and 
compared using the mean disturbance 
pattern metric curves by region. We further 
explored variability in pattern metrics of 
attributed disturbances (fire, harvest, roads, 
well-sites, and non-stand replacing) for each 
watershed cluster using a functional 
analysis of variance (FANOVA) by 
comparing the mean curves based on shape 
and temporal variability (Ramsay & 
Silverman, 2005).   
 

3. Results 
 
Three FPCA scores were required to explain 
90% of the variance in the proportion 
disturbance, probability of disturbance 
adjacency, and mean disturbance patch 
area, and two scores for the number of 
disturbance patches (Figure 1). Amplitude 
in the first FPCA score, representing the 
greatest deviation of the curve from the 
mean, generally increased markedly 
beginning in the mid-1990’s characterizing 
differing disturbance pattern trajectories 
resulting from a rapid increase in resource 
extraction and industrial activity in the 
region.
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Figure 1. Functional principal components analysis (FPCA) for disturbance pattern 
metric curves of proportion disturbance (A), probability of disturbance adjacency 
(B), mean disturbance patch size (C) and number of disturbance patches (D). The 
upper plot maps the score with the highest absolute value for each watershed. The 
lower panel shows the mean of the fitted disturbance pattern metric curve (solid 
black line) and how the amplitude of the mean curve varies if the FPCA curve is 
added (+) or subtracted (-). 
 
The Gaussian finite mixture model 
incorporating the eleven FPCA scores with 
the greatest support (BIC = -2095.35) 
resulted in eight disturbance pattern regions 
(Figure 2). Watersheds in clusters 1 
(35.92%), 5 (16.33%), and 4 (13.46%) 
represented the greatest proportion of the 
study area. The amplitude (i.e., vertical) and 
phase (i.e., horizonal) variability of the four-
disturbance pattern metric mean curves 
characterized periods of increasing 
disturbance (i.e., increasing curve 
amplitude) and spectral recovery (i.e., 
decreasing curve amplitude) among the 
watershed regions. Watersheds in clusters 1, 
2, 3, 5, and 6 had increasing amplitude 

throughout the study period with notable 
recovery beginning circa 2005. Conversely, 
regions occurring primarily in parks and 
protected areas (clusters 4, 7, and 8) had the 
lowest overall disturbance amplitude. 
Interestingly, while the mean proportion 
disturbance, probability of disturbance 
adjacency, and mean disturbance patch size 
curves demonstrated periods of recovery 
(i.e., periods of decreasing amplitude in the 
curve), the number of disturbance patches 
generally increased over time suggesting 
spatial variability in recovery may result in a 
complex spatial mosaic of patches in 
different successional states (Gómez et al., 
2011).
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Figure 2. Mean curves by cluster for the proportion disturbance (A), the 
probability of disturbance adjacency (B), the mean disturbance patch area (C), and 
the number of disturbance patch (D) pattern metrics. Each mean curve is 
associated with the watersheds mapped by cluster membership (E). Parks and 
protected areas are shown in green.

 
The watershed clusters also revealed 
variability in the amplitude and phase of the 
mean disturbance pattern metrics for the 
attributed disturbance types compared 
using FANOVA (Figure 3). Mean forest fire 
curves were significantly different (p < 0.05) 
among the watershed clusters, with large 
forest fires prevalent in clusters 2 and 5. 
Trajectories representing the mean 
proportion area disturbed and number of 
disturbed patches for forest harvest, roads, 
and well-sites were also significantly 
different among the clusters, and had the 
greatest amplitude in clusters 6, 1, 5, and 2 
representing watersheds primarily outside 
of parks and protected areas. 
 

4. Conclusion 
 
While piece-wise properties of curves have 
been employed to detect and quantify 
disturbance patterns (Gómez et al., 2011), 
modelling patterns of landscape disturbance  
 

and recovery as a single continuous function 
can reveal properties of the underlying 
ecological processes and how patterns of 
landscape disturbance evolve over a 
continuum (Pickell et al., 2016). However, it 
is difficult to quantify landscape disturbance 
cumulatively and to account for the 
temporal dynamics of disturbance and 
recovery, as well as the interaction of 
multiple sources of natural and 
anthropogenic disturbance. Using the novel 
FDA approach described here, regional 
spatial-temporal disturbance patterns can 
be interpreted through representative 
disturbance trajectories which illuminate 
the different disturbance processes and 
indicate where and when anthropogenic 
disturbance is the dominant driver of 
observed patterns in the study area. As new 
time series of disturbance and land cover 
data become increasingly available, FDA-
based approaches can be useful for 
quantifying and summarizing complex 
spatial-temporal landscape patterns. 

 



6 Functional data analysis regionalization 
 

 

Figure 3. Results of the functional analysis of variance showing mean curves of the 
proportion area disturbed (Pd), probability of disturbance adjacency (Pdd), mean 
disturbance patch area (Mdpa), and number of disturbance patches (Ndp), for the 
attributed disturbances (fire, harvest, non-stand replacing, roads, and well-sites) 
by cluster. 
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