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ABSTRACT 
The paper compares two current 
implementations of Discrete Global Grid 
Systems as potential new data models for 
spatial data representation, integration, and 
analysis. It outlines suitability of such 
structures for spatial data modelling and 
GIS applications, as well as documents the 
core criteria necessary for their successful 
implementation. An experimental analysis 
is performed in order to determine the 
current state of their development and their 
practical applicability for data integration, 
analysis and visualization. The work 
concludes with a reflection on the current 
implementations compared to the industry 
standards and some future projections of 
geospatial analysis within Discrete Global 
Grid Systems framework. 

1. Introduction 
Spatial data handling and integration has 

become one of the prevailing needs in 
geospatial analysis and computation. In the 
modern digital context spatial data are 
usually collected and stored as either raster 
or vector representations, along with 
attribute data for these spatial features 
(Mahdavi-Amiri, Alderson & Samavati, 
2016). These representations have evolved 
to serve a number of specialist communities 
and workflows in GIS analysis (e.g., 
satellite-based remote sensing); however 
with continuing increases in spatial data 
heterogeneity and volume, the necessity for 
efficient data integration has become 

essential. As a result, new methods for 
integrating, transmitting and representing 
spatial data are required. Discrete Global 
Grid Systems (DGGS) have been proposed 
as a new model for spatial data 
representation, integration and analysis 
suited to the current data-rich environment 
(Li, 2013; Mahdavi-Amiri et el., 2016). 

DGGS are hierarchical tessellations of 
regular shaped polygons (Figure 1.0) 
initially designed as a global reference 
system for mapping and navigational 
purposes (Purss, Gibb, Samavati, Peterson 
& Ben, 2016). 

 
Figure 1.0. Example of a hierarchical structure of the Earth 

surface using hexagon shapes for the cell refinement generated 
for the purposes of this study. 
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Over time, due to its discrete construction 
DGGS have also started to be used as a data 
structure for consistent storage, reference 
and analysis of spatial data and its attribute 
information. DGGS suggest a different 
approach for geospatial data handling that 
allows interoperability of resources and 
elimination of inaccurate and complex data 
synthesis operations (Purss et el., 2016). 

In order for a grid network to qualify as 
DGGS it must consist of core elements 
documented and summarized in the Open 
Geospatial Consortium (OGC) standard data 
protocol (Open Geospatial Consortium, 
2017). The work of Goodchild and Kimerling 
(2002), on defining DGGS and some of their 
core requirements, have contributed greatly 
to the overall advancement of this new data 
standard; yet some of the earlier research on 
DGGS had already begun in the 1980s 
(Dutton, 1984). Their initial ideas and 
thoughts served as the basis for a fully 
functional and well-designed DGGS data 
standards set by OGC. OGC requirements 
were put in place in order to guarantee the 
explicit resolution, area preservation and 
positional uniqueness at each level of 
hierarchy which account for scale 
differences and spatial distortion globally. 

In addition, the unique topological 
properties of regular shape tessellation 
might also naturally suggest looking for new 
forms of spatial analysis. The referencing 
and indexing mechanisms, on the other 
hand, provide reliable methods to access, 
store and retrieve data. As a result, various 
algorithms might integrate the existing 
indexing system for data assimilation via the 
refinement methods using the above 
properties (Peterson, 2017; Purss el al., 
2016). 

The aim of this paper is an in-depth 
analysis of two DGGS implementation: the 
H3 (Uber, 2015) and OpenEAGGR 
(Riskaware, 2017) open source software 
libraries. In addition, their operational and 
practical applications are also reviewed. 

2. Methods 
The following section outlines the 

methodology for comparing core data model 

requirements of the selected software 
libraries to the released OGC standards. It is 
very likely that certain requirements might 
not be met by either of the software, 
suggesting further advancing of DGGS 
packages. Both H3 and OpenEAGGR are 
open source software available via the 
GitHub source code repository (Uber, 2015; 
Riskaware, 2017). 

For the testing purposes both libraries 
were built directly from their source in their 
natural development environments. This 
step is necessary in order to gain access to 
the full list of available functionality, which 
might not be available through other 
language bindings. In particular, the H3 
library is built from its source using CMake 
packaging software, Visual Studio 
development environment with integrated 
C++ compiler; whereas OpenEAGGR is built 
using the MinGW compiler and Eclipse 
development environment. In addition, 
JavaScript binding for H3 and Python 
binding for OpenEAGGR libraries were also 
used in order to evaluate their flexibility and 
ease of use. Although not a requirement the 
libraries were also evaluated based on their 
availability for programing language 
bindings for the user’s convenience. 

In this study the main focus is put on 
hexagon shape structures due to their 
availability on both platforms, as well as 
their advantages in sampling, circularity, 
packing and uniform connectivity properties 
over the other regular shapes (e.g., triangles, 
squares) (Li, 2013; Peterson, 2017). The 
particular interest of this study is to evaluate 
the operational capability of both libraries. 
In other words, the aim is to test practical 
applications of available DGGS software for 
their basic functionality, such as importing 
of spatial data, querying spatial analysis 
algorithms as well as exporting and 
visualizing the end results. 

3. Results 
A summary of H3 and OpenEAGGR 

implementations compared to OGC 
standards is outlined in Table 1.0. The 
existing DGGS software provide a 
comprehensive approach for geocoding, 
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indexing, addressing and processing 
geospatial data into discrete forms. Due to 
their hierarchical structures, positional 
uniqueness and discrete representation of 
spatial resolution, DGGS are gaining 
popularity and acceptance in the modern 
geospatial analysis and data integration. 
 

3.1 Technical specifications 

A detailed technical analysis show basic 
functionality of DGGS for modeling Earth’s 
surface via hierarchical networks of equal 
area cells. Both libraries support 
hierarchical tessellation of regular polygons 
at increasingly fine resolutions up to a m2 
and cm2 in areal size for H3 and 
OpenEAGGR respectively (Uber, 2015; 
Riskaware, 2017). Each cell has a unique 
index and is accessible throughout the 
hierarchies. The given software also 
provides functionality to convert from 
latitude-longitude coordinates to DGGS 
indexes and vice versa referencing all cell 
centroids. 

Since addressing and referencing are two 
major properties of DGGS (criteria 11-12) 
(Table 1.0) it is important to mention that 
H3 and OpenEAGGR use hierarchy-based 
and offset coordinate addressing structure 
for hexagonal cell systems respectively. 
Hierarchical addressing is based on the 
lower resolution grid to find next 

consecutive cell’s location of a higher 
resolution, whereas offset addressing uses 
fixed axis orientation and offset distances 
from their origin to determine location of a 
cell (Bush, 2017). Both implementations use 
an icosahedron as a base polyhedron for 
creating planar faces approximating a 
sphere. The grid partitioning method of H3 
uses hexagon aperture 7, whereas 
OpenEAGGR incorporates both hexagon 
aperture 3 and triangle aperture 4 
hierarchical models (Uber, 2015; Riskaware, 
2017). Aperture is a method known to 
partition a DGGS cell using additional 
partial self-similar shapes (e.g., hexagons) 
in order to preserve equal area property 
across multiple resolutions (Figure 2.0). 

 
Figure 2.0. Hierarchical partition of space using hexagon 

apertures 3 (left), 4 (middle) and 7 (right) (Sahr, 2013). 

The results of this subsection indicate 
that both implementations fail to meet the 
complete list of required criteria outlined by 
OGC and therefore cannot be classified as 
fully functional DGGS (Table 1.0). 
 

 
Table 1.0: The following table outlines a core set of criteria to be met by software and classified as DGGS. The 
table also summarizes technical specifications of H3 and OpenEAGGR libraries and compares them to the OGC 
standards. 
Criteria OGC Requirement H3 OpenEAGGR Notes 

1 Core Data Model () 
Partial 
fulfillment 

() 
Partial 
fulfillment 

This requirement includes definition of conceptual data model of DGGS 
including reference frame (criteria 2-13) and functional algorithms 
(criteria 14-18) elements, which are partially fulfilled by each library. 

2 Area () 
Fulfilled 

() 
Fulfilled 

Guarantees the coverages of the entire globe. Each library fulfills the 
requirement for covering the entire surface of the earth. 

3 Overlap () 
Fulfilled 

() 
Not 
fulfilled 

Ensures positional uniqueness without overlapping cells. Theoretically, 
this requirement is met by both libraries; however practical application of 
OpenEAGGR fails to meet the requirement (see Figure 3.0). 

4 Tessellation 
sequence 

() 
Fulfilled 

() 
Fulfilled 

Forms a sequence of hierarchical tessellations at multiple spatial 
resolutions. Both libraries are capable of generating hierarchical grids at 
various resolutions. 

5 Area preservation () 
Fulfilled 

() 
Not 
fulfilled 

A total surface area must be preserved throughout hierarchical 
tessellations. The following requirement is not met by OpenEAGGR due 
to the overlapping cells in criterion 3 and perhaps inconsistent geometry 
of the offset coordinate system. 
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Table 1.0: Continued. 
Criteria OGC Requirement H3 OpenEAGGR Notes 

6 Shape () 
Fulfilled 

() 
Fulfilled 

DGGS cells must be formed of simple regular polygons. Both libraries 
have met the requirement with H3 using mostly hexagons and 
OpenEAGGR mostly hexagons and triangles (see criterion 8). 

7 Equal area 
precision 

() 
Not 
fulfilled 

() 
Partial 
fulfillment 

Any DGGS implementation will have equal area uncertainties of cells 
caused by the factors such as converging calculation, the rate of 

convergence or the precision of real numbers (e.g., ) used to calculate 
DGGS cell geometry. H3 seems to omit such technical details for the 
computational precision of equal area cells, whereas OpenEAGGR 
summarizes some technical benchmarks in its prototype evaluation 
framework (Bush, 2017). 

8 Equal area () 
Fulfilled 

() 
Fulfilled 

For each successive resolution equal area cells must be defined within the 
specified level of precision. Both libraries are constructed on the 
icosahedron with H3 using equal area hexagons and OpenEAGGR – 
hexagons and triangles. The only exception is that both hexagon grid 
libraries contain 12 pentagon cells centered at each icosahedron vertices 
and resolution. Pentagon cells are necessary in order to tile the sphere 
completely. 

9 Initial tessellation () 
Fulfilled 

() 
Fulfilled 

The initial partition of a sphere must be specified as a base unit 
polyhedron. Both libraries meet the requirement and use an icosahedron 
as a base. 

10 Refinement 
(aperture) 

() 
Fulfilled 

() 
Fulfilled 

Cell refinement methods and maximum number of refinements must be 
specified for each DGGS. H3 uses hexagonal aperture 7 grid partitioning 
method, whereas OpenEAGGR triangular aperture 4 and hexagonal 
aperture 3 cell partitioning. 

11 Addressing () 
Fulfilled 

() 
Fulfilled 

A spatial referencing method for an assignment of a unique identifier 
(index) must be specified. H3 implements hierarchy-based indexing 
method, whereas OpenEAGGR uses hierarchical indexing for triangular 
and offset coordinate indexing for hexagonal cell systems. 

12 Spatial reference () 
Fulfilled 

() 
Fulfilled 

A unique identifier must be assigned to each DGGS cell. Both libraries 
meet this requirement by assigning unique index to each DGGS cell using 
both hierarchical-based and offset coordinate indexing methods. 

13 Cell centroid () 
Fulfilled 

() 
Fulfilled 

The location of each DGGS cell must be referenced by the location of 
their centroids. Both libraries meet this property. It was tested by 
converting random latitude-longitude coordinates to a DGGS cell and 
vice versa. The new output coordinates were assigned to the cell 
centroids. 

14 Quantization () 
Not 
fulfilled 

() 
Not 
fulfilled 

Quantization methods for assigning and retrieval of data to individual 
DGGS cells must be documented; however such functionalities are not 
supported at this stage of the development. 

15 Cell navigation () 
Fulfilled 

() 
Partial 
fulfillment 

Methods for hierarchical and neighbourhood navigation must be 
provided. The H3 library is equipped with functions for navigating 
between different resolutions and neighbouring cells. The OpenEAGGR 
library, however, does not support the neighbourhood query, but only 
the navigation queries through hierarchy. 

16 Spatial analysis () 
Not 
fulfilled 

() 
Fulfilled 

Methods for performing simple spatial analysis operations on the grids 
must be provided. At this stage of the development only OpenEAGGR 
library is equipped with spatial analysis functions, such as equals, 
contains, intersects, etc. for two DGGS shape objects. 

17 Query () 
Not 
fulfilled 

() 
Partial 
fulfillment 

Methods for receiving, interpreting and processing data queries by DGGS 
algorithms must be provided. The OpenEAGGR library supports 
integration with third party software, however those extensions are 
challenging to use due to the outdated technical support for the newer 
software releases. 

18 Broadcast () 
Not 
fulfilled 

() 
Partial 
fulfillment 

Methods for integration, processing and transmitting data to external 
applications or web-based clients must be provided. The OpenEAGGR 
library also provides theoretical broadcasting functionality to external 
applications, however due to the limited technical support this property 
was not deployed in this study. 

 
 
 



Discrete Global Grid Systems 5 
 
 
 

 

 
Figure 3.0. Example of the failed requirements for positional 

uniqueness and area preservation due to the overlapping cells 
generated via OpenEAGGR software library. 

 

3.2 Operational proficiency 

Both H3 and OpenEAGGR libraries 
deliver a reasonable amount of functionality 
(Table 2.0) in order to meet basic DGGS 
requirements for operational capability of 
conversion, query and search across DGGS 
hierarchy. 
Table 2.0: Outlines the list of available language 
bindings, software extensions and API functions for 
H3 and OpenEAGGR libraries. 
Evaluation H3 OpenEAGGR 

Language 
bindings 

Erlang 
Go 
Java 
JavaScript 
OCaml 
PHP 
Python 
R 

C 
C++ 
Java 
Python 

Software 
extensions 

 PostgreSQL/PostGIS 
Elasticsearch 

Basic API 
functions 

geoToH3 
h3ToGeo 
h3ToGeoBoundary 
h3GetResolution 
h3GetBaseCell 
stringToH3 
h3ToString 
h3IsValid 
h3IsPentagon 
kRing 
kRingDistances 
h3ToParent 
h3ToChildren 
compact 
uncompact 
polyfill 
hexAreaKm2 
hexAreaM2 
numHexagons 

convertPointToDggsCell 
convertShapesToDggsShapes 
convertShapeStringToDggsSh
apes 
convertDggsCellToPoint 
convertDggsCellsToPoints 
convertDggsCellsToShapeStri
ng 
getCellParents 
getCellChildren 
getCellSiblings 
getBoundingCell 
createKmlFile 
convertDggsCellOutlineToSha
peString 
compareShapes 

 
However, their applications are limited to 
their development environments and must 
be executed via direct function calls from 
within. In other words, the libraries do not 
support a user friendly interface. 

In addition, their practical applications 
for importing user data, performing spatial 
analysis as well as exporting and visualizing 
the end result still requires further 
development. The integration with other 
third party software should be more 
effortless, with up-to-date technical support. 

On the bright side, both libraries provide 
seamless functionality of coordinate 
conversion to a DGGS cell indexes for 
individual point locations at different 
resolutions, which is also illustrated in 
practice (Figures 4.0, 5.0). 
 

 

 
Figure 4.0. Conversion of Toronto’s latitude longitude 

coordinates into DGGS cells via H3 library. The images are at 
DGGS resolution 1 (top) and 14 (bottom), which are equivalent to 

the 6.3 m
2
 and 607,221 km

2
 average surface area. 
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Figure 5.0. Conversion of Toronto’s latitude longitude 

coordinates into DGGS cells via OpenEAGGR library. The 
resolutions accuracy were approximated to 1000 m

2
 (top) and 

1,000,000,000 km
2
 (bottom) of the surface area. 

 
Cell navigation functionality is also well 

implemented by the H3 library, which 
allows performing basic distance and search 
queries in order to identify and generate 
neighboring hexagons within a desired 
distance from a cell of interest (Figure 6.0). 
The OpenEAGGR library, however, lacks 
such functionality and only supports basic 
parent-child cell relationship (Figure 7.0). 
Furthermore, the developers indicate that 
parent-child queries perform significantly 
worse for hexagonal grids due to the 
implemented offset coordinate indexing 
system (Bush, 2017). With offset 
coordinates the parent-child identification is 
based purely on the grid geometry, which 
might lead to the sources of error for 
positional uniqueness and area 
preservation. As a result, it is suggested to 
use caution when integrating offset 
coordinate indexing system for DGGS 
implementation. 
 

 

 
Figure 6.0. Performing a search query of neighboring cells via H3 
kRing function with ring distance of 10 (top) and 1 (bottom) from 

a cell of interest (black). 

 

 

 
Figure 7.0. Performing a parent search query via OpenEAGGR 

getCellParents function for high (top) and low (bottom) 
resolution cells. 
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The H3 library also supports more 

advanced functionalities, such as filling 
polygon areas with hexagons as well as 
compressing them into more efficient 
representation (Figure 8.0). 
 

 

 
Figure 8.0. The above figure demonstrates H3 functionality for 

tessellating area of interest (top) with hexagons (bottom, grey), 
as well as the ability to compact them into a more concise shape 

(bottom, blue) 

 
Although they are useful, these APIs might 
not be classified as spatial analysis functions 
for performing operations and determining 
relationship between DGGS cells. The 
OpenEAGGR, on the other hand, does 
support spatial analysis APIs for shape 
comparison of DGGS cells, linestrings and 
polygons with variety of available operations 
(Figure 9.0). 

Visualization is not inherently available 
in the tested libraries. In other words, in 
order to visualize the output results the 
object or shape must be exported into one of 
the available file formats, such as GeoJSON 
or KML via OpenEAGGR APIs; however, 
this functionality might not be applicable to 
all DGGS shapes. If export is not possible 
the spatial data objects will remain stored in 
memory and could be accessed via direct 
memory calls as a workaround. 

In comparison, the H3 library does not 
support built-in functionality for exporting 
shape geometries directly. As a result, a 
script for converting such data objects into 
GeoJSON file format was implemented 
separately in order to visualize the output 
via third party applications such as Google 
Earth or geojson.io. 
 

 
EQUALS False 

CONTAINS False 

WITHIN False 

TOUCHES False 

DISJOINT False 

INTERSECTS True 

COVERS False 

COVERED_BY False 

CROSSES False 

OVERLAPS True 

Figure 9.0. The above figure demonstrates output of spatial 
analysis queries performed on two DGGS cell shapes via Open 

EAGGR library. 

 

4. Conclusion 
Traditional spatial analysis includes 

multiple techniques to study geographic 
phenomena by interacting with existing data 
related to a specific geographic location. 
Such data are then used to extract 
meaningful information with the help of 
computer processing and applications. 
Several problems might occur during such a 
chain of events, but integration of multiple 
data sources at once is an important aspect 
of the problem. DGGS set a benchmark for a 
more scalable and comprehensive data 
handling that can be distributed across 
different platforms and accessed via the 
web, and therefore have been investigated in 
detail in this paper. 
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Both H3 and OpenEAGGR software 
deliver basic functionality of DGGS, 
however cannot be classified as such due to 
the unfulfilled OGC requirements (Table 
1.0). It was found that H3 library is missing 
some of the key functionality for assigning 
and retrieval of spatial data, data 
quantization as well as basic spatial 
analysis, query and broadcasting 
functionalities. The OpenEAGGR library is 
more successful with spatial analysis, data 
query and broadcasting implementations, 
yet still lacks support for data quantization 
and some essential properties of positional 
uniqueness and area preservation. 

Both implementations provide great 
variety of language bindings available for 
integration with third party applications 
(Table 2.0), however not all of them are at 
the same level of development. In terms of 
the current progress, it also seems that the 
H3 project undergoes more rapid 
development compared to the OpenEAGGR 
and has greater functional availability. New 
H3 features and corrections are being 
implemented regularly, and connections 
with other third party software continuously 
explored for data query and broadcasting. 
This includes Uber’s own operational needs 
for dynamic optimization of ride prices, as 
well as spatial decision making on a city 
level (Uber, 2018). As of now, however, the 
current open source implementations are 
not at the point where they can be used at 
the larger scales with convenience and 
minimal technical experience. 

Therefore, all these components should 
receive additional attention in order to 
make them more practical and possible for 
average users to tailor for their specific 
needs. Once accomplished, however, it is 
very likely that DGGS will set new standards 
for geospatial analysis and open up new 
research prospects. 
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