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ABSTRACT 
 
Pattern recognition, object detection, and 
image classification are typical areas in 
which contemporary computer vision 
algorithms are being deployed. In high-
resolution remotely sensed image 
classification problems, texture features can 
be crucial to the recognition of different 
landcover classes. Using a classical 
convolutional neural network (CNN) and 
texture-encoded CNN variant, early 
concatenation CNN (EC-CNN), we explore 
the relevance of texture-based features in 
landcover classification. In this paper, we 
demonstrate the utility of using shallow 
layers of a CNN for learning discriminative 
local texture features in very high-resolution 
images. We apply these models to a case 
study problem involving ground lichen 
classification in a tundra ecosystem and 
found that the texture EC-CNN out-
performed the non-texture based classical 
CNN. Given that deep learning models are 
often perceived as “black-boxes”, in order to 
illustrate how effective texture models 
represent landcover features, we extract 
feature maps from each model to provide a 
visual interpretation of the texture patterns 
learned by the various models. The CNN 
model saliency maps contain more localized 
patterns which are not easily interpretable, 
visually. The EC-CNN model on the other 
hand contain patterns that are more 
intuitive and representative of fine-grained 
textures. Furthermore, almost all filters in 
the model detected locally significant 

patterns in the landscape. This finding 
suggests the potential generalizability of 
texture-based CNNs and that classification 
errors associated with such models might be 
lower than that of traditional CNNs.  

1. Introduction 
 
Landcover classification is becoming 
increasingly vital and more sophisticated as 
remotely sensed data are now available at 
high temporal and spatial resolutions.  
Landcover information is crucial for 
monitoring, and reporting on transitions in 
vegetation types across time and space 
(Albert and Gonz, 2017). Remotely sensed 
image classification represents a domain in 
which computer vision methods are now 
widely applied. Landcover type 
discrimination is a typical task in which 
machine learning algorithms are frequently 
deployed.  The recent successes of artificial 
neural networks in object detection, pattern 
recognition and scene classification tasks 
have resulted in growing interest in 
exploring the capabilities of these models 
(Hinton et al., 2012). While traditional 
landcover mapping methods focus on 
spectral homogeneity of classes as the basis 
for discrimination, there are several cases 
where the spatial arrangement of features 
on the landscape is a key discriminant 
feature. Forest fragmentation, thermokarst, 
and vegetation patterns in arid ecosystems 
are all typically recognized by their texture 
(i.e., spacing and arrangement) rather than 
their spectral characteristics. Most 
traditional classification techniques and 
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classifiers are unable to achieve high 
accuracy in these settings due to high data 
dimensionality and scale dependencies 
(Basu et al., 2018). On recognizing this 
limitation, there has been increasing 
interest in approaching texture mapping 
using ANN techniques (Lloyd et al., 2004).  
Andrearczyk and Whelan (2016) found that 
a texture explicit CNN model out-performed 
the state-of-the art models in texture 
datasets. In a related study, Cimpoi and 
Vedaldi (2015) demonstrated CNN models 
capability to detect textural classes in scenes 
characterized by diverse texture categories .  
 
Research in landcover classification and 
landscape comparison has demonstrated 
the potential of CNNs, especially in 
determining similarities in urban land use 
patterns (Albert and Gonz, 2017). Despite 
the level of improvements achieved using 
CNNs, the fact that higher hierarchical 
features are often used to perform 
classifications in classical CNNs raises 
questions pertaining to their 
generalizability, transferability and error 
rate across domains, locations, and datasets. 
Higher-level CNN features or activations 
lack geometric invariance, thus diminishing 
their robustness and generalization power 
for classification and mapping across 
variable scene configurations (Gong et al., 
2014).  Lower-layer feature maps however 
contain significant local information that 
capture texture and hence extracting and 
concatenating such features could build 
texture explicit models which are robust and 
less prone to classification errors. Research 
on the use of dense lower CNN features 
information in classification task is limited. 
This necessitates the specification of explicit 
texture models capable of learning and 
accurately representing textured landcovers.   
 
We specify a texture-encoded CNN for 
feature extraction and classification of 
lichen for a landscape in a low-tundra 
ecosystem in Northwest Territories, Canada. 
We further compare a classical CNN with 
that of our texture-based model. Given that 
CNNs are to some degree, considered “black 

boxes”, we adapt existing approaches to 
compare activation feature maps from the 
CNN models (Jacobs and Goldman, 2010; 
Selvaraju et al., 2017). The contributions of 
this paper are therefore two-fold: (a) design 
of a simple texture-encoded CNN for 
landcover classification, and (b) use of 
computer vision techniques to visualize and 
gain insight into how well the models learn 
texture patterns. 

2. Experimental methods  
 

2.1 Texture-encoded CNN model design 
 
CNNs consist of filter banks capable of 
extracting hierarchical spatial features using 
a weight-sharing framework (Cimpoi et al., 
2015). Texture analysis and synthesis has 
been implemented in CNNs and proven to 
represent discriminative local features 
(Gatys et al., 2015; Ustyuzhaninov et al., 
2016). Our design of a texture-based CNN is 
motivated by previous findings that lower-
layers pool dense orderless features and 
capture relevant local patterns as compared 
to higher-layers which contain global shape 
information (Cimpoi et al., 2015). Our 
approach is also inspired by Andrearczyk 
and Whelan (2016) technique that derives 
an energy feature vector from the 
penultimate pooling layer and concatenates 
them with the first fully connected layer.  
 
In the context of landscape or landcover 
classification and similarity search, global 
shape information present in fully 
connected layers is of little relevance as 
spatial patterns often bear no uniquely 
defined geometry across space and time. 
Our method encompasses the concatenation 
of multi-layer features and learning a 
representation of the data generating 
process concurrently.  In the feature fusion 
framework, feature maps from three 
hierarchical layers are concatenated; these 
are subsequently flattened to feature vectors 
to construct the first fully connected (FC) 
layer. Here, we attempt to derive a non-
existing fully connected layer FC1 via 
merging features from all preceding layers 
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(i.e., pool1, pool2, and pool3). The classical 
CNN is also designed in parallel to enable 
performance comparison with the texture 
CNN. Figure 1 depicts the architecture of a 
classical CNN and a texture-encoded CNN. 
The architecture of both CNNs (i.e., the size 
of hidden layers) is adapted from the VGG 
model (Simonyan and Zisserman, 2014), 
with slight modifications in the first and 
second hidden layers to learn 96 features. 
Table 1.0 provides further information 
regarding the model architecture.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.0 A classical CNN (a) and a texture-based EC-CNN 
(c) 

 
 
Table 1.0 Models depth and layer structure 

 
 

2.2 Sample preparation and model 
training 
 Imagery from an unmanned aerial vehicle 
(UAV) as well as georeferenced ground 

photographs from a study site at Daring 
Lake, Northwestern Territories, Canada are 
used in this study. Spatial resolutions of the 
sample imagery are 0.05 cm and 1 cm for 
the ground photos and UAV, respectively. 
To generate the training samples, high 
resolution ground-truth photos from the 
study site were tiled into 225 × 225 patches 
of homogenous landcover categories. We 
also generated 225 × 225 non-homogeneous 
tiles comprising all the three vegetation 
categories. These are reserved for probing 
into CNN layers to unravel what the models 
have learned. The tile dimensions used are 
significant enough  to contain relevant 
discriminative features in the 5 × 5 receptive 
field of the CNN filters (Basu et al., 2015). 
The lichen class contains 1300 samples 
while the green and colored vegetation 
categories comprise 1000 images in each 
class, resulting in 3300 patches. The green 
vegetation class mainly comprise sedges, 
birch and alder shrubs and grasses, while 
the colored vegetation category represents 
primarily dwarf shrubs in the genus 
Arctostaphylos (i.e., bearberry). Figure 2.0 
depicts samples of the landcover classes.  
The ground photos are used exclusively for 
model training, and classification is 
implemented on 450 × 450 tiles of UAV 
imagery. The rectified linear unit (ReLU) 
method is employed in the convolutional 
layers and fully connected layers to effect 
non-linear input transformation.  All images 
are standardized to zero mean and unit 
variance. Image standardization is essential 
to mitigating the ReLU signal saturation 
and ensuring convergence of the gradient 
descent algorithm (Nair and Hinton, 2010). 
In training, the stochastic gradient 
algorithm with cross-entropy cost function 
is used. The learning rate, momentum and 
number of iterations are set to 0.01, 0.9 and 
50, respectively. In order reduce overfitting, 
a 50% drop-out is applied to both 
convolutional and fully connected layers. 
Shutting 50% hidden units (drop-out) is an 
effective regularization technique for 
minimizing potential overfitting. The 
learning rate, and momentum were held 
unchanged.  An epoch of 50 was selected 

 

 

cov1 cov2 cov3 FC1 FC2 

ECCNN 
64×5×5 
pl2×2, 
str 2 

96×5×5  
  pl2×2, 
str 2 

96×5×5 
pl2×2, 
str 2 

128
×1 

128
×1 

CNN  
64×5×5 
pl2×2, 
str 2 

96×5×5  
  pl2×2, 
str 2 

96×5×5 
pl2×2, 
str 2 

128
×1 

 

a) 

b) 
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after training the models for incremental 
iterations of 20, 30, 40, and 50. The models 
performance did not improve appreciably 
after 40 epochs, thus the selection of 50 
epochs for training both models. The 
training, validation and test data comprise 
60%, 20% and 20%, respectively. The 
experiment is conducted with CPU 
implementation using Keras + Tensorflow 
in Python. Training duration is 9 hours on 
i7-3930K CPU @ 3.20GHz, and 52.0GB 
windows computer. 
 

Figure 2.0 Samples of landcover types in the study site; 
lichen (first column), green vegetation (second column), and 
colored vegetation (third column) 

 

3. Results and discussion 
 
The model accuracy reports on the test 
sample are 97.50% and 96.52%, 
respectively, for EC-CNN and CNN models; 
this suggests a marginal improvement in 
performance of the texture-based model 
compared to the classical CNN, and 
probably accounts for the close similarity in 
the classification results outputted by the 
models. A plausible cause of this slight 
difference in test accuracy can be attributed 
to the relatively small training sample size 
used. With sample size of 2640 (60% of 
3300) used in training and validation (20% 
of 3300), the traditional CNN is likely to 
demonstrate competitive performance. 
Figure 3.0 shows training/validation losses 
and training/ validation accuracies for both 
models. It can be observed that the EC-CNN 
losses and accuracies peak and stabilize 
after 25 epochs. The CNN on other hand has 

its losses and accuracies peaking after 40 
epochs but do not exhibit clear stability. It is 
possible that the CNN requires additional 
training time to learn. However, it should be 
noted that CNNs are susceptible to over 
training, resulting in poor performance on 
unseen data. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.0 Training and validation history; classical CNN (a) 
and a texture-based EC-CNN (b) 

 
 
Figure 4.0(b-c) illustrates tundra vegetation 
classification using the models. The maps 
appear to be difficult to distinguish visually, 
though close examination reveals some shift 
in spatial distribution of the landcover 
types, notably, the colored vegetation class. 
In order to enable direct class comparison, a 
difference map (Figure 4.0d) between 4.0b 
and 4.0c is generated. It can be noticed that 
the models show large discrepancy in 
classifying the color vegetation class, while 
agreeing closely in lichen and green 
vegetation prediction. It appears that the 
observed disagreement stems from shift in 
class allocation of pixels between the green 
and color vegetation types. This may be 
explained by the fact that the two categories 
contain predominantly similar textures. 
Hence the models are relying on spectral 
signatures to discriminate. It must be 
emphasized that ground photos were mostly 
samples from the similar locations as the 
UAV images. Though the imagery come in 
different spatial resolutions, training on 
ground photos and predicting vegetation 
classes on UAV mitigates the effects of 
potential overfitting in training data being 
transferred to the classification stage. This 
also tests as well as exposes the potential 

a) b) 
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generalizability of the models on an unseen 
dataset.  
 

Our approach to probing the performance of 
the models in the classification of the 
various landcover categories surprisingly 
reveals that the texture-based model 
prediction of the landcover types is visually 
intuitive and interpretive; in fact, visual 
inspection shows that the model has learned 
relevant feature maps about lichen 
composition and configuration, and that it is 
easier for users to link, for example, what 
the model thinks is lichen in the original 
map to the class activation maps extracted 
from layer three (cov3) of EC-CNN  model. 
This implies the model predictions may be 
more robust and accurate despite the 
competing performance seen in the CNN. In 
Figure 5.0, class activation maps (CAM) 
extracted from lichen filters found in the 
models (cov3 layers) shed light on the 
patterns learned by each model to 
discriminate lichen. It can be observed that 
the EC-CNN features are denser than the 
CNN features which exhibit sparsity and 
smoothness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.0. Classification of UAV map (a), using EC-CNN 
(b), CNN (c), and difference map (d) derived from (a) and 
(b)  

 
 
 
 
 

 
 
 
 
 
 
 
 
                                                      

 

 
 
 
 
 
 
 

Figure 5.0.  Class activation maps for Lichen. First column 
shows sample UAV images, second column (EC-CCN model 
CAM), and third column (C-CNN model CAM)  

4. Conclusion 
 
In this paper, we demonstrate the 
robustness of texture-based CNN in a lichen 
dominated tundra ecosystem classification 
task. Using gradient-based class activation 
maps  as in (Selvaraju et al., 2017), we show 
that our texture-encoded CNN can be more 
effective and less error prone  in 
classification problems as its CAMs are 
more intuitive and visually depict a 
particular landcover class the model 
predicts.   Further research is essential to 
testing the accuracy of the texture model on 
benchmark texture datasets. It is also worth 
exploring the performance of different 
architectures of the texture model. The 
effectiveness of texture-based features in 
change detection and landscape similarity 
search is another research area worth 
investigating. 
 
 
 
 
 
 
 

Original Maps EC-CNN  CNN  

a) b) c) 

d) 
Prediction agreement

Green Vegetagtion

Color Vegetation

Lichen

Original Maps EC-CNN  

 
a) 

b) 

CNN  
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