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ABSTRACT
Augmented reality allows users to superimpose digital informa-
tion (typically, of operational type) upon real world entities. The
synergy of analytical frameworks and augmented reality opens
the door to a new wave of situated OLAP, in which users within
a physical environment are provided with immersive analyses of
local contextual data. In this paper we propose an approach that,
based on the sensed augmented context (provided by wearable
and smart devices), proposes a set of relevant analytical queries
to the user. This is done by relying on a mapping between the
entities that can be recognized by the devices and the elements
of the enterprise data, and also taking into account the queries
preferred by users during previous interactions that occurred
in similar contexts. A set of experimental tests evaluates the
proposed approach in terms of efficiency and effectiveness.

1 INTRODUCTION
With the disruptive advances in pervasive computing and indus-
try 4.0, business intelligence is shifting its focus to the integration
of (internal) enterprise and (external) contextual data. In this con-
text, the synergy of analytical frameworks and augmented reality
opens the door to situated OLAP, in which users within a physi-
cal environment are provided with immersive analyses of local
contextual data. Indeed, Augmented Reality (AR), a variation of
virtual reality, allows users to superimpose digital information
upon real world entities [1], thus determining an augmented
environment. Nowadays digital data returned to users are typi-
cally operative, meaning that they either provide information on
the current state of visualized objects (e.g., the temperature of a
machine) or on the current operations to be carried out (e.g., the
instruction to use the machinery). Conversely, limited attention
has been devoted to provide analytical reports that can be useful
to let the user compare the current behavior of the visualized
objects with their historical behavior.

This new goal opens relevant research challenges and revamps
many issues related to business intelligence and recommenda-
tion systems [2]. Indeed, when working with high-dimensional
contextual data (the multi-dimensional nature of the context is
well understood [3, 4]), identifying insightful queries and visual-
izations is not trivial [5]: How is the perceived context mapped
to enterprise data? Which data is salient with respect to the user
analysis? How can data be retrieved in real time? How do users
interact with the retrieved information?

To the best of our knowledge, none of the context-aware rec-
ommender systems proposed in literature addresses the above
questions with reference to situated analytics in general, and to
augmented reality in particular. In this paper we envision and
formalize a foundation for Augmented Business Intelligence (A-BI),
a framework empowering AR users with analytical information
under visualization and time constraints. The analytical informa-
tion returned comes in the form of reports obtained by running
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OLAP queries on the enterprise multidimensional cubes. The
quantity of data returned must be limited in size and focused
on the context to meet performance constraints and be easily
interpretable by the user; furthermore, the intrinsic dynamics of
AR applications asks for right-time (reasonably a few seconds)
responsiveness of A-BI.

As shown in Figure 1, given a user situated in an environment
and equipped with a smart device capable of perceiving relevant
elements (i.e., the context) of such environment by means of
sensors, A-BI provides real-time generation and visualization
of multidimensional analyses out of contextual features. The
context is modeled as a set of recognizable environment elements
(e.g., a package) plus a set of user/environmental information
(e.g., the user role and the room temperature); we assume the
pattern recognition capabilities necessary to recognize them are
provided by the AR smart device (specifically, through theContext
generation component in Figure 1).

A-BI keeps track of user feedbacks on queries, and adopts col-
laborative filtering to provide a more focused experience. With
reference to Figure 1, this task is carried out by the Context in-
terpretation component by relying on the query log. Although
A-BI supports the possibility to learn meaningful queries from
the log, its capability of returning the right information primarily
comes from some a-priori knowledge provided by domain ex-
perts. This choice is not simply a solution to the well-known cold
start problem (i.e., the problem of providing significant recom-
mendations when user feedbacks are still very few); it is rather
a design choice aimed at enabling the system to give a useful
answer in complex context scenarios, where learning from the
log would require too many examples. The a-priori knowledge is
modeled through a set of weighted mappings between the poten-
tially recognizable environment entities (stored in the dictionary)
and the cube multidimensional ones. Instead of proposing the
most relevant query only (called maximal query), A-BI proposes
a set of alternative queries to the user; all of them are related
to the current context but they are different enough to offer to
the user different flavors of the same information. This phase is
implemented by the Diversification component.

A-BI can be applied to different application domains ranging
from healthcare to factories; for this reason, the main model-
ing choices underlying our approach (e.g., how to define the
relevance of an object in a context) have been formalized in a
domain-independent fashion, while domain-dependent examples
are provided in the context of AR in a factory where a smart
device is coupled with a sensor data warehouse [6]. To better
understand the user/system interaction suppose that Bob, a ma-
chinery inspector, is situated in a factory to investigate a malfunc-
tioning packaging machine that —possibly due to overheating—
produces dented packages. Environmental data is gathered and
integrated from wearable and smart devices into a single context
representation. So, when looking at the machine, the AR hel-
met Bob is wearing recognizes the machinery and, knowing the
role of Bob, suggests the set of analytical queries that are more
relevant according both to a-priori knowledge and to previous
feedbacks given by users in similar contexts. Relevant figures
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Figure 1: Overview of the A-BI framework; engaged entities are enclosed in dotted rectangles, while grayed elements are
outside the paper scope

could be the number of defective packages along time and the
dates and types of previous maintenance activities for that ma-
chinery. Bob can either execute one of the proposed queries or
express a new query to obtain a different report. Finally, Bob
gives his feedback on the proposed queries, which is stored in
the log.

To sum up, the main contributions of this paper are:

(1) We envision an A-BI framework, its functional architec-
ture, and the user/system interaction process;

(2) We provide a method to model the a-priori system knowl-
edge by mapping context entities to relevant multidimen-
sional elements;

(3) We provide an efficient algorithm to generate relevant and
diverse queries to be returned to the user;

(4) We propose a collaborative filtering approach to let the
system learn from user feedbacks.

The remainder of the paper is organized as follows. Section 2
describes the related work in the field of context-aware recom-
mendation systems. Section 3 formalizes the A-BI framework.
Section 4 explains how the context is used to derive a starting
query for the diversification process by also considering the user
feedbacks stored in the log, while Section 5 describes how rele-
vant and diverse queries are generated from that query. Section 6
includes the results of experimental tests that measure the per-
formance of A-BI. Finally, Section 7 sums up our contribution
and gives future research directions.

2 RELATEDWORK
A-BI can be classified as a recommender system in the area of
of business intelligence, based on a context made of augmented
entities. Although the huge amount of work in each area, to the
best of our knowledge no approach lies at their intersection.

Over the years, scholars have highlighted the importance of
exploiting contextual information to provide focused recommen-
dations with the nature of contexts being quite heterogeneous,
for instance space and time [7], query logs [8, 9], statistics on

results [10] or databases [11], user interests [12], and social data
[13]. Given such heterogeneity, other contributions address the
integration of contextual data (e.g., [13–15]) to provide a common
ground for further analyses and recommendations.

The previous context types have been widely adopted in sev-
eral recommender system applications where the recommenda-
tion process is activated by an explicit user-defined input state-
ment (e.g., query or keywords). Examples of applications are
web query categorization [16, 17], recommendation [12, 18], and
diversification [19]; query completion [8, 9]; localized web key-
words suggestion [7]; and interactive exploration of databases
[20]. The two main differences between A-BI and these work are
(1) the multidimensional nature of the data handled and returned,
and (2) the nature of the context as well as the type of user/system
interaction that triggers the recommendation. As to (1), multi-
dimensional and hierarchical data support recommendations at
different granularities, which intrinsically makes finding the best
recommendation more complex; as to (2), physical contexts re-
quire ad hoc solutions to choose the relevant context elements
due to application specificities (e.g., engagement) and to the pos-
sibility of having in the context elements that are perceived but
that are not relevant for the user.

Recommender systems in business intelligence applications
are well surveyed in [21]. Recommendations typically involve
multidimensional queries [22] or sessions [17] (i.e., query se-
quences) using query logs as contexts. These approaches are
based on collaborative filtering techniques that do not synthesize
new queries from existing ones, but pick queries from the log
depending on their similarity score. Conversely, A-BI allows the
generation of queries not already present in the log by combin-
ing similar queries from the log and contextual information into
a set of diverse queries. This assumption collocates A-BI as a
hybrid approach to recommendation [21], differentiating A-BI
from the above-mentioned contributions in multidimensional
recommendation systems. Note that diversification and multiple
recommendations are used to better meet user interests [23]. A



further advantage of A-BI over pure collaborative filtering ap-
proaches is that A-BI does not suffer from the so-called cold start
problem, since it is able to return an appropriate recommendation
even when the log is empty [24].

In the area of AR, contexts play an even more central role.
There, a context is the set of entities recognized in the environ-
ment that acts as situated stimulus (i.e., object properties) to be
translated into inputs for a search query, is augmented with vir-
tual information, and is returned to the user [25]. Scholars focus
on finding proper visualization of relevant information [25, 26],
with visualization typically embedded in physical objects. While
[26] considers multidimensional data, it is not specified how
the process of information retrieval and analysis of data at mul-
tiple level of details is carried out. Also, these approaches do
not include collaborative filtering to discover potentially useful
information. Interestingly, although [26] does not consider ana-
lytical data, it introduces a mantra for situated analytics: “details
first, analysis, then context-on-demand” which contradicts the
well-known mantra “overview first, zoom and filter, then details-
on-demand” [27] of classical visualization systems. Indeed, when
it comes to pure augmented visualizations, information is directly
attached to single entities [25, 26], assigning higher priority to
details than to generic information.

3 BASICS
We start this section by introducing a formal setting tomanipulate
multidimensional data; for simplicity we will work on a single
cube and consider linear hierarchies.

Definition 3.1 (Hierarchy). A hierarchy is defined as a triple
h = (Lh , ≽h , ≥h ) where:
(i) Lh is a set of categorical levels; each level l ∈ Lh is cou-

pled with a domain Dom(l) including a set of members (all
domains are disjoint);

(ii) ≽h is a roll-up total order of Lh ; and
(iii) ≥h is a part-of partial order of

⋃
l ∈Lh Dom(l).

Exactly one level dim(h) ∈ Lh , called dimension, is such that
dim(h) ≽h l for each other l ∈ Lh . The part-of partial order is
such that, for each couple of levels l and l ′ such that l ≽h l ′,
for each member u ∈ Dom(l) there is exactly one member u ′ ∈
Dom(l ′) such that u ≥h u ′.

Definition 3.2 (Cube). A cube is defined as a triple C =
(H ,M,ω) where:
(i) H is a set of hierarchies;
(ii) M is a set of numerical measures, with each measure

m ∈ M coupled with one aggregation operator op(m) ∈
{sum, avg, . . .}; and

(iii) ω is a partial function that maps the tuples of members for
the dimensions of H to a numerical value for each measure
m ∈ M .

The levels, members, and measures of the cube C are given
the generic name of md-elements of C.

Example 3.3. Let us consider cubeMaintenanceActivity in our
working example which, as sketched in Figure 1, includes hierar-
chiesDate,Device, andMaintenanceType. Maintenance activities
are described by measure Duration (coupled with the sum oper-
ator). A member of the Device attribute is PackagingMachine,
while a member of MaintenanceType is Oiling. �

In the A-BI framework, cubes are queried through GPSJ (Gen-
eralized Projection / Selection / Join) queries, a well-knows class

of queries that was first studied in [28]. A GPSJ query is composed
of joins, selection predicates, and aggregations.

Definition 3.4 (Query). A query q on cube C = (H ,M,ω) is a
triple q = (Gq , Pq ,Mq ) where Gq is the query group-by set, i.e.,
a subset of levels in the hierarchies of H ; Pq is a set of Boolean
clauses whose conjunction defines the selection predicate for q;
Mq ∈ M is the set of measures whose values are returned by q.

Example 3.5. With reference to theMaintenanceActivity cube,
the query asking for the average duration of maintenance ac-
tivities for each month of 2018 and each device type is defined
by

Gq ={Month,DeviceType}

Pq ={(Year = 2018)}
Mq ={Duration}

�

Enterprise cubes are the data source for the analytical reports
to be returned to users according to the environment as perceived
by the AR device. The set of data possibly perceived are listed
in a dictionary that, intuitively, defines the device capabilities.
These data are not limited to physical objects recognized in the
environment through a pattern recognition process, but may
include user-related information such as the user role as well as
environmental properties such as the room temperature.

Definition 3.6 (Dictionary). A dictionary D is a set of keys,
each coupled with a domain of values (all domains include a
NULL value). Each pair d = ⟨key,value⟩ such thatvalue belongs
to the domain of key is called an entry of D.

NULL values are used whenever the device through which the
user perceives the environment successfully classifies an object
but is not capable of labelling the specific instance sensed (e.g., a
package is recognized but the package code cannot be read).

The power of the A-BI framework comes from the ability to
bind the perceived information to the cube md-elements. This
capability is rooted in a-priori knowledge that specifies which
md-elements can be interesting for the user when a given dic-
tionary entry is perceived. This knowledge is defined through a
dictionary-to-cube mapping established by a domain expert at
setup time.

Definition 3.7 (Mapping). A mapping from dictionary D to
cube C is a (partial) multivalued function µ that maps each entry
d of D to a set of md-elements of C. Each md-element e ∈ µ(d)
has a mapping weight,w(d, e) ∈ (0, 1].

Although a discussion about how mappings can be established
is out of the scope of this paper, we remark that this does not
necessarily have to be done manually for all the cube members,
which would be tedious for attributes with large domains, but it
can be largely automated (for instance, by providing universally-
quantified rules such as µ(⟨Device,value⟩) = {value} ∀value ∈
Dom(Device)). The mapping function is multivalued since many
md-elements may be of interest for each dictionary entry; this
typically happens for hierarchy levels, which can be all inter-
esting —even if with different values of w . For example, when
some device is perceived, besides showing data for that specific
device, also showing aggregated data for the device type could
be interesting. Through mapping weights, domain experts give
an a-priori quantification of the interest of each md-element for
analyses when a given entry is part of the context.



Example 3.8. The dictionary for our example includes, among
the others, entries related to machines and their components
(key = Device, value = ConveyorBelt, PackagingMachine, etc.),
and user roles (key = Role, value = Inspector, Operator, etc.).
The mapping from this dictionary to the cube of Example 3.3
may look like this (see Figure 1):

µ(⟨Device,ConveyorBelt⟩) = {ConveyorBelt},
µ(⟨Role, Inspector⟩) = {Duration,

MaintenanceType},

µ(⟨Date, 16/10/2018⟩) = {Date},
w(⟨Device,ConveyorBelt⟩,ConveyorBelt) = 0.5

where the first line refers to a member, the second one to a mea-
sure, the third and fourth ones to a level. The mapping weight
of member ConveyorBelt when the conveyor belt device is per-
ceived is 0.5. �

4 CONTEXT INTERPRETATION
In this section we show how, given a set of perceived entities,
A-BI produces the most relevant query, i.e., the one whose results
would be more useful to the user.

4.1 Take the context...
The A-BI starting point is the context: a list of dictionary entries
corresponding to the currently perceived environment entities.
More formally:

Definition 4.1 (Context). A context T over dictionary D is a
set of entries of D; each entry d ∈ T is coupled with a weight
w(T ,d) ∈ (0, 1].

The value of the weight for each entrymay depend on different
factors, depending on the application domain. Non-perceived
entities (i.e., for which it would bew(T ,d) = 0) are not included
in the context. In our case studywe assume that a subset of entries
are engaged, meaning that they have explicitly been indicated by
the user as being part of her current focus of interest; for these
entries, the weight is always 1. For the other entries, the weight
is inversely proportional to the distance between the user and
the specific object being observed.

Given a context, the mapping function identifies the relevant
md-elements, i.e., those that will be involved in the queries to be
issued against the cube.

Definition 4.2 (Image). Given context T over dictionary D,
cube C, and mapping µ from D to C, the image of T through µ
is Iµ (T ) =

⋃
d ∈T µ(d), i.e., the set of md-elements of C that are

mapped through µ to at least one entry in T .

Example 4.3. A possible context is the one depicted in Figure
1, where Bob is checking a conveyor belt placed in room A.1:

T = {⟨Device,ConveyorBelt, 1⟩,
⟨Role, Inspector, 0.5⟩,
⟨Date, 16/10/2018, 0.5⟩}

The ConveyorBelt device is engaged. The image of T through µ
is

Iµ (T ) = {ConveyorBelt,Duration,MaintenanceType,Date}

�

The image includes the set of md-elements relevant to a con-
text according to the mapping, but it does not specify how they
will be used to generate the queries to be proposed to the user
when that context is sensed. Indeed, given an image, several
queries can be generated, each including a subset of the md-
elements in the image. This is ruled by the definition of compatible
query.

Definition 4.4 (Compatible and Equivalent Query). A query
q = ⟨Gq , Pq ,Mq⟩ is compatible with context T if it refers to at
least one of the md-elements in the image of T ; specifically,
• a level l is referred by q if l ∈ Gq ;
• a measurem is referred by q ifm ∈ Mq ;
• a member u is referred to by q if (lev(u) = u) ∈ Pq and
lev(u) ∈ Gq , being lev(u) the level whose domain includes
u.

With a slight abuse of notation, we will write e ∈ q to state that
q refers to md-element e . LetQT be the set of queries compatible
with T ; the query equivalent to T is the query qeq (T ) ∈ QT that
refers to all md-elements in Iµ (T ).

4.2 ...add the log...
The a-priori knowledge expressed through a mapping does not
enable the system to learn by considering how user interests
evolve, which instead could lead to picking different md-elements
when proposing queries or to choosing one of them more/less
frequently. To this end, A-BI exploits the history of previous
interactions, stored in the query log, by means of a collaborative
filtering approach. The log stores, for each context, all the queries
proposed to the user and the specific one chosen for execution.

Definition 4.5 (Log). A log L is an ordered list of triples ⟨T ,q, f ⟩
whereT is a context, q is a query, and f (feedback) is 1 if the user
accepted the query, −1 if she rejected the query.

Example 4.6. With reference to the context T proposed in
Example 4.3, a possible log is L = (⟨T ,q1,−1⟩, ⟨T ,q2, 1⟩), where

q1 = ⟨{Date,Device},

{(Device = ConveyorBelt)},
{Duration}⟩

q2 = ⟨{Month,Device},

{(Device = ConveyorBelt)},
{Duration}⟩

While q1 has been rejected, q2 (which is a roll-up of q1 on the
Date hierarchy) has been accepted. �

A log entry related to context T ′ should impact the recom-
mendations related to the current context T only if the two con-
texts are similar, since it is reasonable to assume that the user
will have similar behaviors in similar contexts. Context simi-
larity is computed as the similarity between their two equiva-
lent queries, sim(qeq (T ),qeq (T ′)), which in turn is computed as
in [29]. The similarity function sim(q,q′) between two queries
q = ⟨Gq , Pq ,Mq⟩, q′ = ⟨Gq′ , Pq′ ,Mq′⟩ combines three compo-
nents, related to group-by sets, selection predicates, and mea-
sures, respectively. In particular, the group-by set similarity con-
siders the distance between the levels involved in the query
group-by sets; the selection similarity takes into account both
the levels and the members that form the selection predicates;
the measure similarity is based on the Jaccard index. Finally, the



similarity between two queries is defined as the weighted average
of the three similarity components. Following [29], we assume
the three components to be equally significant.

Given log L, the image Iµ (T ) of context T is extended to take
previous user interactions into account as follows. Let LT ⊆ L be
the subset of triples whose context is similar to T :

LT = {⟨T
′,q, f ⟩ | sim(qeq (T ),qeq (T

′)) ≥ ϵ}

where ϵ is the similarity threshold. Then, Iµ (T ) is extended with
all the md-elements referred to by the queries in LT :

I∗µ (T ) = Iµ (T ) ∪ {e : ∃⟨T ′,q, f ⟩ ∈ LT | e ∈ q}
In this way, I∗µ (T ) includes all the md-elements that are relevant
to context T either according to the mapping or to the previous
user experience. We define the log relevance to T of md-element
e ∈ I∗µ (T ) as the weighted number of times e has been accepted by
the user (f = 1) over the number of times it has been proposed;
weighting is based on the similarity between the current context
T and the considered log context T ′:

ρT (L, e) =
1 +

∑
⟨T ′,q,f ⟩∈LT (e),f =1 sim(qeq (T ),qeq (T

′))

2 +
∑
⟨T ′,q,f ⟩∈LT (e) sim(qeq (T ),qeq (T

′))

where LT (e) is the subset of tuples in LT such that q refers to e .
To avoid relevance to be 0 when e has never been accepted, a
Laplace smoothing is applied in the formula above. Noticeably,
the impact of Laplace smoothing decreases as the cardinality of
LT (e) increases, that is, the weight tends to 0 if several queries
referring e have been proposed but never accepted by the user.
Conversely, it tends to 0.5 if only few queries referring e have
been proposed.

It is now possible to define the relevance to T of each md-
element e ∈ I∗µ (T ) by taking into account, for each context entryd
that maps to e , not only the entry weightw(T ,d) and themapping
weightw(d, e), but also the log relevance ρT (L, e):

relT (e) =

{∑
d ∈T |e ∈µ(d )w(T ,d) ·w(d, e), if LT (e) = ∅∑
d ∈T |e ∈µ(d )w(T ,d) ·w(d, e) · ρT (L, e), otherwise

(note that log relevance is not considered —i.e., it does not affect
the overall relevance— if e is never referred in a log query).

Example 4.7. With reference to the image Iµ (T ) from Exam-
ple 4.3 and to the log entries in Example 4.6, the extended image
is

I∗µ (T ) = {ConveyorBelt,
Duration,MaintenanceType,

Date,Month}

Month has been added to Iµ (T ) as part of a query with a posi-
tive feedback. As to relT (Date) and relT (Month), assuming that
the mapping weight w(d,Duration) = 1, and that the mapping
weight for the remaining levels and members is set to 0.5, it is

relT (Device) = 0.25,
relT (ConveyorBelt) = 0.25,

relT (Duration) = 0.25,
relT (MaintenanceType) = 0.17,

relT (Month) = 0.13,
relT (Date) = 0.08

�

4.3 ...get the queries
In principle, given a context T , its equivalent query qeq (T )
might be directly proposed to the user. Unfortunately, equiv-
alent queries are oftenmonster queries, i.e., quite complex queries
with very high cardinalities. A monster query would be obtained
when the number of md-elements in the image is high because
several entities were sensed in the environment so the context in-
cludes a large number of entries. Unfortunately, monster queries
are particularly undesirable in AR applications since:
• High-cardinality queries take a long time to be computed,
transferred to the user smart device, and visualized.
• While working on the field, users must be quick and reac-
tive, while the results of monster queries are hard to be
interpreted.

In the A-BI framework, monster queries are avoided in two ways:
(i) by posing an upper bound γ to the query cardinality, and (ii)
by considering only the most relevant md-elements in the image
when generating the queries to be proposed to the user.

As to (i), given query q = ⟨Gq , Pq ,Mq⟩, the expected cardinal-
ity of its result, denoted card(q), can be estimated as follows:

card(q) = card(Gq ) ×
∏
p∈Pq

selectivity(p)

where card(Gq ) is the cardinality of the query group-by set (es-
timated for instance using the Cardenas formula [30, 31]) and
sel(p) is the selectivity of each simple predicate p belonging to
Pq . Note that we can safely use this formula to estimate card(q)
because, as a consequence of the way we create queries in our
approach, all predicates in Pq are always external, i.e., they are
expressed on levels that are less or equal to a level in Gq [32] in
the roll-up order.

As to (ii), before generating the maximal query for a context
we remove from the context image I∗µ (T ) all the md-elements e
whose relevance relT (e) is below a given threshold η.

Definition 4.8 (Query Relevance and Maximal Query). Given
context T , let QT be the set of queries that refer to any subset of
md-elements in the image ofT through mapping µ. The relevance
to T of a query q ∈ QT is defined as

relT (q) =

∑
e ∈q relT (e)∑

e ∈I ∗µ (T ) relT (e)

The maximal query for T is the query qmax (T ) ∈ QT that has
maximum relevance among all those inQT such that card(q) ≤ γ .

Clearly, the number of queries in QT increases exponentially
with |T |. Finding the maximal query can be formalized as a Knap-
sack problem on the md-elements inT , considering γ as the knap-
sack capacity. The Knapsack problem is an NP-hard optimization
problem, so in Algorithm 1 we propose a greedy approach to
compute the maximal query in real time. Starting from the image,
we first include all the predicates to produce the smallest (i.e.,
most focused) result set and then, while the result set cardinality
is below the threshold, we incrementally extend the group-by set
to produce progressively larger result sets.

Given the extended image I∗µ of context T , the cardinality
threshold γ , and the relevance threshold η, the algorithms works
as follows. At first, in Line 1 we remove from I∗µ the md-elements
whose relevance is below η. Then, we initialize the maximal
query by selecting all the members in I∗µ to create the conjunc-
tive predicate Pq (intuitively, this is the “most focused” predicate),
by adding all the corresponding levels to the group-by set, and



Algorithm 1Maximal query generation

Require: I∗µ : extended image of context T , γ : cardinality threshold, η: relevance threshold
Ensure: qmax (T ): maximal query
1: I∗µ ← I∗µ \ {e ∈ I

∗
µ , relT (e) < η} ◃ Drop low-relevance md-elements from the extended image

2: Pq ← CreatePred({e ∈ I∗µ , e is a member})◃ Create a predicate as the conjunction of IN clauses, each including all the members of
the same level in the extended image

3: Gq ← {lev(e), e ∈ I
∗
µ , e is a member} ◃ Create a group-by set including the levels of all members in the extended image

4: Mq ← {e ∈ I
∗
µ , e is a measure} ◃ Create a set of measures including all those in the extended image

5: q ← ⟨Gq , Pq ,Mq⟩ ◃ Initialize the current maximal query
6: A← {e ∈ I∗µ \Gq , e is a level} ◃ Initialize a set of candidate levels to extend Gq
7: q′ ← q ◃ New candidate maximal query
8: while card(q′) ≤ γ do ◃While the candidate query cardinality is below threshold...
9: q ← q′ ◃ ...update the current maximal query
10: if A = ∅ then ◃ If the search space is not exhausted...
11: break
12: l ← arдmaxe ∈A(relT (e)) ◃ ...pick the most relevant candidate level,
13: A← A \ {l} ◃ remove from the set of candidate levels,
14: Gq ← Gq ∪ {l} ◃ add it to the group-by set,
15: q′ ← ⟨Gq , Pq ,Mq⟩ ◃ and update the candidate query
16: end while
17: return q

by adding all the measures in I∗µ (Lines 2–5). Now we iterate to
progressively add to the group-by set new relevant levels taken
from the image, but only as long as the cardinality constraint is
met (Lines 8–16). Finally, the last query with a cardinality below
γ is returned to the user (Line 17). Note that, if the candidate
query defined in line 5 violates the cardinality constraint γ , it is
immediately returned since all the transformations that follow
would further increase its cardinality. In this specific case, con-
straint enforcement will be ensured by the diversification phase
(see Algorithm 2).

Example 4.9. With reference to the context T from Exam-
ple 4.3 and to its extended image from Example 4.7, we ap-
ply Algorithm 1 to generate the maximal query for T with
γ = 20 and η = 0.1. At first, Date is pruned from I∗µ since
its relevance is below η. Then Pq is initialized to {(Device =
ConveyorBelt)},Gq to {Device},Mq to {Duration}; levelsMain-
tenanceType andMonth are stored inA for possible further inclu-
sion into Gq . The maximal query is initially set to ⟨Gq , Pq ,Mq⟩,
with 1 being its cardinality. At this time, the algorithm at-
tempts to add MaintenanceType to the query group-by set.
Let the cardinality of ⟨{Device, MaintenanceType}, {(Device =
ConveyorBelt)}, {Duration}⟩ be 5. Since the cardinality of the
candidate maximal query is below threshold, the current maxi-
mal query is updated. The algorithm attemps to add Month to
the query group-by set. Since this increases the query cardinality
by a factor equal to the number of months being monitored in
the MaintenanceActivity cube, the cardinality of the new can-
didate query ⟨{Device,MaintenanceType,Month}, {(Device =
ConveyorBelt)}, {Duration}⟩ will supposedly be larger than 20,
so the previous query ⟨{Device,MaintenanceType}, {(Device =
ConveyorBelt)}, {Duration}⟩ is returned. The SQL representa-
tion of the maximal query is

SELECT Device, MaintenanceType, sum(Duration)

FROM MaintenanceActivity

WHERE Device = ConveyorBelt

GROUP BY Device, MaintenanceType

�

5 QUERY DIVERSIFICATION
Given a context T , the maximal query qmax (T ) is the more rel-
evant query that meets the cardinality constraint. Nonetheless,
to better meet the user’s desiderata, it may be useful to return
a set of alternative queries that, though being still related to T ,
are different enough from each other and from qmax (T ) to offer
different flavors of the same information to the user. This gen-
eral idea is often practiced in the literature and referred to as
diversification [23].

Given the set of queries QT compatible with T , the problem
of diversification consists in finding the set of top-N queries
R ⊆ QT that maximizes diversity and relevance with respect
to user analyses [23]. The diversity div(q,R) of a query q with
respect to R can be defined as in [33]

div(q,R) =
1
|R |

∑
q′∈R
(1 − sim(q,q′))

with div(q,R) = 1 when R is empty.
Finding the optimal set of diverse queries is NP-hard with

reference to the cardinality of QT which, in turn, is exponen-
tial in the image cardinality |I∗µ (T )|. Considering the real-time
constraint related to every AR application, we propose in the
following a greedy approach that starting from qmax (T ) gener-
ates progressively different queries. Diversification is obtained
through three OLAP-based generative primitives, each applied to
the previous query q = ⟨G, P ,M⟩ to return a set of new queries:
• roll(q) returns a set of queries whose group-by set is
coarser than G; each of these queries is obtained by re-
placing in G one level l with its immediate successor
in the roll-up partial order. For each q′ ∈ roll(q), it is
card(q′) ≤ card(q). Only queries whose predicates are all
external are returned.
• drill(q) returns a set of queries whose group-by set is finer
thanG; each of these queries is obtained by replacing inG
one level l with its immediate predecessor in the roll-up
partial order. For each q′ ∈ roll(q), it is card(q′) ≥ card(q).



Algorithm 2 Diversification

Require: qmax (T ): maximal query for context T , γ : cardinal-
ity threshold, θ : diversity threshold, N : number of diverse
queries

Ensure: R: diverse queries
1: R ← ∅ ◃ Result set
2: Q ← {qmax (T )} ◃ Search space
3: while (|R | < N ) ∧ (Q , ∅) do
4: q ← arдmaxq′∈Q (div(q

′,R)) ◃ Most diverse query
5: Q ← Q \ {q}
6: if (card(q) ≤ γ ) ∧ (div(q,R) ≥ θ ) then
7: R ← R ∪ {q} ◃ q is added to the result
8: if q = qmax (T ) then
9: Q ← Q ∪ Extend(q) ◃ Apply primitives
10: else ◃ Continue the search
11: Q ← Q ∪ Extend(q) ◃ Apply primitives
12: end while
13: return R

• slice(q) returns a set of queries whose selection predicate
is less selective than P ; each of these queries is obtained
by replacing one of the IN clauses in P , defined on a set of
members u1, . . . ,un , with a clause on the member(s) that
are the immediate successors of u1, . . . ,un in the part-of
order. For each q′ ∈ roll(q), it is card(q′) ≥ card(q).

The queries returned by all these operators are progressively less
similar to the maximal query, so their relevance is lower than the
one of q. Besides, only queries compatible with the context are
returned.

Example 5.1. Given q = ⟨{Device,Month}, {Device =

ConveryorBelt}, {Duration}⟩, examples of queries returned by
our three primitives are, respectively,

qroll = ⟨{Device,Year},

{(Device = ConveyorBelt)},
{Duration}⟩

qdr ill = ⟨{Device,Date},

{(Device = ConveyorBelt)},
{Duration}⟩

qsl ice = ⟨{Device,Month},

{(DeviceType = PackagingMachine)},
{Duration}⟩

�

The diversification process is described in Algorithm 2. Given
the maximal query qmax , the cardinality threshold γ , a diversity
threshold θ , and the number of desired diverse queries N , the
set of diverse queries R is initialized to the empty set (Line 1)
and the search space Q is initialized to qmax (Line 2). The most
diverse query, q, is picked from the search space (Line 4); if its
cardinality is below γ and its diversity from the queries in R is
higher than θ , then q is added to R (Lines 6–7). Note that at the
first step, when the search space contains only qmax (T ), function
Extend(q) is invoked to apply our three primitives to qmax (T )
(Lines 8–9); specifically, roll(q) is alway applied since it decreases
the query cardinality, while drill(q) and slice(q) are applied only
if card(q) ≤ γ . Otherwise, if either card(q) is too high or q is not
diverse enough from the queries inR, the search space is extended

with the queries generated by Extend(q) (Line 11). Lines from
4 to 11 are repeated until either the cardinality of the result set
overcomes N or the search space Q is empty (Line 3).

Intuitively, Algorithm 2 explores the search space QT around
qmax (T ) assuming that the lower the similarity between q′ and
qmax (T ), the lower the relevance of q′. The queries added to the
result set R are no longer considered for differentiation aimed
at maximizing the probability of finding a a new different query
with high relevance: indeed, a query q′′ obtained by extending
q′ ∈ R will probably be very similar to q′ and less relevant. This
rule does not apply to qmax (T ), which is the starting point for
exploration and must be always expanded and added to R (except
the specific case in which it violates the cardinality constraint).

Example 5.2. Let qmax (T ) = ⟨{Device,Month}, {Device =
ConveryorBelt}, {Duration}⟩ be the maximal query, with
card(qmax (T )) ≤ γ . At the first iteration, qmax (T ) (the only
query in the search spaceQ) is picked. Since div(qmax (T ),R) = 1
(R is empty), R is extended with qmax (T ), and Q is extended,
among the others, with qroll , qdr ill , and qsl ice (see Example 5.1).
At the second iteration, let qdr ill be the most diverse query.
Since qdr ill is quite similar to the maximal query, it is likely
that div(qdr ill ,R) is below θ . In this case, qdr ill is not added to
R, and Q is extended by applying Extend(qdr ill ). The iteration
continues until N diverse queries are generated, or the search
space Q is exhausted. �

6 EXPERIMENTAL TESTS
In this section we evaluate the A-BI framework in terms of both
effectiveness (to what extent the proposed queries meet the user’s
interests) and efficiency. Tests were carried out on a synthetic
benchmark since, in this work, we assume the problem of context
generation to be addressed by the smart device and, to the best
of our knowledge, no AR open dataset exists.

The user-system interaction is as follows. The user is moving
in a factory of 10 rooms, and, while moving, she collects one view
of each room. In each view the smart device recognizes a set of
entities that belong to the dictionary and lists them into a context.
Starting from each context, the A-BI framework proposes a set
of queries to the user. Finally, the user either chooses one of
the proposed queries or formulates an additional query that is
slightly different from the ones proposed. After some time, the
user ends her exploration of the factory and moves back through
the same rooms. Knowing the precedent behavior of the user, the
A-BI framework exploits collaborative filtering to propose a new
set of queries (generated by taking the query log into account)
that better suit her interests. We denote with α the number of
times the user has visited the factory (i.e., how many times each
context has already been sensed by the user’s devices before the
current visit).

This interaction is simulated by randomly generating 10 seed
contexts, each corresponding to a different room, in such a way
that these contexts differ significantly from each other. Then, to
simulate multiple visits of each room, small context variations are
generated starting from each seed (specifically, one for each visit;
the idea is that each room is perceived with slight differences
in each visit). The number of entities recognized in each room
(i.e., the context cardinality) ranges between 5 and 15. Each test
is repeated 10 times and the average behavior is considered.

We executed our tests against a cube including 5 linear hi-
erarchies with 5 levels of details each. Each dimension has 64
members, determining a maximum cube cardinality of about 109.



Table 1: Notation summary

Notation Meaning
T Context (corresponds to a view of a factory

room)
qmax Maximal query
qu User query
qdiv Diverse query most similar to qu
qloд Log query most similar to qu
α ∈ [0, 8] Number of times the user has already seen

a context
β ∈ [0.6, 1] Similarity between qu and qmax
γ = 100 Query cardinality threshold
ϵ = 0.5 Context similarity threshold
η = 0.5 Relevance threshold
θ ∈ [0.05, 0.2] Diversity threshold
N ∈ [2, 8] Number of diverse queries generated

qmax

qu
qdiv

(a)

qu

qdiv
qmax

qlog

(b)

β

θ

Figure 2: The user query qu , the maximal query qmax , and
the set of diverse queries (in blue); among them,qdiv is the
one most similar to qu

The dictionary includes one key for each md-element (i.e., we
assume the smart device can recognize each single element of the
cube); each dictionary entry d is one-to-one mapped to the corre-
sponding md-element e with mapping weightw(d, e) randomly
ranging in [0.2, 1]. Additionally, for each context, we call

• qmax the maximal query generated by Algorithm 1.
• qu the query chosen by the user. We denote with β the
similarity between the user query and the maximal query
(β = sim(qu ,qmax )). The lower the value of β , the higher
the difference between the user and maximal queries; if
β = 1, the user exactly chooses the maximal query.
• qdiv the query most similar to qu among those generated
by the diversification process, when the log is ignored.
• qloд the query most similar to qu among those generated
by the diversification process, when the log is taken into
account. At each visit, 10 contexts are shown to the user;
so, after each iteration, 10 contexts are added to the log
with the corresponding user choices.

At the first visit (α = 0), the log is empty soqloд ≡ qdiv . In theory,
qdiv should be more similar to qu than qmax since it results from
diversification, and qloд should further improve over qdiv since
it also uses the log.

A notation summary is provided in Table 1. To help the reader
understand the role of each query, a visual representation of
qmax , qdiv , and qloд is depicted in Figure 2, where the query
space is represented as a Cartesian planewith Euclidean distances.

6.1 Effectiveness
Figure 3a evaluates the benefit of diversification and of collab-
orative filtering by showing how similar qmax , qdiv , and qloд
are to qu for different values of β and θ . Clearly, the lower β , the
less similar qu from qmax . Diversification comes to the rescue,
providing at least one diverse query qdiv that is closer to the
user’s interests. However, even if a high diversity threshold is set
(e.g., θ = 0.2), the diverse queries are not sensibly closer to qu ,
as they deviate too much from queries with high relevance. The
closest query in the log, qloд , is always more similar to qu than
qdiv .

In Figure 3b we focus on diversification by showing that the
higher the number of diverse queries N , the higher the values
of sim(qu ,qdiv ), hence, the higher the effectiveness of diversi-
fication. Finally, Figure 3c shows the capability of collaborative
filtering to meet the user’s desiderata even when the user query
qu is quite different from the maximal one. Indeed, the closest
query in the log converges towards the user one after a few user
feedbacks are collected. Already after one user feedback, the sim-
ilarity between qloд and qu sensibly rises, being very close to 1
when 4 feedbacks are collected.

6.2 Efficiency
We ran the tests on a machine equipped with Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz CPU and 16GB RAM, with the A-BI
framework being implemented in Scala.

The efficiency results are depicted in Figure 4, with the overall
execution time being in the order of 10−1 seconds at most. The
execution of Algorithm 2 accounts for most computational time.
Indeed, the process of diversification is computationally heavy,
requiring to find, among the search space, the query with the
highest diversity with reference to the current result set (with
O(|Q |) being the complexity of Line 4 in Algorithm 2 in case Q
is not sorted). Note that the set of diverse queries is increasingly
built, thus the time to first result is lower since, once a query is
added to result set, it can be directly returned. We also varied
the number of entries in the context (|T | ∈ [5, 15]), but since this
does not significantly affect performances we do not show the
results.

We finally emphasize that the execution time corresponds to
the time necessary to define the recommended queries, and not
to the time to actually execute them. Indeed, the execution of the
query is demanded to and strictly depends on the performance
of the enterprise data warehouse system.

7 CONCLUSION
TheA-BI framework is a first result in the direction of establishing
a tight connection between analytical reporting and augmented
reality applications. Besides proposing a reference functional
architecture and interaction process, in this paper we have shown
that recommendations can be given in real-time.

A-BI can be improved from many points of view, in particu-
lar we are working towards producing recommendations that
are based on patterns of recognized context entities rather than
on single entities (e.g., md-element e is relevant if the context
includes d and d ′ but not d ′′). Furthermore, in its current im-
plementation, a recommendation involves all the elements in
the context while it would be useful to provide separate recom-
mendations related to subsets of elements. Finally, it would be
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interesting to investigate on how to turn A-BI into a purely sta-
tistical framework where all weights are expressed in terms of
probabilities and reasoning is probabilistic too.
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