
Feedback Driven Improvement of Data Preparation Pipelines
Nikolaos Konstantinou

School of Computer Science

University of Manchester

Manchester, UK

nikolaos.konstantinou@manchester.ac.uk

Norman W. Paton

School of Computer Science

University of Manchester

Manchester, UK

norman.paton@manchester.ac.uk

ABSTRACT
Data preparation, whether for populating enterprise data ware-

houses or as a precursor to more exploratory analyses, is recog-

nised as being laborious, and as a result is a barrier to cost-

effective data analysis. Several steps that recur within data prepa-

ration pipelines are amenable to automation, but it seems impor-

tant that automated decisions can be refined in the light of user

feedback on data products. There has been significant work on

how individual data preparation steps can be refined in the light

of feedback. This paper goes further, by proposing an approach

in which feedback on the correctness of values in a data prod-

uct can be used to revise the results of diverse data preparation

components. Furthermore, the approach takes into account all

the available feedback in determining which actions should be

applied to refine the data preparation process. The approach has

been implemented to refine the results of of matching, mapping

and data repair components in the VADA data preparation sys-

tem, and is evaluated using deep web and open government data

sets from the real estate domain. The experiments have shown

how the approach enables feedback to be assimilated effectively

for use with individual data preparation components, and fur-

thermore that synergies result from applying the feedback to

several data preparation components.

1 INTRODUCTION
Data preparation is the process of transforming data from its

original form into a representation that is more appropriate for

analysis. In datawarehouses, data preparation tends to be referred

to as involving an Extract Transform Load (ETL) process [34], and
for more ad hoc analyses carried out by data scientists may be

referred to as data wrangling [27]. In both cases, similar steps

tend to be involved in data preparation, such as: discovery of rele-
vant sources; profiling of these sources to better understand their
individual properties and the potential relationships between

them; matching to identify the relationships between source at-

tributes; mapping to combine the data from multiple sources;

format transformation to revise the representations of attribute

values; and entity resolution to identify and remove duplicate

records representing the same real world object.

This is a long list of steps, each of which can potentially involve

data engineers: (i) deciding which data integration and cleaning

operations to apply to which sources; (ii) deciding the order

of application of the operations; and (iii) either configuring the

individual operation applications or writing the rules that express

the behaviour to be exhibited. Although there are many data

preparation products, and the market for data preparation tools

is estimated to be $2.9 billion [24], most of these products are

essentially visual programming platforms, in which users make

many, fine-grained decisions. The consequences of this is that

© 2019 Copyright held by the author(s). Published in the Workshop Proceedings

of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on

CEUR-WS.org.

data preparation is typically quoted as taking 80% of the time of

data scientists, who would prefer to be spending their time on

analysing and interpreting results
1
.

The high cost of data preparation has been recognised for a

considerable period. For example, research into dataspaces [12]

proposed a pay-as-you-go approach to data integration, in which

there was an initial and automated bootstrapping phase, which

was followed by an incremental improvement phase in which

the user provided feedback on the data product. This gave rise to

a collection of proposals for pay-as-you-go data integration and

cleaning platforms [17], which in turn led to proposals for the use

of crowds as a possible source of feedback [9]. This research pro-

vided experience with pay-as-you-go data management, without

leading to many end-to-end systems; for the most part, feedback

was obtained for a particular task (e.g. mapping selection, en-

tity resolution) and used for that task alone. This was alright,

but collecting feedback on lots of individual components is it-

self expensive, and thus not especially helpful for the complete,

many-step data preparation process.

This, therefore, leaves open the question as to how to make

a multi-step data preparation process much more cost effective,

for example through automation and widespread use of feedback

on data products. There are now some results on automating

comprehensive data preparation pipelines. For example, in Data

Tamer [29], machine learning is used to support activities in-

cluding the alignment of data sets and instance level integra-

tion through entity resolution and fusion. In some respects Data

Tamer follows a pay-as-you-go approach, as the training data

used by the learning components is revised in the light of experi-

ence. Furthermore, in VADA [21], a collection of components (for

matching, mapping generation, source selection, format trans-

formation and data repair) are orchestrated automatically over

data sources, informed by supplementary instance data drawn

from the domain of the target schema [20]. However, to date,

feedback has only been applied in VADA to inform the selection

of mappings.

In this paper we investigate how feedback on the data product

that results from the multi-component data preparation process

in VADA can be used to revise the results of multiple of these

wrangling components in a well-informed way. In particular,

given feedback on the correctness of tuples in the data product,

a feedback assimilation strategy explores a set of hypotheses

about the reason for problems with the result. The statistical

significance of these hypotheses is then tested, giving rise to the

generation of a revised data integration process. The proposed

approach thus uses the same feedback to inform changes to

many different data preparation components, thereby seeking to

maximise the return on the investment made in the provision of

feedback.

The contributions of the paper are as follows:

1
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-

consuming-least-enjoyable-data-science-task-survey-says/33d344256f63

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/##33d344256f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/##33d344256f63

Figure 1: Data Sources and Reference Data in a simple data preparation scenario. Specific values are coloured as follows:
red font – incorrect value w.r.t. conditional functional dependencies (CFDs); green font: correct value w.r.t. CFDs; blue font
– data used in mining CFDs.

(1) A technique for applying feedback on a data product across

a multi-step data preparation process that both identifies

statistically significant issues and provides a mechanism

for exploring the actions that may resolve these issues.

(2) A realisation of the technique from (1) in a specific data

preparation platform, where feedback is used to change

the matches used in an integration, change which map-

pings are used, and change which data quality rules are

applied.

(3) An empirical evaluation of the implementation of the ap-

proach from (2) that investigates the effectiveness of the

proposed approach both for individual data preparation

constructs (matches, mappings and CFDs) and for apply-

ing feedback across all these constructs together.

The remainder of the paper is structured as follows. Section

2 outlines the data preparation pipeline on which we build, and

provides a running example that will be used in the later sections.

Section 3 provides a problem statement and an overview of the

approach. Section 4 details the individual components in the re-

alisation of the approach, and presents the feedback assimilation

algorithm. Section 5 evaluates the technique in a real estate ap-

plication. Section 6 reviews other approaches to increasing the

cost-effectiveness of data preparation, and Section 7 concludes.

2 A DATA PREPARATION PIPELINE
This section provides an overview of the aspects of the VADA

data preparation architecture that are relevant to the feedback

assimilation approach that is the focus of the paper. The VADA

architecture is described in more detail in earlier publications [20,

21].

2.1 Defining a Data Preparation Task
In VADA, instead of handcrafting a data preparation workflow,

the user focuses on expressing their requirements, and then the

system automatically populates the end data product. In particu-

lar, the user provides:

Input Data Sources: A collection of data sources that can

be used to populate the result. Figure 1, illustrates the

data sources in our running scenario. These sources in-

clude real estate property data (sources s1 to s3) and open

government data (source s4).

Figure 2: Using feedback to improve the end product. The
shaded red background denotes false positive feedback ob-
tained on the initial end product, in the light of which
the system is able to refine the data preparation process
to yield the revised data product without the problematic
values.

Target Schema: A schema definition for the end data prod-

uct. In the running example, the target schema consists

of one table, property, with six attributes, namely price,
postcode, income, bedroom_no, street_name, and location.

User Context: The desired characteristics of the end prod-

uct; as the end data product is obtained by an automated

process, many candidate solutions can be generated. The

user context allows the system to select solutions that meet

the specific requirements of the user [1]. The user’s re-

quirements are modelled as a weighted set of criteria, with

the sum of their weights equal to one. Although in general

different quality criteria can be used (such as complete-

ness, consistency or relevance), in our running example,

we consider 6 criteria, each one on the correctness of a

target schema attribute, and a weight of
1

6
.

Data Context: Supplementary instance data associatedwith

the target schema, which can be used as additional ev-

idence to inform the automated data preparation pro-

cess [20]. For example, in Figure 1, reference data is pro-

vided that provides definitive address data.

Given the above information, and a user-defined targeted size

for the end product of 6 tuples, from the data sources in Figure 1,

the system can automatically produce the first end data product

Figure 3: A Data Preparation Pipeline

in Figure 2. In the absence of feedback or any other user-defined

characteristics, the system will select tuples that are as complete

as possible to populate the end data product. However, as illus-

trated in Figure 2, feedback on the correctness of the result can

be used to revise how the data product is produced, and thus

improve its overall quality.

2.2 Data Preparation Process and
Components

Figure 3 illustrates the basic flow of events for the data process-

ing pipeline in this paper, where the plus precedes and follows

parallel tasks. First, the system is initialised using the sources and

data context that the user has provided. Then, CFD Miner, Data
Profiler and Matching components are run on the sources and

data context. Given the matches and profiling data, the Mapping
component generates a set of candidate mappings, over which

Mapping Selection evaluates the user criteria to select the most

suitable mappings for contributing to the end product. Subse-

quently, the Data Repair component repairs constraint violations

that are detected on the end product. The components are now

outlined in more detail:

Initialise: This component sets up the system Knowledge

Base with metadata about the data available in the sys-

tem, the target schema, user preferences and component

configurations.

Matching: Given a set of sources and the target schema

T , the matching component produces a set of matches

between their attributes and the target schema attributes.

Each match has a similarity score , with 0 ≤ score ≤ 1.

Profiling: This component analyses the available sources

and produces a set of candidate keys and a set of inclusion

dependencies among the sources.

Mapping Generation: Using the results of the two previ-

ous components as inputs, mapping generation searches

the space of possible ways of combining the sources using

unions or joins, producing a set of candidate mappings.

Mapping Selection: Given a set of user criteria, a set of

candidate mappings, the target schema and a targeted size,

mapping selection establishes how many tuples to obtain

from each of the candidate mappings to populate a target

schema instance, thus creating an end data product [1].

Data Repair: Repair takes place in the presence of reference
data; reference data is considered to provide complete cov-

erage of the domains for certain target columns. Data

repair involves the cooperation of 2 components. First,

CFD Miner is trained on the data context [11]. The com-

ponent is configured by a support size parameter. In the

example illustrated in Figure 2, with a support size of 2, it

will produce a number of CFDs, including the following:

property([postcode]→ [streetname],(M1 5BY | | Cambridge

Street))

property([postcode]→ [locality],(M9 8QB | | Manchester))

property([postcode]→ [streetname],(OX2 9DU | | Crabtree

Road))

property([postcode]→ [locality],(OX28 4GE | | Witney))

property([postcode]→ [streetname],(OX4 2 DU | | Oxford Road))

Given a set of CFDs and a dataset, the Data Repair compo-

nent will identify violations of these CFDs, which can then

be repaired, in the sense that violations are removed [11].

In Figure 2, rules are learnt from the repeated presence

of the italicised tuples highlighted in blue in the refer-

ence data in Figure 2. Thus, the incorrect values Market
Street, Crabtree Rd, etc. have been corrected to Lakeside
Rise, Crabtree Road, etc. resulting in an end product that

is consistent with respect to the reference data.

3 PROBLEM STATEMENT
This section provides more details on the problem to be solved,

along with an overview of the approach to be followed. The

problem can be described as follows.

Assume we have a data preparation pipeline P, that
orchestrates a collection of data preparation steps

{s1, ..., sn }, to produce an end data product E that

consists of a set of tuples. The problem is, given

a set of feedback instances F on tuples from E, to
re-orchestrate some or all of the data preparation

steps si , revised in the light of the feedback, in a

way that produces an improved end data product.

In this paper, we assume that the feedback takes the form of

true positive (TP) or false positive (FP) annotations on tuples or

attribute values from E. Where a tuple is labelled as a TP this

means that it is considered to belong in the result; and where a

tuple is labelled as an FP, this means that it should not have been

included in the result. When an attribute value is labelled as a

TP this means that the given value is a legitimate member of the

domain of the column, and when it is labelled as an FP this value
should not have appeared in that column

2
.

Given such annotations, the approach consists of the following

steps:

(1) Given feedback F, identify a collection of hypotheses H
that could explain the feedback. For example, if an attribute

value is incorrect, the following are possible hypotheses:

(i) a match that was used to associate that value in a source

with this attribute in the target is incorrect; (ii) a mapping

that was used to populate that value in the target is in-

correct, for example joining two tables that should not

have been joined; and (iii) a format transformation has

introduced an error into the value.

(2) Given a hypothesis h ∈ H , review all the evidence pertain-

ing to h from the feedback to establish if the confidence

in the hypothesis is sufficient to suggest that it should be

investigated further. For example, if the hypothesis is that

a match is incorrect, all the feedback on data derived from

that match should be considered together, with a view

2
These annotations lend themselves to propagation as follows. If a tuple is marked

as TP, all of its attribute values are marked as TP. If an attribute value is marked as

FP, all tuples containing any of these attribute values are marked as FP.

to determining whether the match should be considered

problematic.

(3) Given a hypothesis h ∈ H in which there is some confi-

dence from feedback, identify actions that could be taken

in the pipeline P . For example, if the hypothesis is that a

match is incorrect, possible actions would be to drop that

match or to drop all the mappings that use the match.

(4) Given that evidence from feedback F may support several

different hypotheses, there is a space of possible actions

that could be carried out, each leading to a different collec-

tion of data preparation steps. As a result, we must explore

the space of candidate integrations that implement the dif-

ferent actions.

4 SOLUTION
This section provides additional details on how the steps from

Section 3 are carried out in practice, and includes details on how

the feedback can be used to inform actions on matches, map-

pings and CFDs. In particular, Section 4.1 identifies hypotheses

that may be suggested by the available feedback; Section 4.2 de-

scribes how the statistical significance of such hypotheses can

be ascertained; Section 4.3 identifies some actions that may be

taken in response to a hypothesis; and Section 4.4 describes how

the different aspects of the solution are brought together in an

algorithm.

4.1 Hypotheses
Given an end data product on which some feedback has been

collected, an obvious question is what can the feedback tell us
about the way in which the data product has been produced. More

specifically, given an end data product and some feedback that

identifies problems with the data product, an obvious question

is what went wrong in the production of this data product. For
example, in Figure 1, the street_name Market Street is not consis-
tent with the postcode M9 8QB, and thus could have been labelled

as an FP by the user. It is straightforward to identify possible

reasons for this problem, which here we term hypotheses. In this

case, possible reasons include:

Matching: Incorrect match used to relate the source to the

target.

Mapping Generation: Incorrectmapping combined sources

in an inappropriate way.

Data Repair: Incorrect data repair replaced the correct value
with the wrong one.

In this paper, all these hypotheses are considered as possible

explanations for the identified FP. The question then is when do
we provide credence to a hypothesis. Given the evidence available

in the form of feedback, hypotheses are tested as follows:

Matching: If the data that results from a match is signifi-

cantly worse than that produced from other matches for

the same target schema attribute, then the match is suspi-

cious.

Mapping Generation: If the result of a mapping is signif-

icantly worse than the results from the other mappings,

then the mapping is suspicious.

Data Repair: If the repaired values from a repair rule are

significantly worse than the other values for the repaired

attribute, then the rule is suspicious.

The following section uses statistical techniques to compare

matches, mappings and feedback using evidence from feedback.

4.2 Hypothesis Testing
This section describes how hypotheses are tested with respect to

the evidence from feedback.

As stated in Section 2, the user can define the desired charac-

teristics of the end product in the form of a set of criteria. Some

of these criteria can be determined without feedback (such as

the completeness with respect to the data context of the values

in a column), but some can be informed by feedback (such as

relevance and correctness). In the examples and experiments in

this paper, feedback is on correctness. For criteria that are based

on feedback, Equation 1 is used, in which ĉs is the criterion eval-

uation on a source s , tp (resp. f p) the numbers of tuples marked

by the user as true (resp. false) positives, and |s | is the source
size.

ĉs =
1

2

(1 +
tp − f p

|s |
) (1)

Thus, in the absence of feedback, the default value for a cri-

terion is 0.5. However, if we have feedback on the correctness

of an attribute that there are 6 tp values and 3 fp values, then if

there are 100 tuples, the estimated correctness for the attribute

in s is now 1

2
(1 + 6−3

|100 |
) = 0.515.

We now proceed to establish when criteria estimates are sig-

nificantly different using standard statistical techniques [7]
3
. The

estimated values of a criterion ĉ on two sources s2 and s1 are

considered to be significantly different when Equation 2 holds:

ĉs2 − ĉs1 > z
√
se2s2 − se

2

s1 (2)

where ĉs2 (resp. ĉs1) is the evaluation of criterion ĉ on s2 (resp.
s1), ses2 and ses1 are the standard errors for sources s2 and s1
respectively, calculated by Equation 3, and z is a statistical term
measuring the relationship between a value and the mean of a

group of values. For instance, a z-score of zero indicates that the

value and the mean are identical. In our experiments we use the

z-score that corresponds to a confidence level of 80%, i.e. 1.282.

Standard error is calculated by Equation 3 below.

ses =

√
ĉs (1 − ĉs)

Ls
(3)

where s is a source, ĉs is the evaluated feedback-based criterion
on source s , and Ls is the amount of feedback collected on source

s .
Given the above, then our estimation of a data criterion ĉs on

a source s is ĉs ± es where es is the margin of error for the data

criterion evaluation on s , and 0 ≤ ĉs ± es ≤ 1. A source s can
be either a set of values, or a set of tuples. The formula for the

margin of error is given in Equation 4.

es = z · ses ·

√
|s | − Ls
|s | − 1

(4)

where |s | is the number of elements in s (source size), and Ls
the amount of feedback collected for source s . This is feedback
either provided directly on the data product (if it is the end data

product) or propagated to it. We only consider attribute-level

feedback instances when evaluating Ls on a set of values, and

3
Such statistical techniques have been used before to compare mappings on the

basis of feedback, with a view to targeting feedback collection [28]. In that work,

where there is uncertainty as to which mappings should be preferred in mapping

selection, additional feedback is obtained to reduce the uncertainty.

Figure 4: Detecting significantly different matches

we only consider tuple-level feedback instances when evaluating

Ls on a set of tuples.

In the absence of feedback on a set of tuples or values, given

that ĉs is unknown, hence ĉs =
1

2
± 1

2
, we can solve Equation 4

by setting es =
1

2
and Ls = 0, and evaluate the standard error

ses for the source s (needed for evaluating significant difference

using Equation 2) in the absence of feedback as:

ses =
1

2z

√
|s | − 1

|s |
(5)

Next, we discuss the comparisons we used when testing the

different components in the system. The focus is on what is

considered as s1, s2, when evaluating Equation 2.

Testing matches for significant difference. Figure 4 shows

the target schema T and a source s , with a match between at-

tribute s .d and the target schema attribute T .d :m1 : s .d ∼ T .d .
When testing matchm1 for significant difference, Equation 2

is evaluated on the projections on the matching attributes. Specif-

ically, to test the significance of match m1, for the evaluation

of Equation 2, we use value sets s1 and s2 (i.e., s .d and T .d), as
illustrated in Figure 4.

Note that the set s1 is the complete set of values for attribute

s .d , regardless of whether the values are selected to populate the

end product or not, while s2 is the greyed part of attribute T .d .
Consider the example in Figure 1, for which some feedback has

been obtained on the initial end product in Figure 2, to the effect

that the first two tuples have fp annotations for their bedroom_no.
In Figure 2, the first 3 tuples have been obtained from Source 1,
but involve an incorrect match of Source1.bathrooms with Tar-
get.bedroom_no. The correctness estimated for this match using

Equation 1 is
1

2
(1 + 0−2

|3 |
) = 0.167. The correctness for the values

obtained from other matches on the same column, on which no

feedback has been collected, is estimated using Equation 1 to

be 0.5. Although with this small illustrative example statistical

significance is difficult to establish, we can see that the correct-

ness estimate associated with the match from Source1.bathrooms
with Target.bedroom_no is lower than that for the other values in

the column (obtained using matches involving source attributes

Source 2.bedroom_no and Source 3.bed_num), and thus the match

involving Source1.bathrooms with Target.bedroom_no may be

identified as being suspicious.

Testing mappings for significant difference. Figure 5 shows
an example of a target schema T populated with tuples selected

Figure 5: Detecting significantly different mappings

from 5 candidate mappings. Candidate mappingsm1 tom4 con-

tribute to the solution, whilem5 does not. For each of the can-

didate mappings that contributes to the solution, we evaluate

the participating tuples against the rest of the tuples of the end

product, using Equation 2. For instance, for to evaluate whether

mappingm1 is significantly different, we use s1 and s2 as illus-
trated in Figure 5 .

It is important to mention that for mappings, before evaluation,

we propagate to the mapping the feedback that the user has

provided on the end product, and on the mappings themselves.

Furthermore, the Mapping Selection component ensures that the

tuples that are marked as true (resp. false) positives are selected

(resp. not selected).

Testing CFDs for significant difference. In Figure 6 we see

the result of a CFD on the end product. We mark as green the 2
attribute values for column c that are found to be correct, and

with red the 3 values in column d found to be violating the CFD,

and that were thus repaired. As before, we consider tuple sets s1
and s2 in Figure 6 as inputs to Equation 2. Note that the correct

values are not considered in s1, as they have no effect on the end

product. We only consider the tuples that were modified.

4.3 Actions
Each of the hypotheses is associated with a respective action,

typically set in this paper to ruling out the suspicious item be-

fore rerunning the data preparation pipeline. An item here is a

match, a candidate mapping, or a CFD rule. The hypotheses and

respective actions per component are thus summarised below:

Figure 6: Detecting significantly different CFDs

Algorithm 1 Apply collected feedback

1: function ApplyFeedback

2: for allm ∈ Matches do
3: if significantlyWorse(m.a, T .a \m.a) then
4: Matches .remove(m)

5: end if
6: end for
7: Mappinдs ←MappingGeneration(Matches,pro f ileData)
8: for allmap ∈ Mappinдs do
9: if significantlyWorse(map, T \map) then
10: Mappinдs .remove(map)
11: end if
12: end for
13: endProduct ←MappingSelection(Mappinдs)
14: for all c f d ∈ CFDs do
15: s ← ViolatingTuples(T , c f d)
16: if significantlyWorse(s , T \ s) then
17: CFDs .remove(c f d)
18: end if
19: end for
20: endProduct ← DataRepair(CFDs)
21: end function

• Matching. If a match is suspicious, discard the match.

This means that mapping generation (or any of the other

components down the line) will not take this match into

account.

• MappingGeneration. If a mapping is suspicious, discard

the mapping. This means that Mapping Selection will not

take this mapping into account.

• Data Repair. If a repair rule is suspicious, discard the

rule.

We need not take actions for items that are found to be sig-

nificantly better than others, as they are retained by default. As

such, we only focus on removing suspicious items.

4.4 Algorithm
Algorithm 1 provides the basic sequence of events while assimi-

lating feedback. It is assumed that the feedback assimilation takes

place in the context of an integration, in whichMatches is the set
of existing matches, profileData contains the existing inclusion
dependency and primary key data, and CFDs is a set of existing
conditional functional dependencies, as produced in the upper

part of Figure 3.

Then, the algorithm considers the hypotheses on matches,

mappings and CFDs in turn; this order is chosen because changes

tomatches give rise to changes tomappings, and CFDs are applied

to the results of mappings.

First, we iterate over the available matches (lines 2–6) and

test whether any of these produces a result that is significantly

worse than the results of other matches. T .a (line 3) is a target

schema attribute that is the target of a matchm with a source

attributem.a. Any match that yields a significantly worse result

is removed.

The remaining matches are then used for mapping generation

(line 7), and any generated mappings that perform significantly

worse than the others are removed (lines 8–12).

A similar process is followed with CFDs, removing CDFs that

are found to be problematic in the light of the feedback (lines 14–

19). The end product is then repaired (line 20) using the reduced

set of CFDs. The resulting end data product can then be provided

to the user for analysis or further feedback collection. Newly

collected feedback instances are added to the existing ones, and

propagated to the end product, and the candidate mappings. In

addition, the feedback can periodically be applied to the whole

process using Algorithm 1 to generate a revised end product. The

process continues until the user finds the result fit for purpose

and terminates data preparation pipeline.

Function significantlyWorse (lines 3, 9 and 16) is essentially

testing Equation 2 with s1 and s2 as arguments, and returns true

if it holds, or false otherwise. The arguments for this function are

the ones illustrated as s1 and s2 in Figure 4 when detecting sig-

nificantly worse matches, Figure 5 when detecting significantly

worse mappings, and Figure 6 when detecting significantly worse

rules. Next, using the same approach we detect and remove suspi-

cious mappings (lines 12–16) and suspicious CFDs (lines 18–23).

As s in line 15 we define the set of tuples in T violating a given

c f d .

5 EVALUATION
5.1 Experimental Setup
For the evaluation, we used as sources the following datasets:

(a) forty datasets with real-estate properties extracted from the

web using OXpath [13], with contents similar to sources s1 to s3
in Figure 1, (b) English indices of deprivation data, downloaded

from www.gov.uk, as shown in s4 in Figure 1. As reference data,

we used open address data from openaddressesuk.org.

Then, to enable the automatic evaluation of correctness on

the end product and throughout the pipeline, we constructed

a ground truth based on the available data, which we used for

our experiments, as follows: we manually matched, mapped,

deduplicated, and then repaired the end product. This gave us a

dataset consisting of approximately 4.5k tuples.

For the experiments, the match threshold was set to 0.6, the

top 100 mappings are retained from mapping generation, and the

support size for the data repair component was set to 5.

Each of the criteria in the user context was set to be the cor-

rectness of an attribute from the target schema. Thus, the user

criteria are: correctness(price), correctness(postcode), correct-

ness(income), correctness(bedroom_no), correctness(street_name),

and correctness(location). They all have the same weight,
1

6
. The

correctness of each of these properties is estimated based on

feedback. Mapping selection is configured to select what are pre-

dicted to be the best 1000 tuples from a subset of the generated

mappings.

The workflow for the experiments is illustrated in Figure 7.

We essentially automatically reran the workflow of Figure 3, col-

lecting 25 feedback instances in each iteration, until 500 feedback

instances on the end product had been collected and propagated.

Feedback is generated randomly in the experiments, based on

the correctness of the respective tuple with respect to the ground

truth. In each iteration, half of the feedback is given at tuple level,

and half at attribute level.

We then configured the system to test:

• Matching. This means running Algorithm 1 without lines

8–12, and without lines 14–19.

• Mapping generation. This means running Algorithm 1

without lines 2–6, and without lines 14–19.

• Data repair. This means running Algorithm 1without lines

2–6, and without lines 8–12.

https://www.gov.uk
openaddressesuk.org

Figure 7: Experiments

• All of the components. This means running Algorithm 1

as defined.

• None of the components. This means running Algorithm

1 without lines 2–6, without lines 8–12, and without lines

14–19. In this case, although no actions are taken to re-

move matches, mappings or CFDs, the data product is still

improved in the light of feedback, as MappingSelection
in line 13 is able to benefit from improved estimates of

mapping correctness.

The none of the components case forms the baseline, as we know

of no direct competitor that is seeking to apply feedback on

the result of an integration to revise the behaviour of several

integration components.

5.2 Results
The precision values obtained for different configurations are

illustrated in Figure 8
4
. Each of the lines in Figure 8 is the average

of 5 runs from 0 to 500 randomly collected feedback instances,

using the configurations from Section 5.1. Note that, as the col-

lection of different feedback instances leads to different possible

actions, which leads to different results being made available for

feedback collection, there is no realistic way to provide identical

feedback instances to different runs of the experiment. This is

reflected in the uneven curves in Figure 8.

As usual, the precision of the end product is evaluated as:

precision =
tp

tp+f p , where a tuple is considered a true positive

(tp) if all of its values appear in the ground truth, and as a false

positive (f p) otherwise.
Notice in Figure 8 that the none case (i.e., when there is no

discarding of matches, mappings or rules along the way) still

leads to an increase of the precision of the end product. This

is because, throughout the experiments, mapping selection (as

outlined in Section 2.2) is informed by correctness estimates, and

feedback is used to improve the correctness estimates. So, before

any feedback is collected, all mappings have the same correct-

ness (estimated at 0.5) and thus mapping selection considers all

mappings to be of equal quality. However, as feedback is gath-

ered, different mappings will come to have different levels of

correctness, and mapping selection will make increasingly well

informed selection decisions. As these selection decisions relate

4
In a setting where mapping selection retains the top 1000 tuples from a ground

truth of around 4500 tuples, the recall tends to increase broadly in line with the

precision.

Figure 8: Precision for different configurations

to correctness, this in turn leads to more true positives in the

results and a higher precision.

As such, there might be considered to be 2 baselines in this

experiment: the case in which there is no feedback, and the

precision is around 0.2, and none in which the feedback informs

mapping selection, but the approach from Section 4 is not applied.

The actions that have been taken by thematching andmapping

components, i.e., the removal of suspicious matches or mappings,

have had a positive impact on the precision of the end product,

as shown in Figure 8. It is unclear from this experiment which

one has more impact.

Taking action on the CFDs has had little impact on the end

product precision. This can be understood as follows:

• The rules being learnt are numerous, e.g., 3526 rules were

learnt with a support size of 5. As a result, each rule applies

to quite few rows, and it can be difficult to obtain enough

feedback to draw statistically significant conclusions as to

the quality of an individual rule.

• Each of the rules typically has a small effect to the end

product. As such, evenwhen a problematic rule is removed,

this tends not to have much of an effect on overall quality.

However, it is still clear that identifying CFDs that introduced

errors to the data, and discarding them, has the potential to have

a positive effect on the resulting quality.

The most important result for the overall proposal, however,

is that when the actions across all the components are combined,

this provides much the greatest improvement compared with any

of the individual means of applying the feedback. Furthermore,

much of this improvement is obtained with modest amounts of

feedback.

We noticed in the experiments that discarding suspicious

matches, mappings or CFDs, even in the case of significant is-

sues with the quality of their associated results, did not always

guarantee that the precision of the end product would increase.

This happens because the contents of the tuples that replace the

discarded ones are yet unknown, as feedback on them is not al-

ways present. As such, the new tuples are not guaranteed to be of

better quality. The trend is, though, that the overall correctness

can be expected to increase, even if not monotonically.

Next, we report on the number of suspicious items discovered

in each of the experiments. Each line in Figure 9, corresponds to

the average of the same 5 runs as reported in Figure 8. Figures

9a to c, respectively show the numbers of suspicious matches,

a. Matching b. Mapping Generation

c. Data Repair d. All Components

Figure 9: Detecting Suspicious Products

mappings and CFDs considered, when only the respective com-

ponent is being tested. Figure 9d shows the overall number of

suspicious items discovered and discarded when all components

were being tested.

We can observe the following: (i) Rather few suspiciousmatches

have been detected, so the benefit obtained from the removal

of each such match has been quite substantial. We note that

as matches relate to individual columns, obtaining sufficient FP
feedback on the data deriving from a match can require quite a

lot of feedback. (ii) More suspicious mappings are identified, and

they are identified from early in the process. (iii) Although quite

a few suspicious CFDs are identified, this is a small fraction of

the overall number.

From Figures 8 and 9 it is clear that taking feedback into

account and acting on all components increases the return on the

investment from feedback. When considering all possible actions

together, the overall benefit is greater, and the benefit accrues

with smaller amounts of feedback.

6 RELATEDWORK
In this section, we consider related work under three headings,

pay-as-you-go data preparation, applying feedback to multiple
activities and reducing manual effort in data preparation.

In pay-as-you-go data preparation, following from the vision

of dataspaces [12], a best-effort integration is produced through

automated bootstrapping, which is refined in the light of user

feedback. There have been many proposals for pay-as-you-go

data preparation components, for example relating to data ex-

traction [10], matching [18, 36], mapping [5, 6, 30] and entity

resolution [14, 25]. Such proposals have addressed issues such

as targeting the most appropriate feedback [10, 28, 35], and ac-

commodating unreliable feedback, in particular in the context of

crowdsourcing [9, 23]. However, such work has primarily used a

single type of feedback to inform a single data preparation step.

In relation to applying feedback to multiple activities, it has
been recognised that the same feedback may be able to inform

different aspects of the same step. For example, in [5], feedback

on the correctness of results is used to inform both mapping
selection and mapping refinement. In contrast with the work here,

these are two essentially independent proposals that happen to

use the same feedback, where the feedback has been obtained

directly on the mapping results. In Corleone [14], several dif-

ferent aspects of entity resolution are informed by feedback on

matching pairs; in particular the feedback is used to inform the

learning of comparison rules and to identify and resolve problem

cases. This may be the closest work to ours, though the focus is

on a single data integration step, for which custom feedback has

been obtained. Also for entity resolution, feedback on matching

pairs is used in [25] as part of a single optimisation step that

configures together blocking, detailed comparison and clustering.

This contrasts with the current paper in focusing different as-

pects of the same integration step. To the best of our knowledge,

there is no prior work in which several distinct steps in the data

preparation process are considered together when responding to

feedback.

In terms of reducing manual effort in data preparation, there
are a variety of different approaches. For example, again in the

context of individual steps, tools can be used to support data en-

gineers in developing transformations. For example, in relation

to format transformation, Wrangler [19] can suggest potential

transformation programs, and FlashFill [16] can synthesize trans-

formation programs from examples. There are also proposals

in which mappings are discovered based on data instances (e.g.,

[2, 15, 26]). In ETL, there are also a variety of approaches that seek

to reduce the amount of manual labour required. For example,

this includes the provision of language features [4, 32] or pat-

terns [31, 33] that support recurring data preparation behaviours,

techniques for managing evolution of ETL programs [8], and

development of ETL processes that abstract over more concrete

implementation details [3, 22]. However, although such work

focuses on raising the abstraction levels at which data engineers

engage in data preparation tasks, we are not aware of prior re-

sults that use feedback on data products to make changes across

complete data preparation processes.

7 CONCLUSIONS
The development of data preparation processes is laborious, re-

quiring sustained attention to detail from data engineers across

a variety of tasks. Many of these tasks involve activities that are

amenable to automation. However, automated approaches have

partial knowledge, and thus cannot necessarily be relied upon

to make the best integration decisions. When automation falls

short, one way to improve the situation is through feedback on

the candidate end data product. The successful combination of

automation and feedback provides a route to data preparation

without programming, which was considered to be important by

90% of participants in a survey on end user data preparation
5
.

Towards this goal of reducing the burden of data prepara-

tion, we now revisit and elaborate on the contributions from the

introduction.

(1) A technique for applying feedback on a data product across
a multi-step data preparation process that both identifies
statistically significant issues and provides a mechanism
for exploring the actions that may resolve these issues.We

have described an approach in which hypotheses about

the problems with an integration are tested for statistical

significance with respect to user feedback on the candi-

date end data product, giving rise to actions that seek to

resolve issues with the feedback. The same approach is po-

tentially applicable to different types of feedback, diverse

data preparation components, and a variety of actions.

(2) A realisation of the technique from (1) in a specific data
preparation platform, where feedback is used to change the
matches used in an integration, change which mappings
are selected, and change which data quality rules are ap-
plied.We have indicated how the technique can be applied

to matching, mapping and repair steps, on the basis of

true/false positive annotations on data product tuples, in

the VADA data preparation system.

(3) An empirical evaluation of the implementation of the ap-
proach from (2) that investigates the effectiveness of the
proposed approach both for individual data preparation con-
structs (matches, mappings and CFDs) and for applying feed-
back across all these constructs together. An experimental

evaluation with real estate data has shown how the ap-

proach can identify actions that can improve data product

quality on the basis of changes to individual data prepa-

ration steps, and can coordinate changes across multiple

such steps, with particularly significant benefits from the

combined approach.

There are several promising directions for further investiga-

tion, which include: (a) extending the data preparation compo-

nents to which the approach is applied, for example to include

source selection or data format transformation; (b) considering

alternative actions, such as changing match scores, mapping al-

gorithm thresholds, or rule learning parameters; and (c) more

selective or incremental application of actions, with a view to

5
https://www.datawatch.com/2017-end-user-data-preparation-market-study-2/

identifying the subset of the candidate actions that together are

the most effective.

Acknowledgement: This work is funded by the UK Engineering

and Physical Sciences Research Council (EPSRC) through the

VADA Progrmame Grant.

REFERENCES
[1] Edward Abel, John Keane, Norman W. Paton, Alvaro A.A. Fernandes, Martin

Koehler, Nikolaos Konstantinou, Julio Cesar Cortes Rios, Nurzety A. Azuan,

and Suzanne M. Embury. 2018. User driven multi-criteria source selection.

Information Sciences 430-431 (2018), 179–199. https://doi.org/10.1016/j.ins.

2017.11.019

[2] BogdanAlexe, Balder ten Cate, Phokion G. Kolaitis, andWang Chiew Tan. 2011.

Designing and refining schema mappings via data examples. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD.
133–144. https://doi.org/10.1145/1989323.1989338

[3] Syed Muhammad Fawad Ali and Robert Wrembel. 2017. From concep-

tual design to performance optimization of ETL workflows: current state

of research and open problems. VLDB J. 26, 6 (2017), 777–801. https:

//doi.org/10.1007/s00778-017-0477-2

[4] Ove Andersen, Christian Thomsen, and Kristian Torp. 2018. SimpleETL: ETL

Processing by Simple Specifications. In Proceedings of the 20th International
Workshop on Design, Optimization, Languages and Analytical Processing of
Big Data co-located with 10th EDBT/ICDT Joint Conference (EDBT/ICDT 2018),
Vienna, Austria, March 26-29, 2018. http://ceur-ws.org/Vol-2062/paper10.pdf

[5] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro A. A.

Fernandes, and Cornelia Hedeler. 2010. Feedback-based annotation, selection

and refinement of schema mappings for dataspaces. In EDBT. 573–584. https:
//doi.org/10.1145/1739041.1739110

[6] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2014. Interactive Infer-

ence of Join Queries. In 17th International Conference on Extending Database
Technology, EDBT. 451–462. https://doi.org/10.5441/002/edbt.2014.41

[7] Michael G. Bulmer. 1979. Principles of Statistics. Dover Publications.
[8] Darius Butkevicius, Philipp D. Freiberger, and Frederik M. Halberg. 2017.

MAIME: A Maintenance Manager for ETL Processes. In Proceedings of the
Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017), Venice,
Italy, March 21-24, 2017. http://ceur-ws.org/Vol-1810/DOLAP_paper_08.pdf

[9] Valter Crescenzi, Alvaro A. A. Fernandes, Paolo Merialdo, and Norman W.

Paton. 2017. Crowdsourcing for data management. Knowl. Inf. Syst. 53, 1
(2017), 1–41. https://doi.org/10.1007/s10115-017-1057-x

[10] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. 2015. Crowdsourcing

large scale wrapper inference. Distributed and Parallel Databases 33, 1 (2015),
95–122. https://doi.org/10.1007/s10619-014-7163-9

[11] Wenfei Fan, Floris Geerts, Laks V S Lakshmanan, and Ming Xiong. 2011.

Discovering conditional functional dependencies. Proceedings - International
Conference on Data Engineering 23, 5 (2011). https://doi.org/10.1109/ICDE.

2009.208

[12] Michael J. Franklin, Alon Y. Halevy, and David Maier. 2005. From databases to

dataspaces: a new abstraction for information management. SIGMOD Record
34, 4 (2005), 27–33. https://doi.org/10.1145/1107499.1107502

[13] Tim Furche, GeorgGottlob, Giovanni Grasso, Christian Schallhart, andAndrew

Sellers. 2013. OXPath: A language for scalable data extraction, automation,

and crawling on the deep web. The VLDB Journal 22, 1 (01 Feb 2013), 47–72.
https://doi.org/10.1007/s00778-012-0286-6

[14] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan

Rampalli, Jude W. Shavlik, and Xiaojin Zhu. 2014. Corleone: hands-off crowd-

sourcing for entity matching. In SIGMOD. 601–612. https://doi.org/10.1145/
2588555.2588576

[15] Georg Gottlob and Pierre Senellart. 2010. Schema Mapping Discovery from

Data Instances. JACM 57, 2 (2010), 6:1–6:37. https://doi.org/10.1145/1667053.

1667055

[16] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet

data manipulation using examples. Commun. ACM 55, 8 (2012), 97–105.

https://doi.org/10.1145/2240236.2240260

[17] Cornelia Hedeler, Khalid Belhajjame, Norman W. Paton, Alessandro Campi,

AlvaroA.A. Fernandes, and SuzanneM. Embury. 2010. Dataspaces. In Search
Computing. LNCS, Vol. 5950. Springer Berlin Heidelberg, 114–134. http://dx.

doi.org/10.1007/978-3-642-12310-8_7

[18] NguyenQuoc Viet Hung, Nguyen Thanh Tam, Vinh TuanChau, Tri Kurniawan

Wijaya, Zoltán Miklós, Karl Aberer, Avigdor Gal, and Matthias Weidlich. 2015.

SMART: A tool for analyzing and reconciling schema matching networks. In

31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015. 1488–1491. https://doi.org/10.1109/ICDE.2015.7113408

[19] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011.

Wrangler: Interactive Visual Specification of Data Transformation Scripts. In

CHI. 3363–3372.
[20] Martin Koehler, Alex Bogatu, Cristina Civili, Nikolaos Konstantinou, Ed-

ward Abel, Alvaro A. A. Fernandes, John A. Keane, Leonid Libkin, and

Norman W. Paton. 2017. Data context informed data wrangling. In 2017
IEEE International Conference on Big Data, BigData 2017. 956–963. https:

//doi.org/10.1109/BigData.2017.8258015

https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1145/1989323.1989338
https://doi.org/10.1007/s00778-017-0477-2
https://doi.org/10.1007/s00778-017-0477-2
http://ceur-ws.org/Vol-2062/paper10.pdf
https://doi.org/10.1145/1739041.1739110
https://doi.org/10.1145/1739041.1739110
https://doi.org/10.5441/002/edbt.2014.41
http://ceur-ws.org/Vol-1810/DOLAP_paper_08.pdf
https://doi.org/10.1007/s10115-017-1057-x
https://doi.org/10.1007/s10619-014-7163-9
https://doi.org/10.1109/ICDE.2009.208
https://doi.org/10.1109/ICDE.2009.208
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1007/s00778-012-0286-6
https://doi.org/10.1145/2588555.2588576
https://doi.org/10.1145/2588555.2588576
https://doi.org/10.1145/1667053.1667055
https://doi.org/10.1145/1667053.1667055
https://doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1007/978-3-642-12310-8_7
http://dx.doi.org/10.1007/978-3-642-12310-8_7
https://doi.org/10.1109/ICDE.2015.7113408
https://doi.org/10.1109/BigData.2017.8258015
https://doi.org/10.1109/BigData.2017.8258015

[21] Nikolaos Konstantinou, Martin Koehler, Edward Abel, Cristina Civili, Bernd

Neumayr, Emanuel Sallinger, Alvaro A. A. Fernandes, Georg Gottlob, John A.

Keane, Leonid Libkin, and Norman W. Paton. 2017. The VADA Architecture

for Cost-Effective Data Wrangling. In ACM SIGMOD. 1599–1602. https://doi.
org/10.1145/3035918.3058730

[22] Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis. 2018. The many

faces of data-centric workflow optimization: a survey. I. J. Data Science and
Analytics 6, 2 (2018), 81–107. https://doi.org/10.1007/s41060-018-0107-0

[23] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J. Franklin. 2016.

Crowdsourced Data Management: A Survey. IEEE Trans. Knowl. Data Eng. 28,
9 (2016), 2296–2319. https://doi.org/10.1109/TKDE.2016.2535242

[24] Ehtisham Zaidi Mark A. Beyer, Eric Thoo. 2018. Magic Quadrant for Data
Integration Tools. Technical Report. Gartner. G00340493.

[25] Ruhaila Maskat, NormanW. Paton, and Suzanne M. Embury. 2016. Pay-as-you-

go Configuration of Entity Resolution. T. Large-Scale Data- and Knowledge-
Centered Systems 29 (2016), 40–65. https://doi.org/10.1007/978-3-662-54037-4_
2

[26] Fotis Psallidas, Bolin Ding, Kaushik Chakrabarti, and Surajit Chaudhuri.

2015. S4: Top-k Spreadsheet-Style Search for Query Discovery. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 2001–2016.
https://doi.org/10.1145/2723372.2749452

[27] Tye Rattenbury, Joe Hellerstein, Jeffery Heer, Sean Kandel, and Conner Car-

reras. 2017. Principles of Data Wrangling. O’Reilly.
[28] Julio César Cortés Ríos, NormanW. Paton, Alvaro A. A. Fernandes, and Khalid

Belhajjame. 2016. Efficient Feedback Collection for Pay-as-you-go Source

Selection. In Proceedings of the 28th International Conference on Scientific and
Statistical Database Management, SSDBM 2016, Budapest, Hungary, July 18-20,
2016. 1:1–1:12. https://doi.org/10.1145/2949689.2949690

[29] Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch

Cherniack, Stanley B. Zdonik, Alexander Pagan, and Shan Xu. 2013. Data Cura-

tion at Scale: The Data Tamer System. In CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, On-
line Proceedings. http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf

[30] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby

Crammer, Zachary G. Ives, Fernando C. N. Pereira, and Sudipto Guha. 2008.

Learning to create data-integrating queries. PVLDB 1, 1 (2008), 785–796.

https://doi.org/10.14778/1453856.1453941

[31] Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner. 2017.

Frequent patterns in ETL workflows: An empirical approach. Data Knowl.
Eng. 112 (2017), 1–16. https://doi.org/10.1016/j.datak.2017.08.004

[32] Christian Thomsen and Torben Bach Pedersen. 2009. pygrametl: a powerful

programming framework for extract-transform-load programmers. In DOLAP
2009, ACM 12th International Workshop on Data Warehousing and OLAP, Hong
Kong, China, November 6, 2009, Proceedings. 49–56. https://doi.org/10.1145/
1651291.1651301

[33] Kalle Tomingas, Margus Kliimask, and Tanel Tammet. 2014. Data Integration

Patterns for Data Warehouse Automation. In 18th East European Conference
on Advances in Databases and Information Systems, ADBIS. 41–55. https:

//doi.org/10.1007/978-3-319-10518-5_4

[34] P. Vassiliadis. 2011. A Survey of Extract-Transform-Load Technology. IJDWM
5, 3 (2011), 1–27.

[35] Zhepeng Yan, Nan Zheng, Zachary G. Ives, Partha Pratim Talukdar, and Cong

Yu. 2015. Active learning in keyword search-based data integration. VLDB J.
24, 5 (2015), 611–631. https://doi.org/10.1007/s00778-014-0374-x

[36] Chen Jason Zhang, Lei Chen, H. V. Jagadish, and Caleb Chen Cao. 2013.

Reducing Uncertainty of Schema Matching via Crowdsourcing. PVLDB 6, 9

(2013), 757–768. https://doi.org/10.14778/2536360.2536374

https://doi.org/10.1145/3035918.3058730
https://doi.org/10.1145/3035918.3058730
https://doi.org/10.1007/s41060-018-0107-0
https://doi.org/10.1109/TKDE.2016.2535242
https://doi.org/10.1007/978-3-662-54037-4_2
https://doi.org/10.1007/978-3-662-54037-4_2
https://doi.org/10.1145/2723372.2749452
https://doi.org/10.1145/2949689.2949690
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
https://doi.org/10.14778/1453856.1453941
https://doi.org/10.1016/j.datak.2017.08.004
https://doi.org/10.1145/1651291.1651301
https://doi.org/10.1145/1651291.1651301
https://doi.org/10.1007/978-3-319-10518-5_4
https://doi.org/10.1007/978-3-319-10518-5_4
https://doi.org/10.1007/s00778-014-0374-x
https://doi.org/10.14778/2536360.2536374

	Abstract
	1 Introduction
	2 A Data Preparation Pipeline
	2.1 Defining a Data Preparation Task
	2.2 Data Preparation Process and Components

	3 Problem Statement
	4 Solution
	4.1 Hypotheses
	4.2 Hypothesis Testing
	4.3 Actions
	4.4 Algorithm

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusions
	References

