
Enhancing ER Diagrams to View Data Transformations
Computed withQueries

Carlos Ordonez
University of Houston, USA

Ladjel Bellatreche
LIAS/ISAE-ENSMA, France

ABSTRACT
Transforming relational tables to build a data set takes most of
the time in a machine learning (ML) project centered around a
relational database. The explanation is simple: a relational data-
base has a collection of tables that are joined and aggregated with
complex relational queries, and whose columns are transformed
with complex SQL expressions, in order to build the required data
set. In general, such data is wide, gathering many ML variables
together. Such complicated data pre-processing results in a large
set of SQL queries that are independently developed from each
other for different ML models. The database grows with impor-
tant tables and views that are absent in the original ER diagram.
More importantly, similar SQL queries tend to be written multiple
times, creating problems in database evolution, disk space utiliza-
tion and software maintenance. In this paper, we go in opposite
direction from a physical level (tables) to a logical level (enti-
ties) representation, providing a unifying diagram of both levels.
Specifically, we propose minimal, but powerful, extensions to an
ER diagram in UML notation to represent most common data-
base transformations. Our “transformation” ER diagram helps
analytic users understanding complex transformations, consoli-
dating columns representing analytic variables into fewer tables
(i.e. eliminating redundant tables), reusing existing SQL queries
(i.e. avoid forking new queries) and explaining data provenance
(where data originated from).

1 INTRODUCTION
The entity-relationship (ER) model provides methods (step by
step) and diagram notation to design a database, by defining its
structure before storing data values. On the other hand, the rela-
tional database model provides a precise mathematical definition
to store and query data in the form of tables (relations) linked
by foreign keys (FKs), whose basic structure is sketched in an ER
model. We are concerned with exploiting a DBMS to analyze data
sets with exploratory analysis, machine learning and statistics [2].
We are interested in modeling all potential database transforma-
tions via relational queries to build a specific data set that can be
analyzed by machine learning (ML) algorithms. In general, such
data set has a tabular form, where every row corresponds to an
observation, instance or point and every column is associated to a
variable or feature. The main side effect is that relational queries
produce many new tables, which do not appear as entities in the
existing ER diagram. Such collection of transformed tables and
disconnected queries complicate database management, software
development, and computing further ML models.

Based on the motivation discussed above, we introduce minor,
but powerful, changes to ER diagrams to represent data trans-
formations computed by queries, used to build data sets for ML
models. Our main contributions are the following: (1) labeling
ER entities to distinguish source and transformation entities; (2)
numbering entities to understand a sequence of transformations;

© 2019 Copyright held by the author(s). Published in the Workshop Proceedings
of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on
CEUR-WS.org.

(3) showing SPJA queries as an optional zoom-in exploratory
feature; (4) an algorithm to automate extending and maintaining
the transformation ER diagram. We believe our ER diagram has
potential usefulness. Existing tuned queries can be reused and
extended. Redundant copies of data can be eliminated by reusing
existing queries. Provenance of attributes can be tracked. Nev-
ertheless, we do not intend to represent every query in a single
ER diagram since that would create a huge diagram. Instead, we
propose to represent each set of tuned queries to build each data
set separately. Each set of queries is similar to a data mart with
the main difference being that table structure is gradually refined
by queries, not by database design.

2 DEFINITIONS
2.1 ER Diagram for a Relational Database
In modern database design tools an ER diagram is refined and
consolidated into a collection of “structured” entities represented
in a simplified UML diagram, closer to a physical model. In the
resulting relational database schema entities and relationships
are mapped to tables linked by referential integrity constraints.
As it is standard inmost modern ER tools, each entity corresponds
to a table and each relationship is represented by foreign keys
(FKs).

We assume 1:1 relationships are consolidated into one entity
because they share the same primary key (PK). Moreover, we
assume M:N (many to many) relationships get mapped to a “link”
entity, which connects 2+ entities, merging their respective FKs
into a new PK. Therefore, a refined database ER diagram has only
1:N (1 to many) and N:1 (many to 1) relationships. In short, we
assume there exists an ER diagram ready to be converted and
deployed as physical relational tables, with a 1-1 correspondence
between entities and tables. Such restricted ER diagram allows
representing tables returned by queries as entities.

A database is defined as D(T , I ), where T = {T1, . . . ,Tn }, is
a set of n tables and I is a set of integrity constraints (entity
for primary key (PK), referential for foreign key (FK)). We use
the term “table” to make an explicit connection to the physical
level and SQL. Each table has a set of columns, coming from
different domains. The entity constraint asserts that every table
should have a primary key. Referential integrity is denoted by
Ti (K) → Tj (K) where K is the primary key (PK) of Tj and K is a
foreign key (FK) in Ti . The common key attribute K is assumed
to have the same name on both tables.

2.2 Relational Queries
Database transformations are assumed to be computed only with
SQL queries, mixing joins (1), aggregations (extended π oper-
ator) and selection (σ ). Relational queries combine aggregate
functions (built-in or UDFs), scalar functions (built-in or UDFs),
mathematical operators, string/date operators and the powerful
SQL CASE statement. However, in order to have a precise mathe-
matical foundation we study data transformation with relational
queries, which combine π , σ and 1 operators, where π is used



as a GROUP BY aggregation and derivation operator. Notice SQL
PIVOT and UNPIVOT operators available in some DBMSs are
great to manipulate matrices, but they are not relational. Fortu-
nately, these operators can be represented with tables with extra
columns storing subscripts generated by the DBMS. We assume
well formed queries are used to create data sets, which include a
primary key to identify rows and at least one non-key attribute
(variable, feature).

We consider left outer join as a prominent operator needed to
merge partial tables sharing the same PK to build the data set for
analysis. In query terms, referential integrity between two tables
Ti ,Tj means πK (Ti ) ⊆ πK (Tj ).

2.3 Running Example
Our example is based on the benchmark TPC-H database, shown
on Figure 1. Consider the following representative ML problem:
predictingwhether a product will be returned or not, based on his-
toric sales information. A long database transformation process
is needed to build the data set to be used as input in a regression
or classification model. Our objective is to extend the existing
ER diagram to capture this data transformation process.

LINEITEM

PK,FK3 L_ORDERKEY

PK L_LINENUMBER

FK2 L_PARTKEY

FK1 L_SUPPKEY

SUPPLIER

PK S_SUPPKEY

PART

PK P_PARTKEY

ORDERS

PK O_ORDERKEY

Figure 1: Input database ER diagram for example.

3 DATA TRANSFORMATIONS
3.1 Data Set
The main objective is to create a single table, that will be the
input for an ML algorithm. This table will be the output of a
sequence of SPJA queries filtering, merging, transforming and
aggregating data.

The data set is represented by an entity with two sets of at-
tributes X (K ,A), where K is the primary key (generally simple,
but it could be composite) and A is a set of p non-key attributes
(numerical & categorical variables). From a database ER mod-
eling standpoint the data set corresponds to a weak entity that
depends on some strong entity [1], defining an "is-a" relationship
(i.e. the data set is a sub-type of some strong entity). In a machine
learning context, X will be the input for a mathematical model
like linear regression, PCA dimensionality reduction, Bayesian
classification, decision trees or clustering.

The first consideration is K , which can be simple or composite.
The most common case is that K is simple with a 1-1 correspon-
dence to some existing source entity (e.g. customer id). In such
case, we will use i instead of K to make reference to the ith point
or the ith instance. On the other hand, if K is composite then it
takes primary keys from several entities (e.g. customer id, prod-
uct id), similar to a data cube with a composite key or it is the
result of adding a key attribute that was not originally part of any
entity (e.g. month id). In the latter case, there is likely already a
“dimension” table where the new key attribute is already available
(e.g. a cube dimension table). Evidently, given k source tables
(entities) there should be k − 1 foreign keys linking them in order
to enable k − 1 joins. In other words, the primary key of the data

set comes from putting together the primary keys of a subset of
the k source tables.

We now discuss A, the set of non-key attributes. Assume
T = T1 1 . . .T2 · · · 1 Tk gathers all raw attributes. The goal
is to further transform T into X . We emphasize T is not in 3NF.
On the other hand, if T has a composite key it will not be in 2NF
either. Each attribute in A can come from: a table, an aggregation
or a scalar expression (arithmetic, logical, string). Therefore, a
transformed attribute must either be the result of an aggregation
summarizing several rows into one or computing some derived
expression (denormalization). Below we explore data transfor-
mations in more depth.

3.2 Representing Data Transformations
We explain database transformations at two levels: entity (table)
and attribute (column), in order to define an ER diagram at two
levels of abstraction.

Entity Level. We extend an existing ER diagram with new enti-
ties providing a diagram representation of data transformations.
We call existing entities source entities and added entities are
called transformation entities (computed with SPJA queries). We
emphasize that a single SQL query can create several temporary
tables during its evaluation with one table per relational opera-
tor. In order to define a faithful representation each nested SQL
query will correspond to one temporary table, which in turn will
be represented by one relational algebra query and one trans-
formation entity. By a generalization, the data transformation
process will create a sequence of transformation tables that will
be successively joined and aggregated. The data set X will be the
final output. Such database transformation process with nested
queries (based on views or temporary tables) will result in a
tree (similar to a parse tree from a query), where internal nodes
are joins or projections (aggregations), leaves are tables and the
root is one final query returning the data set. In the extended
ER diagram, the new entities are linked with existing entities or
previous transformation entities.

The π operator eliminates duplicates, if any. Even though SQL
has bag semantics, allowing duplicate rows, such semantics do
not make sense from a machine learning perspective. The reason
is simple: each represented object must be identifiable. Assume a
well formed query T = T1 1 T2 · · · 1 Tk on appropriate foreign
keys.We propose the following rules to enable query composition.
If we project columns fromT theymust either include the primary
key ofT (being the primary key of some tableTi ) or they include
a GROUP BY key to compute aggregations. When computing
data transformations with SQL queries the output table cannot
be used in future queries if it does not include the primary key of
T and it does not have aggregations to derive non-key attributes.
That is, π must include both GROUP BY attributes and a list of
aggregation functions.

Attribute Level. There exist two mutually exclusive data trans-
formation classes: (1) Denormalization (via join), which gathers
attributes from several entities into a single transformation en-
tity or simply derives new attributes from existing attributes. (2)
Aggregation (via projection with aggregation), which creates a
new aggregation value attribute grouping rows by a primary
key and computing some summarization. An aggregation cannot
be considered denormalization because, in general, we cannot
reason about functional dependencies beyond 1NF between the
grouping column(s) and the aggregated column.



Denormalization:When denormalization brings attributes from
other entities the attribute values themselves are not transformed.
That is, the table structure changes, but the column values remain
the same. When attributes come directly, without transforming
values, from other entities they can have three roles: being part
of the primary key, being part of a foreign key or being non-
key whatsoever. Attributes being part of the PK or a FK can
later be used to group rows to compute aggregations, which are
our second class of data transformations. In general, non-key at-
tributes interact together using all SQL operators, programming
constructs and functions (scalar, aggregate, UDFs). Arithmetic
expressions and string expressions fall into this category. The
only non-key denormalization data transformation that deserves
special attention is the SQL CASE statement. There are two im-
portant issues introduced by the CASE statement: (1) it may
create new values, not present on any previous column. (2) it
may introduce nulls which were not present before. Therefore,
an SQL query with CASE statements cannot be evaluated with
an equivalent SPJA query.

Aggregation: Aggregations are expressed with the π oper-
ator having a grouping attribute(s) and a list of functions (e.g.
sum(),count()). In SQL, the GROUP BY caluse partitions output at-
tributes into key attributes and aggregated attributes. In general,
aggregations return numbers, but notice "max()" in SQL aggrega-
tions can have strings or dates as argument. Global aggregations
without a GROUP BY clause (e.g. a count() or rows, a total sum())
can be represented with a π operator with an artificial column
with a constant value. Representing such aggregation in the ER
diagram is problematic because there is no given primary key;
this is a research issues in database modeling. In meantime, we
propose to "pin" such aggregation to the entity name as a small
bag of aggregations (e.g. counts, sums, statistics).

3.3 Extending ER Diagram
We propose extensions to ER diagram notation to represent data-
base transformations to build one data set, which can be exploited
by multiple ML models. We clarify there will be multiple ER dia-
grams, corresponding to different data sets (i.e. having different
PK) and that we aim to represent only polished tuned queries.
That is, we do not propose to build a single ER diagram repre-
senting all temporary tables since that would create a huge ER
diagram, impossible to interpret. We emphasize an ER diagram
works at a conceptual/logical level and SQL works at a physi-
cal level. The ER diagram helps designing a coherent database
structure, whereas SQL queries help processing the database.
Therefore, our proposed notation brings both paradigms closer,
enriching the ER diagram with the ability to represent trans-
formations on database attributes, but which mixes database
modeling with database processing.

The first consideration is notation for queries. SQL has bag
semantics and SQL queries tend to be verbose. On the other hand,
given its precise mathematical definition and conciseness rela-
tional algebra is the best choice. The second aspect is defining our
diagram notation, a thorny and subjective aspect. After exploring
several alternatives keeping in mind the large number of tempo-
rary tables and columns created by SQL queries, we propose two
ER diagrams: (1) a high level “abstract” ER diagram displaying
only entities and (2) a low level (fine granularity) “query” ER
diagram displaying all attributes, the data transformations and
the corrsponding query. The high level diagram can be used to
explore the connection among tables and understand the overall

flow of transformations. On the other hand, the low level diagram
provides a specific idea on how transformations make up a table.
The low level view can be selectively displayed in a “zoom in"
view on each entity.

ER diagram notation in the literature has many variants: ev-
idently the classical, but highly intuitive, notation with small
boxes for entities and external ellipses for attributes [1] is in-
adequate and cumbersome as it does not scale to a large num-
ber of entities and much less to a large number of attributes.
That is why we defend the idea of using UML notation as most
modern ER tools do. A transformation entity represents a weak
entity in a strict sense since each object existence depends on
the source entity. The classical ER notation uses dotted lines.
Since we intend to use UML notation and we intend to extend
it further we prefer to show transformation entities with solid
lines. As introduced above, we classify entities as source or trans-
formation, where transformation entities are either GROUP BY
aggregations or denormalization. Therefore, each entity will be
labeled as “source:<name>”, or “denormalization:<name>”, or
“aggregation:<name>”. A complicated aspect is where to place at-
tribute transformations. This is not an easy choice since a typical
modern ER diagram may have hundreds of entities and thou-
sands of attributes, exploding further with the analytic database
transformations. Given the column-oriented programming ap-
proach in SQL and the fact that modern ER diagrams display one
attribute per line we decided to show denormalization expres-
sions and aggregations to the right of the attribute name. Putting
all these elements together, our proposal is to show database
transformations as an additional column inside an ER entity box.
Such column can substitute the data type definitions in a typical
physical model (convertible to SQL Data Definition Language). A
major requirement is understanding where columns come from
in a given transformation entity. This information must neces-
sarily come from the 1 operator in a query. We believe the best
place to display a query is next to the entity name, simply show-
ing which tables participate in 1. Attributes provenance will be
shown with single dot or double dot notation (e.g. T.A or T..B).

Finally, we must consider attributes (table columns). A major
requirement is to track provenance. We propose the following
notation: a single dot to indicate the source table if such table
participates in a join in the corresponding query (e.g. T .A). Oth-
erwise, we propose to use a double dot to indicate the column
originates from a previous temporary table (e.g. T ..A). Based on
the fact that SPJA queries cannot express CASE computations
it is necessary to define a special notation to represent CASE
statements. Basically, there are two elements: a predicate combin-
ing comparisons with and/or/not and the value(s) to be assigned.
Therefore, we can think of the CASE statement as a functional
form which returns a value based on the predicate being true or
false. Given its similarity to the C++ "?:" operators, it is the nota-
tion we use. For the example mentioned above it will be shown
as "(A >= 0) ? ’positive’:’negative’", which is shorter than the
CASE syntax and which is intuitive to C++ or Java programmers.

The actual SQL queries, including each temporary table are
selectively displayed on each trasformation entity with a "zoom
in" low level view. That is, we avoid showing all SQL queries in
the ER diagram.

Extended ER Diagram Properties. From a theory perspective,
since we use relational algebra to represent database transforma-
tions our extended ER diagram is guaranteed to be: (1) complete
and (2) consistent. From a database design perspective, our model



Source:LineItem

PK l_OrderKey

PK l_LineNumber

l_SuppKey

l_ReturnFlag

l_Discount

l_ExtendedPrice

l_PartKey

Denormalization :Discount_Category

PK Discount_Category

LowerLimit

UpperLimit

Denormalization :LinePrice_Category

PK LinePrice_Category

LowerLimit

UpperLimit
Denormalization :LineItem_Category

PK,FK3 l_OrderKey

PK,FK3 l_LineNumber

l_SuppKey

l_PartKey

FK2 LinePrice_Category

FK1 Discount_Category

l_ReturnFlag

Aggregation:Supp_Count

PK,FK1 l_SuppKey

SuppCount

Aggregation:Supp_R_Count

PK,FK1 l_SuppKey

SuppRCount

l_ReturnFlag

Denormalization :Supplier

PK,FK1,FK2 s_SuppKey

SuppCount

SuppRCount

Dataset:Customer

PK,FK1 l_OrderKey

PK,FK1 l_LineNumber

FK2 l_SuppKey

l_PartKey

SuppCount

SuppRCount

LinePrice_Category

Discount_Category

l_ReturnFlag

 

Π l_SuppKey, COUNT(*) (LineItem) 

GROUP BY l_SuppKey 

COUNT(*) 

 

 

Supp_Count� Supp_R_Count 

s_SuppKey 

SuppCount.SuppCount 

Supp_R_Count.SuppRCount 

 

LineItem_Category� Supplier 

LineItem…l_OrderKey 

LineItem…l_LineNumber 

LineItem…l_SuppKey 

LineItem…l_PartKey 

Supplier. SuppCount 

Supplier. .SuppRCount 

LineItem_Category.LinePrice_Category 

LineItem_Category.Discount_Category 

LineItem…l_ReturnFlag 

 

Π (LineItem) 

LineItem.l_OrderKey 

LineItem.l_LineNumber 

LineItem.l_SuppKey 

LineItem.l_PartKey 

(LineItem.l_Discount<0.1) ? 1:2 

(LineItem.l_ExtendedPrice <10000) ? 1:2 

LineItem.l_ReturnFlag 

 

�	l_ReturnFlag= ’R’ (Π l_SuppKey, COUNT(*) (LineItem)) 

GROUP BY l_SuppKey 

COUNT(*) 

LineItem.l_ReturnFlag 

 

Figure 2: Transformation ER diagram for TPC-H database (low level).

can improve database evolution it can track attribute provenance,
it can help reusing existing tables and it motivates reusing trans-
formation queries.

3.4 Extended ER Diagram Example
We now illustrate our extended ER diagram notation and the al-
gorithm with the sample database introduced in Section 2. Figure
2 presents the low level view with entities, data transformations
at the attribute level and the query.

3.5 Algorithm to Extend an ER Diagram
Given an ER diagram (generally corresponding to a tuned OLTP
or OLAP database) and an existing set of polished SQL queries
that create data set X , the following steps help building an ex-
tended ER diagram.

(1) Initialize extended ER diagram with the original ER diagram;
labeling each entity as “source” entity (S).

(2) Create a transformation (T) entity for every intermediate table;
consider nested queries and views as additional temporary ta-
bles. Label each intermediate table as T< 99 >, where 99 is an
increasing integer, resulting from an incremental computation.

(3) Label each attribute as key or non-key.
(4) For each non-key attribute associate to either: a derived expres-

sion or an aggregation. Indicate provenance (lineage) of attributes
coming from the denormalization process. For aggregations use
the same function name provided by SQL in a relational algebra
expression.

(5) Add a final main data set entity joining all intermediate tables;
this data set entity will be highlighted in the ER diagram and
labeled “data set”.

4 CASE STUDY
Due to lack of space we do not present experiments. Intead we
summarize a case study with a real database with bike sales infor-
mation, that comes as a test database for theMicrosoft SQL Server
DBMS (AdventureWorks). We manually wrote SQL queries to

build a data set to predict if a customer will buy or not any prod-
uct in the next 6 months, given past sales history. This database
consists of approximately 70 tables with bike stores sales over 4
years. Our program, written in C#, using 12 SQL queries as in-
put, produced a sequence of relational schemas with appropriate
primary and foreign keys, which were labeled as transformation
entities (with our algorithm) in a couple of seconds (since this
involves only schema data). The data set was used as input in
several ML predictive models, including Naive Bayes and logistic
regression. Using a standard CSV format, these entities can be vi-
sualized in automated ER diagram drawing tools (e.g. smartdraw,
Lucidchart).

Measuring disk space savings, reduction in development time,
time to automatically produce an ER diagram and easiness to
maintain the extended ER diagram requires a long-term case
study, which we will conduct in the future.

5 RELATEDWORK
Research on ER modeling can be classified as models for transac-
tional databases and models for analytic databases (data ware-
houses). Models for transactional databases ensure the database
can be maintained in a valid state (complete and consistent),
whereas models for database analysis enable multidimensional
analysis on cubes and basic machine learning. Since we are con-
cerned with analyzing the database rather than updating it our
extended ER model is more closely related to models for data
warehouses. However, there are fundamental differences between
both kinds of models. Cube dimensions and measures are identi-
fied early on the database design to denormalize tables, whereas
attributes in the data set are built later, during the iterative data
mining process. Generally speaking, data transformations for
ML analysis are more complex since they also involve mathe-
matical functions and complex logic in the CASE statement. On
the other hand, provenance identifies the sources of information
in a data warehouse. We have adapted provenance to trace the



source tables an attribute in the data set comes from. A closely
related work that studied the problem of transforming tables
from a modeling perspective is [5], where the authors study the
transformation of a database schema into another equivalent one
in order to facilitate information exchange with another database;
[5] compares alternatives schemas, but does not consider queries
combining aggregations, denormalization and math functions on
attributes to transform tables like we do. The closest research
we found that studies how to represent a data set to compute a
machine learning model is [7], where the authors exploit UML
notation to extend an existing data warehouse model to represent
attributes used in classification, a prominent statistical learning
problem; we emphasize [7] focuses more on the final data set,
rather than studying the data transformations to build it. The
idea to represent data transformations in the ER model was pro-
posed in [3], where simple data transformations are classified
and SQL queries are shown in the ER diagram. Our paper takes
a step further by focusing on the ER diagram (coining the term
“transformation” ER diagram), formally studying the problem
with relational notation instead of SQL, considering a broader
class of queries (e.g. representing σ and views), and introducing
an algorithm to automate ER diagram construction.

The closest approach in the literature is reverse data engi-
neering, where the main purpose is to produce an ER diagram
using a database schema as input. In contrast, we assume queries
use tables already stored on the database. Moreover, we con-
sider attribute-level data transformations beyond denormaliza-
tion with joins. ML models generally require many tables to be
joined, aggregated and transformed to derive variables (features).
In [4] there is a proposal to analyze inclusion and functional
dependencies in denormalized tables built with relational queries.
However, the goal is to transform tables into a 3NF database
model representable in ER form, rather than providing an ab-
stract representation of data transformation queries.

Our work shares similarities with research on ETL (Extract-
Transorm-Load) [6] where records are transformed and cleaned
with traditional programming languages (including UDFs) before
being loaded; this includes conceptual modeling for ETL [? ?
] and ELT, where data records are transformed with queries
after being loaded. Important similarities include representing
data processing with a diagram, capturing a comprehensive set
of data transformations and meeting users requirements. On
the other hand, important differences include the following. We
assume referential integrity problems have been solved. The
input to our diagram is a set of queries, which work strictly on
tables, not on files or documents. We draw a clear boundary
on data transformations based on joins (only derivation) or on
aggregation (some aggregation function). Instead of using a flow
diagram to represent data processing we propose to represent
such processing with “processing” entity boxes. We believe our
“zoom-in” view of transformation entities with relational queries
is novel and meaningful.

6 CONCLUSIONS
We introduced minimal ER diagram extensions to represent data
transformations in abstract form, bridging the gap between a
logical database model and a physical database. We focused on
studying database transformations to build a data set for machine
learning analysis. We assume such data set is wide, gathering
many ML variables (features) in one place. Our extended ER

model has two kinds of entities: source entities and transforma-
tion entities, which correspond to standard tables coming from
an ER diagram and temporary “analytic” tables created with SQL
queries, respectively. Data transformations are further classified
into two main categories: denormalization and aggregations. Due
to the large number of entities and attributes involved, we use
modern UML diagram notation, where all entities are boxes and
entities are linked by 1:1 and 1:N relationships. We extended
ER diagram entity boxes with a new box where transformations
are expressed with extended relational algebra notation (SPJA
queries). We introduced an algorithm to extend an existing ER
model, using data transformation queries as input where the data
set is the final database goal. We emphasize that the extended
ER diagram is automatically created for each ML project, to be
relevant and useful. That is, different data sets, having different
primary keys, have separate extended ER diagrams.

Our proposed ER diagram extended with data transformation
offers many opportunities for future research. It is necessary to
study data transformations deeper, considering coding, pivoting
and cubes. We want to further explore UML diagram constructs
to enrich ER to represent database transformations. We want to
determine when it is feasible to design transformation entities be-
fore writing SQL queries to close the loop. From a normalization
perspective, it is necessary to study aggregations choosing a best
table schema to minimize storage of redundant information. The
SQL CASE statement is powerful, but it introduces many issues
from a theoretical and database modeling perspective. We plan
to explore provenance aspects in depth. We intend to develop
metrics to quantify savings in software development effort (e.g.
lines of source code, number of functions or classes) and database
maintenance (number of tables that can be reused, number of
attributes that can be used by multiple ML models, or number of
tables that can serve multiple analytic goals).

REFERENCES
[1] Z. Akkaoui, J.N. Mazón, A.A. Vaisman, and E. Zimányi. Bpmn-based conceptual

modeling of ETL processes. In Proc. DaWaK Conference, pages 1–14, 2012.
[2] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2nd edition, 2008.
[3] B. Oliveira and O. Belo. Using REO on ETL conceptual modelling: a first

approach. In Proc. ACM DOLAP, pages 55–60, 2013.
[4] C. Ordonez. Can we analyze big data inside a DBMS? In Proc. ACM DOLAP

Workshop, 2013.
[5] Carlos Ordonez, Sofian Maabout, David Sergio Matusevich, and Wellington

Cabrera. Extending ER models to capture database transformations to build
data sets for data mining. Data & Knowledge Engineering, 2013.

[6] J.M. Petit, F. Toumani, J.F. Boulicaut, and J. Kouloumdjian. Towards the reverse
engineering of denormalized relational databases. In Proc. ICDE Conference,
pages 218–227, 1996.

[7] Alexandra Poulovassilis and Peter McBrien. A general formal framework for
schema transformation. Data & Knowledge Engineering (DKE), 28(1):47–71,
1998.

[8] P. Vassiliadis, A. Simitsis, and E. Baikousi. A taxonomy of ETL activities. In
DOLAP, pages 25–32, 2009.

[9] J. Zubcoff and J. Trujillo. Conceptual modeling for classification mining in data
warehouses. In Proc. DaWaK Conference, LNCS, pages 566–575. Springer, 2006.


	Abstract
	1 Introduction
	2 Definitions
	2.1 ER Diagram for a Relational Database
	2.2 Relational Queries
	2.3 Running Example

	3 Data Transformations
	3.1 Data Set
	3.2 Representing Data Transformations
	3.3 Extending ER Diagram
	3.4 Extended ER Diagram Example
	3.5 Algorithm to Extend an ER Diagram

	4 Case Study
	5 Related Work
	6 Conclusions
	References

