CEUR-WS.org/Vol-2326/paperld.pdf

A Graph Transformation of Activity Diagrams into
Pi-calculus for Verification Purpose

Aissam Belghiat!»?
Department of Computer Science
University of Mohamed Seddik Benyahia-Jijel, Jijel, Algeria
aissam.belghiat@univ-jijel.dz
Allaoua Chaoui?
2MISC Laboratory
University of Constantine 2-Abdelhamid Mehri, Constantine, Algeria
allaoua.chaoui@univ-constantine2.dz

Abstract

Activity Diagrams have been used largely in
modeling the behavior of control flow and data
flow. Unfortunately, they suffer from lack of
formal semantics due to its semi-formal na-
ture as all UML diagrams, which prohibits any
task of automatic verification. The use of for-
mal methods has been adopted largely, but
their interpretation generates another prob-
lem. Thus, this paper presents a user-friendly
framework that is enabling intuitive visual
modeling of systems using UML activity dia-
grams, and their verification using pi-calculus
formal language, without the obligation to
master this formal language.

Keywords: UML, Activity Diagram, Graph transfor-
mation, Verification, Pi-calculus

1 Introduction

UML (Unified Modeling Language) [OMG17] is con-
sidered as the standard visual modeling language that
is used to specify, visualize, construct, and document
artifacts in software systems. Its two main objectives
are the modeling of systems using object-oriented tech-
niques, from design to maintenance, and the creation
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of an abstract language understandable by humans
and interpretable by machines. Although UML is a
rich language, with an open and widely used notation,
its models still need to be checked to ensure that the
behavior specified in these models is correct, and ex-
actly meets the functional requirements of the system.
This fact is due to the graphic and semi-formal nature
of the UML language i.e. to its semantics which is not
formally specified.

On the other hand, pi-calculus [Mil99)] is a theoret-
ical formal language that provides powerful tools for
analysis and verification. It can be used to verify cor-
rectness of properties of a model, or check equivalence
between two models.

Therefore, UML and pi-calculus have complemen-
tary characteristics; UML can be used for intuitive vi-
sual modeling while pi-calculus can be used for verifi-
cation.

In this paper, we propose an approach that auto-
mates the mapping between UML activity diagrams
towards pi-calculus. This work is inscribed in the
context of the MDA (Model Driven Architecture)
[OMGO04] where model transformation is used and ex-
ploited. More precisely, the graph transformation,
which is based on meta-modeling and graph grammar,
is used to realize the model transformation as activity
diagrams are graphs.

Building a modeling tool from scratch has never
been a trivial task; on the contrary it was always dif-
ficult and hard. Meta-modeling approach has shown
positive performances in dealing with this problem,
because it gives freedom and easiness in modeling the
formalisms themselves. A formalism model that con-
tains enough information allows the automatic gener-
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ation of a tool for constructing models that conforms
to the syntax and semantics of the described formal-
ism. The graph grammar is used then to transform the
models into pi-calculus and returns an understandable
analysis feedback to the user. We have used AToM3
(A Tool for Multi-formalism Meta-Modeling) [ATo02];
which is a tool that provides the mechanisms allowing
the realization of these concepts.

The rest of the paper is organized as follows. In
Section 2, some related works are exposed. In Section
3, we briefly present UML activity diagram, pi-calculus
and graph transformation. In Section 4, the proposed
framework is explained. In Section 5, an example is
presented. Section 6 concludes the paper and gives
some perspectives.

2 Related Works

The literature contains a broad range of works regard-
ing giving formal semantics to UML diagrams in gen-
eral and Activity Diagrams specifically. Among others
we choose some works which are very close to ours. In
[BCROO], the authors use ASM (Abstract State Ma-
chine) for representing behavior semantics of activity
diagrams. In [Rod00], an FSP (Finite State Processes)
formalism is adopted to formalize activity diagrams.
In [BD00Oa, BD0OODb], the CSP (Communicating Sequen-
tial Processes) formalism is used to specify the exe-
cution semantics of activity diagrams. In [EW02] an
activity hypergraph and a Kripke structure have been
used as intermediate representations when transform-
ing an activity diagram into the model checker NuSMV
input language according to STATEMATE semantics.
The last work has been enhanced in [Esh06] by adopt-
ing both STATEMATE and UML statechart seman-
tics. Other works use Petri-nets and their extensions
(Colored Petri-nets, High-level Petri-nets) to formal-
ize activity diagrams such as in [SHO05, Sto04a, Sto05,
Sto04b, BGO3].

There is also some works use pi-calculus as seman-
tic domain to give formal semantics to activity dia-
grams such as in [Lam08] where the authors aim to
check a model against its specifications expressed in
modal mu-calculus, and also in [YZ04], where a full
formal framework is proposed using pi-calculus. The
automation of the translations is not provided.

To build automation translations, some works
adopted CASE tools such as AToM3 tool which has
been used with success in those projects. In [GDO03],
an AToM3 integrated framework has been developed
for the verification of UML models using Petri Nets.
They build meta-models for an UML design (composed
of Class, Statecharts and Sequence diagrams) in addi-
tion to a Petri Nets meta-model. Then, they use graph
grammars to translate the former to the later which al-
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low their verification by model checking. In [Ker+10],
the authors have used an UML design composed of
statechart and collaboration diagrams to propose an
AToMS3 integrated approach for modeling and analy-
sis of such models. They have used graph transfor-
mation in mapping the diagrams into Colored Petri
net models. In [CEC12], the authors have used a sub-
set of UML diagrams to develop an AToM3 integrated
framework for their model checking by transforming
them into a rewriting system expressed in the Maude
language. Other contributions deserve to be cited such
as [Bel+14], [BC16] and [BCB16].

We notice that all previous contributions have not
taken into account that the user is not specialized in
most cases, and he does not master these formal lan-
guages, in addition most of them do not even provide
automation, what hinders their usage. Thus, in con-
trast, we develop in this work an AToM3-based frame-
work that automates the mapping of activity diagrams
into pi-calculus. In addition we try to drive away the
verification task from users by interpreting feedback
analysis results. The AToM3 tool is chosen because it
offers the capabilities we need to realize our ideas.

3 Background
3.1 UML Activity Diagram

The UML activity diagram [OMG17] is used for mod-
eling control flow and data flow. It gives an explana-
tion of the sequence of activities and actions specific
to an operation or a use case. It provides a set of
elements that allow a very rich expression of any se-
quence in a system, its notation is relatively close to
the state-transition diagram in its presentation, but its
interpretation is significantly different. The activity
diagram is essentially composed of activities and tran-
sitions. An activity specifies a behavior described by
an organized sequencing of units whose basic elements
are actions. The most common types of actions are:
call operation, call behavior, send, accept event, accept
call, reply, create, destroy, and raise exception. FKach
of them is used to represent the adequate behavior. A
transition materializes the transition from one activ-
ity to another, it is triggered when the source activity
is completed and immediately causes the start of the
target activity. Therefore, transitions allow specifying
sequence of treatments and define the control flow. Ac-
tivity diagrams provide the mechanism for partitions,
called swimlanes which allow organizing the nodes of
activities by making regroupings.

3.2 Pi-calculus

The pi-calculus [Mil99] is a formal language that has
solid mathematical bases. It is a computing model
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that is used to represent concurrent and mobile sys-
tems by the expression of interactions between evolv-
ing processes, its two basic concepts are Names and
Processes. A Name represents channels(ports), vari-
ables, data while a Process represents a communicat-
ing entity in a system. The syntax of the pi-calculus
process expression is given in Table 1:

Type Representation Meaning
Input prefix a(x).P Receives x through a,
then behaves as P
Output prefix a<x>.P Outputs X on a, then
behaves as P
Sumumation Pi+P; Behaves as either P; or P,
Composition Py Py Behaves as in parallel Py
and P,
Restriction new y (P) y can’t be used for
communicating
Matching [x=y].P Do P when x=y

Table 1: pi-calculus Process Expression

3.3 Graph Transformation and AToM3

Graph transformation is one of the approaches used
to implement model transformation. It consists on
mapping a source graph into another target graph,
by using a combined technique of meta-modeling and
graph grammar. AToM3 [ATo02] is a powerful model
transformation tool that implements the ideas of graph
transformation.

The meta-modeling allows specifying the abstract
syntax (the relationships between the elements) of any
formalism, and its concrete syntax (the graphical no-
tation that must be respected by models).

Graph grammars [Roz97] are generalization of
Chomsky grammars for graphs. In AToM3, a graph
grammar is composed of an initial action, multiple
rules and a final action. Initial and final actions are
used to provide necessary information before and after
the execution of the rules. Each rule has two graphs;
one on its left called the LHS (Left Hand Side) and
another one on its right called the RHS (Right Hand
Side). A rule is evaluated by comparing its LHS with
a zone in an input graph (called host graph). If a
matching is found, the rule will be executed and the
corresponding matching sub-graph in the host graph
will be replaced by the rule RHS. Furthermore, a rule
may also have a condition that must be satisfied to ap-
ply the rule, as well as actions to be performed when
the rule is carried out. The tool has a rewriting sys-
tem that iterates applying the matching rules in the
graph grammar to the host graph, until no rule is ap-
plicable. The rules are also ordered in this tool by a
user-assigned priority (higher to lower).
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4 The framework
4.1 Overview

In our framework, a combined meta-modelling and
graph grammar approach is adopted to build an in-
tegrated tool using the AToM3 (see Figure 1). The
approach consists of two essential tasks; firstly, we
needed to propose a meta-model for activity diagrams
to generate an AToM3 integrated environment which
supports the visual modeling of these diagrams. Sec-
ondly, we have proposed and developed a graph gram-
mar which gives us for each activity diagram mod-
eled in the tool its corresponding pi-calculus process
expression. This last is uploaded immediately in the
mobility workbench (MWB) [VM94] to start the ver-
ification task. Thirdly, the results of the verification
will be exported to the graph grammar (a feedback)
that try to identify the problem found by interpreting
these results and makes a sign on the diagram itself
(the deadlock as example).

eraph

Activity ATob®
diagram canvas

D E— Y

)

Figure 1: The framework architecture

4.2 Formalization of activity diagrams using
pi-calculus

Activity diagrams must be provided with formal se-
mantics in order to be able to verify any aspect of
the behavior [Rod00]. To overcome this problem the
pi-calculus can be used for the verification by a trans-
formation approach of the activity diagrams into pi-
calculus (Table 2)

4.3 Activity diagram Meta-model

Our meta-model is composed of 8 classes and 7
associations developed by the meta-formalism (CD-
classDiagramsV3) in order to have an AToM3-based
tool which offers the necessary tools to model the ac-
tivity diagrams (see Figure 2).

After we have come to model our meta-model, only
its generation remains. The generated meta-model
contains the set of classes modeled as buttons that
are ready to be used for a possible modeling of an ac-
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Activity diagram n —calculus

Initial node

? IN\(startI Ny, 1) " start Ny.T7.1 N (startI Ny, 1)

I

The process corresponding to the initial state expects a signal from
the environment to start execution by sending the x; channel.

Final nndcf:
6
AFN,

. . def - :
.41‘ N 1(.1‘1 ) ‘é I AFN 1 (J‘l J

The process corresponding to the final state awaits receipt of the x4

token to complete the execution.

Final flow

2 % FFN (1) = 21.FFN (1)
FFN,

The process corresponding to the final state awaits receipt of the x4
token to complete the execution.

Action

0 .41(.1‘1 ’ J‘g] dé‘ r.7.72.4) (J'l ’ J'g)

The process corresponding to the action waits for the receipt of the
token, to execute, after it passes the token to the next.

Fork node
_,{I): FNy(ry. 7o, ... 7)) = 2y (viraversed)
( Hﬁ.hm't rsed.()| traversed. - - - traversed FNy(x,22,...,2n ])
] ——  —
=2 n—1 times

The process corresponding to the fork node FN; waits to receive
the token x;. it then behaves as multiple parallel sub-processes.

Join node
—i » | JNi(Z1,22,...,20) E (vreceived)
- n—1
( H zi.received.0| received.- --.received T . JNy(zy1,22,...,78 |)
N — r—
i=1 a—1 times

The process corresponding to the join node JN; sends the x, token
when it receives all the complete signals from sub-processes.

Merge node

N n—1
NS MN,(x,,29,..., ) & Z . T . MN, (g, 29, ... ,2,)

i=1

The process comresponding to the merge node JN; sends the x,
token when it receives all the complete signals from sub-
processes.

Decision node

‘./}Cj, DN (21,2252, Z0,01,C23:2., r,,) ger Iy. (V-f )ﬁ{f}fw)

Sl
n=-1
( Z[r; =TT DN (2, 10, .. 200,00y Cn J) .

i=1

The process corresponding to the decision node DN makes a non-
deterministic choice to continue the execution, according to
condition evaluation using ¢, channel.

Table 2: Formalization of Activity Diagram
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Figure 2: Activity diagrams meta-model under AToM3

tivity diagram. The generated environment is shown
in Figure 3:

4.4 The Graph grammar

The construction of graph grammar rules is an impor-
tant step in the process of implementing a graph trans-
formation. Indeed, it requires a good understanding of
both languages. Thus, we have inspired the semantic
rules from [Lam08§].

Thus we  propose the graph  grammar
(AD2Picalculus) composed of an initial action,
30 rules, and a final action. It should be noted that
due to space constraints we cannot present all the
rules, so we choose some rules among others and we
join them with the Python code used for generating
automatically pi-calculus code.

o Initial action:

Role: In the initial action of the graph grammar we
have created a file with sequential access named ” pi-
calculus.txt” to store the generated pi-calculus code.

o Final action:
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iy 1t ol el T e e Ty

Figure 3: Activity diagrams environment under
AToMs3

Role: In the final action of the graph grammar, we
close the file ”picalculus.txt”.

e Rules:

Rule 1 : Initial Node mapping

Name : Initial2Initial

Priority : 1

Role: This rule makes it possible to transform an
initial node that links by an action to the pi-calculus,
in this rule we return the name of the initial node
and the name of the outgoing arc, In the condition
of the rule we test if the node is already transformed,
otherwise the action of the rule opens the file ”pical-
culus.txt” and adds the class in the pi-calculus code
(see Figure 4).

Condition :
nods = self.getMatched (graphlD, self.lHS.nodeWichLabel (1))
return not hasattr(node, "rulsl executed")

1 1 R HS

T ANY= =QoPED>

1f.g=tMatched (graphIl, self.LH3.node
.getMatched {graphID, seli.LHS.node]
nodel.name.getValus ()

=t "+statename+’ '+transname+’| a0
tatenams+" (stari+stacename+”, "+Lransnamet

Figure 4: Initial node mapping in the graph grammar

Similar rules are initial2decision, initial2fork, ini-
tial2merge, they are described in Figure 5. The dif-
ference is in the code python used to generate the pi-
calculus code as already seen in table2.

Rule 2 : Action mapping
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Figure 5: The rules initial2decision, initial2fork, ini-

tial2merge

Name : Action2picalcul
Priority : 2

Role:This rule allows transforming an Action with
the incoming arc from an action and the outgoing arc
that ends to an action, in this rule we return the name
of the action and the name of the incoming and out-

going arc (see Figure 6).

Condition :

2d")

Action :
node = smelf.getMatchadigraphID, self.lHS.nodeWithlLabel (1))
Ziname = node.name.getValue()

nodel = self.getMatched (g
transname = nodel.name.ge
nodeZ = self.getMatcned (g
& = node? name . gers’

ID, s=1f.LES.nocdeWichLabel(2))
ue()
1D, 3=1T.LHS.noceWithLabel(3))

2 executed = True
ebFichier — open|"
cbFichier write ["a

"+transname+", "+translname+”

Figure 6: Action mapping in the graph

node = s=1f.getMatched(graphID, self.LHS.nodeWithLabel(1l))
return not hasattr(node, "

I iy
="+Transname+".T.' "+CTaNsSlname+" . "+RIName+" ("+TLansname+", "4Translname+”) "+7\n")

grammar

Examples of similar rules are Action2decision, Ac-
tion2Fork, Action2join, Action2merge, Action2final,

..etc.
Rule 3 : Fork mapping
Name : fork2picalcul
Priority : 5

Role:This rule enables transforming a fork node
that is linked by a single incoming arc from an action
and outgoing arcs that end to actions (see Figure 7).

An example of a similar rule is join2picalcul. It is
applied to locate a join node, and transforms it to pi-
calculus code according to the semantic rules already

described in Table 2.
Rule 5 : Merge mapping
Name : merge2picalcul
Priority : 3

Page 111



A Graph Transformation of Activity Diagramsinto Pi-calculus for Verification Purpose

Condition :

node = self.getMatched{graphTD, self.lHS5.nodeWithlLabel (2})

recurn not hasattr(ncde, "rul=9_exscuted")
P HS OFIED- -~
{f —

- -
V ) BoPED:
1 1
R :; <AtV [ ;ccpusow
e COPIED= T
caw k______,/)

) A
— -

Action :

Figure 7: Fork mapping in the graph grammar

Role:This rule transforms a merge node with two
or more incoming arcs from an action and an outgoing
arc that ends to an action (see Figure 8).

An example of a similar rule is decision2picalcul. It
is applied to locate a decision node, and transforms
it to pi-calculus code according to the semantic rules
already described in Table 2.

5 Example

In order to concretize the usefulness of the defined
graph transformation, we tried to apply it to the sim-
ple example of the activity diagram presented in Fig-
ure 9. It should be noted that this example does not
claim to be exhaustive, but it includes some important
elements of an activity diagram such as: action, fork,
join..etc.

The generated pi-calculus code is described in Fig-
ure 10:

If we remove the transition between the action ”del-
liverorder” and the final node, we create a deadlock in
the diagram. Thus, the reloaded pi-calculus code will
be similar except for the process (agent):

agent delliverorder(x6,x7) =
x6.t.delliverorder (x6,x7)

Our tool will analyze the code using MWB, it im-
mediatly detects the deadlock (a state that has no out-
going transitions) and the process concerned. The final
action of the graph grammar points out the problem
by coloring the the corresponding element of the dead-
locked process in the graph of the diagram (see Figure
11).
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Condition :
nods = self.getMatched (graphID, self.LH5.nodeWithLabs1(5))

return not hasattr(node, "rule’ sxecuted")

SORIED=

o

i
<

1

. "igardet
readgelsedgeds

")

Figure 8: Merge mapping in the graph grammar

Figure 9: Example of an activity diagram

6 Conclusion

The result of our work is an automatic approach that
enables visual modeling of systems behavior using
UML activity diagrams and their verification using pi-
calculus. The proposed approach is based on the graph
transformation, and it is carried out using the AToM3
tool. The meta-modeling is used to define an envi-
ronment for activity diagrams while the graph gram-
mars are used to automate the translation and the
analysis feedback. We saw in the last example the
deadlock property, some other properties need more
advanced feedback mechanisms to be understandable
such as counter-examples. In future work, we plan to
enable such mechanism by interpreting feedback anal-
ysis using Sequence Diagrams depicted in AToM3. In
addition, we intend formalizing and integrating in our
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| picalculus.bt - Bloc-notes
| Fichier Edtion Format Affichage 7

agent IN(start IN,x) =startIN. x.IN(StartIN, x) .
agent Re?uestserv1:e(x,x1) =x.T. 'Xl.Requestservice(x,x1)
agent FN(x4,xd,x6) = [ sreceived’)

x3° . received.0|x4 ", recaived. 0

receivrd.receivrd.

‘xbruﬂéx-& ®4,%6)

agent delliverorder (x6,X7) =x6.t.'x7.delliverorder (x6,x7)
agent takeorder (x2,X8) =x2.t. XB.takeorder(x2,X8)

agent FN(XL,x2,X3) = XL.('Atraversed')

agent pay(x3,x4) =x3.1. X4.pay(x3,xs
(x2".traversed.0|x3'. traversed.0|traversed. traversed.
FN(x,x2,x3)

agent X7(

AFNY = K7 (AFN)
agent Fillorder (xB,x4) =x&.1. x4.Fi1lorder (x8,x4)

Figure 10: The generated pi-calculus code

& feqeteme

',
L —
; takeorder / ~

Figure 11: The analysis feedback on the diagram

framework other notational elements such as expan-
sion region and interruptible activity region. We plan
also to apply our approach to a wider range of real-
world critical systems in order to experiment its per-
formance.
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