
Meghnous Malak 1
1Complex System Engineering Laboratory

(LISCO), Department of Computer Science,
Badji Mokhtar University, POB 12,

23000 Annaba, Algeria
MeghnousMalak@gmail.com

Atil Fadila
Complex System Engineering Laboratory

(LISCO), Department of Computer Science,
Badji Mokhtar University, POB 12,

23000 Annaba, Algeria
atil_fadila@yahoo.fr

Abstract
Self-adaptive systems are software systems
that have to dynamically adapt their behavior
in response to environment changes and
users fluctuations. Thus, variability is a key
concept in these systems; and handling it in
early stages in the software development life
cycle, helps to control complexity. The
Design of these systems using component
based architecture, enhances reuse and
promotes dynamic reconfiguration, enabling
system’s modification without intercepting
its execution, thus ensuring continuity of
service. In this paper, we propose the
dynamic adaptation of a component based
Islamic application according to the user
context (expert/novice), using orthogonal
variability modeling and an aspect-oriented
approach. We aim at combining UML
Component Model and the orthogonal
variability model in order to document
variability. This allows to decrease system’s
complexity and to maintain whole view of
the system’s component based architecture
and ensures variability traceability.

Keywords – Self-adaptive system,
Variability modeling, Orthogonal variability
Model, Component based architecture,
Aspect oriented paradigm.

1. Introduction
Self-adaptive systems are software systems that have

to dynamically alter their behavior in response to
environment changes and user’s fluctuations, e.g. system
shifts from state N (configuration N) to a new state N+1
(new configuration N+1).

Thus, modeling these systems is complex and crucial step
in the development process, due to the large number of
configurations and contexts.
Handling variability is a common activity between
Software Product lines and self-adaptive systems. Hence,
using SPLs mechanisms to model variability in self-
adaptive systems will help to maintain the complexity.

Component based development is a paradigm in which
the construction of applications is essentially based on
assembly and reuse of existing entities called "software
components”. Thus, it promotes reuse and provides a
component based architecture of system that can be
configured and reconfigured by adding, altering or
deleting components or connectors or interfaces.

The contribution of this paper is to construct an
adaptive Islamic application according to the user
context. The idea is to develop a component based
architecture of the application to enhance component
reuse and to benefit from the architecture
reconfiguration. Also, and in in order to decrease
system’s complexity, we propose to model variability by
using SPLs mechanisms, for instance, the OVM.
Furthermore, to resolve variability at runtime and in
order to guarantee separation of concerns, we propose
an aspect oriented approach.

The remainder of this paper is structured as follows:
section 2 and 3 introduce briefly self-adaptive systems
and variability management respectively. Section 4
details our proposed approach, and illustrate it with a
running example. Finally, section 5 concludes and
addresses future works.

2. Self-adaptive systems
Dynamically adaptable software (DAS) self-adapts

according to context information gathered from the
surrounding environment [San17]. I.e. these systems
alter their own behavior dynamically in response to

Copyright © by the paper’s authors. Copying permitted only for private

and academic purposes.

In: Proceedings of the 3rd Edition of the International Conference on

Advanced Aspects of Software Engineering (ICAASE18), Constantine,

Algeria, 1,2-December-2018, published at http://ceur-ws.org

An Islamic application based on self-adaptive component

Page 122

change in its operating environment, such as end-user
inputs, external hardware devices and sensors, or
program instrumentation [Sai09].

This behavioral change requires structural change, and
the system shifts from state N to a new state N+1. Thus,
a DAS needs to be able to sense its environment, to
autonomously select an appropriate configuration and to
efficiently migrate to this configuration. Handling these
issues at the programing level proves to be challenging
due to both the large number of contexts and the large
number of software configurations which have to be
considered. The use of modeling and the exploitation of
models at runtime level provide solutions to cope with
the complexity and the dynamic nature of DAS [Arc09].

Moreover, DAS can be considered as a software
product line in which variability is resolved and bound at
runtime. Hence, variability modeling techniques used in
SPLs, could also be applied during design phase of DAS.

Designing such complex computing systems has been
enhanced by the help of structural organization support
of component-based architecture and model, in which
software components encapsulates functionalities that
can be accessed through well-defined interfaces that do
not depend on their particular implementations. In
addition to the benefits of modularity and reuse that
result from this structural organization, adaptability and
dynamic reconfigurability are key properties sought with
this approach: it is possible to dynamically reconfigure
the components assembly during runtime to cope with
environment or user’s fluctuations [Alv17].

Thereby, resolving variation points at runtime leads to
dynamically reconfigure the component based
architecture, by means of binding variants, e.g. adding,
removing, replacing or altering components, connectors
and interfaces.

In order to obtain a clear separation of concerns
between the adaptation code and the computational
code, we consider the management of variability as a
non-functional requirement. Indeed, we use the aspect
oriented approach to weave or unweave variants (in our
work components) during runtime.

3. Variability management
Variability is usually understood as the ability of a

software artifact to be changed (configured, customized,
extended or adapted) in order to fit different contexts
and environments. Variability can also be seen as the
anticipated change [Gal14]. Variation has been largely
addressed in the context of software product lines.
Indeed, it is a key fact of most systems, if not all. In such
systems, variation occurs for the same reasons as for the
product lines [Hil10] [Gal11]; including:

I. Defer decisions about design or implementation.
II. Support multiple deployments.

III. Achieve system qualities such as adaptability.

Accordingly, handling variability (representing,
managing, and reasoning about) in early stages of the
software development lifecycle has become a relevant
concern [Gal11].

3.1 FODA approach

Variability representation consists on capturing
commonalities and differences between potential
variants. In product line engineering, the FODA
(Feature-Oriented Domain Analysis) model describes the
visible properties of systems, in terms of product
features. A feature is any stakeholder-relevant
characteristic of a system [Hil10]. Indeed, the FODA
model models such variability in a tree graph using
variants (features that might be mandatory, optional or
alternative) and variation points representing logical
relationships between variants [Bos15].

On the basis of FODA, several extensions and
enhancement of feature modeling and feature models
were proposed, e.g. the FORM approach (Feature
Oriented Reuse Method), that aim to enriching feature
models with additional information, e.g., regarding
feature cardinalities propositional constraints and non-
functional properties of features [Hil10] [Bos15].

3.2 The orthogonal variability model

Modeling the variability within the traditional
software development models has some significant
drawbacks. For instance, it increases models complexity,
because these techniques specify both common and
variable parts of the system. Moreover, Variability
informations cannot be traced if they are scattered among
different models [Poh05] [Poh07].

The orthogonal variability model is a language and a
methodology for superimposing variability over any
software development artifact without interfering into its
contents [Ecc16].

The OVM approach can be used to document the
variability of arbitrary development artifacts, ranging
from textual requirements to design models and even test
cases. Also, the documentation of variability is separated
from the technical realization of variability in the
development artifacts and as such provides a further level
of abstraction that aids developers in managing
complexity and tracing variability [Poh07].

To that end, in our work we specified variability
separately using the OVM as in figure 1, which depicts
the graphical notations of this model.

4. The proposed approach
This section addresses the problem of developing an

Islamic component-based application, that allows the
inspection of food according to the Islamic percepts, and
makes a verdict to classify them into Halal or not.

An Islamic application based on self-adaptive component

Page 123International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

As early mentioned, the component based
development provides, an entire view of the system
which helps to reduce complexity; emphasize reuse; and
promotes reconfiguration. Consequently, and due to its
dynamic reconfiguration feature, we use the Fractal
Component Model.

Figure 1: Graphical notation for variability models
[Poh 05].

Moreover, our application is contextually adaptable,
especially according to the user context, in order to offer
different modes of operation, for users of different skill
level (Novice user/ Expert User).

Variability management is a common key between
software product lines and self-adaptive system. Thereby,
several works have been established to identify synergy
points and cross-fertilization opportunities between the
two domains, such as [Alv12]. Correspondingly, we use
the orthogonal variability model, which is a variability
modeling mechanism in SPLs, to model information
about variability in our system.

Furthermore, the dynamic adaptation of our
architecture, which can be considered as the resolution of
variation points, is implemented in AOP that proposes
the separation of concerns, which allows the reuse of the
same aspect in different components of the system. Thus,
we use aspects to specify when, where, and how to
reconfigure the system’s architecture with variants

The following sub-sections detail each parts of our
work.

4.1 Variability modeling and components design

We model the component based architecture with
UML 2.0 Component diagram. In addition to, the
Orthogonal Variability Model to document variability in
design phase, in particular, to document our Islamic
Component based architecture. This is depicted in figure

2, and table 1, which provides a brief description of
composite components.

Also, we adopt the orthogonal variability modeling
technique with a different semantic. Variation points
indicate the containing relationship between components,
e.g. TypeF Variation point indicates the potential
subcomponents of the Food component (what
subcomponents could be contained in the Food
component), which are, the three variants: meat,
additives, and drinks. The alternative choice with [1..3]
cardinality, signify that the Food component must at least
contain one subcomponent.

Table 1: Component description
Component

name Description

FoodClassifi
cation

Mandatory Component provides
the name and the classification of
the food (Halal/Haram).

Proof
Optional Component provides the
proof about the classification of the
food from the Holy Quran and the
Sunna.

4.2 Adaptation of the architecture according to
the context

Adaptation of the architecture, as shown in Figure 3,
shifts the architecture of an application from a
configuration (state N) to a new configuration (N + 1)
according to a well-defined context, and following the
adaptation policy.

4.2.1 Context representation

The context groups all the information about the
running environment. In this work, we are interested in
the user context, in particular, the expertise level of
users.

As illustrated in figure 4, user context is characterized
by, the current state of the architecture and, the incoming
change of users which, in our work, is interpreted as
events.

In our user context, we have two types of users:
i. A novice user: a user who does not need

proof/evidence about the classification of the
food.

ii. An expert user: a user who needs accurate and
detailed proof and justifications about the
classification of the food. This proof may be
extracted from the Holy Quran or the
Sunnah of the Prophet or both.

An Islamic application based on self-adaptive component

Page 124International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

Figure 2: Linking UML Component Diagram with OVM for the Islamic Application.

An Islamic application based on self-adaptive component

Page 125International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

Figure 3: Description of the architectural adaptation.

Figure 4: Context representation.

4.2.2 Adaptation policy

We have used a rule-based approach, specifically
ECA (event, condition, action) rules, to resolve
variability at both design and runtime.

The adaptation policy is a function that transforms a
series of events that represent the context into a set of
actions by respecting a set of conditions and starting
from an initial state (configuration N).

In order to resolve variation point at the
implementation level and provide dynamic adaptation, we
have used the aspect oriented paradigm. It is a
programming paradigm that allows isolating cross-
cutting concerns, which are so-termed non-business
functionalities (security, dynamicity). There are two main
symptoms related to cross-cutting concerns: scattered
and entangled code.

In our approach, the aspect intercepts and captures
the state (configuration (N)) of the system as well as the
event describing the context (Expert/Novice) (see figure
5). From these data and conditions (in the ECA rules), a
series of actions (in the ECA rules) that serve to
transform the system to a new state (an N + 1
configuration), are executed. Specifically, the aspect
specify when, where, and weave/unweave components.

Lesson 1, illustrates an example of ECA-rule based
adaptation policy.

Figure 5: The adaptation policy with aspect oriented approach.

An Islamic application based on self-adaptive component

Page 126International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

Lesson 1: Example of ECA-rule based adaptation policy.

Figure 6: Dynamic reconfiguration of the system‘s architecture.

An Islamic application based on self-adaptive component

Page 127International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

Figure 7: Activity diagram of the scenario.
In order to understand the adaptation, we propose the

following scenario:
We suppose that the system’s current configuration

corresponds to figure 6.a.
1. The user writes the word “البيرة” as the name

of the food he wants to search its
classification, and checks the checkbox “
in order to get evidence from ”الدليل من القرءان
the holy Quran about the classification of the
searched word.

The system considers this user as expert (expert
event), because he required evidence along with the
answer.

2. The aspect checks if the current
configuration of the system (figure 6.a)
contains the Quran component:
2.1 In the case, the answer is “yes”: the

system provides the answer.
2.2 In the case, the answer is “no”: the

aspect adds the Quran component
dynamically to the architecture (figure
6.b), which allows the system to provide
the answer.

3. The system displays the answer which is :
 along with the evidence ”نعم البيرة حرام“

(number of surah=05 , number of verse=90).
In order to simplify the representation we consider:

Q1 is the question asked by the user, and A1 is the
answer displayed by the system.

Figure 7 depicts the corresponding activity diagram to
the up-mentioned scenario.

5. Related work
Several researches have been contributed for runtime

adaptation of systems. Similarly to our work, [Lou13]
proposed an aspect oriented approach to dynamically
adapt a component based system. However, variability is
modeled implicitly by architectural aspect at the design
level and no formal method to represent variation
method has been used. Unlikely, in our approach, the
variability is represented explicitly using the OVM.

In [Wol08], SPL engineering and plugin techniques
have been combined to perform runtime adaptation.
Based on the information documented in the variability
models, and a plugin developed upon the .Net platform,
runtime adaptation and dynamic reconfiguration are
achieved. On the other hand,, our approach is based on
components and aspect oriented paradigm that satisfy the
separation of concerns property.

[Cos07], is another work that used the AOP
combined with the computational reflection, to
dynamically adapt the internal structure of aspect-
oriented component. On the contrary, our approach
achieve adaptation by reconfiguring the whole
architecture. Moreover, the proposed adaptation has as
purpose, correction or maintenance, while in our work,
we focus on adaptation according to the user context.
Finally, the variability modeling is not considered in this
work.

6. Conclusion and future work
This paper addresses the adaptation of an Islamic

application according to the user context. We have

An Islamic application based on self-adaptive component

Page 128International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

modeled this application using a combination of UML
Component Model and the orthogonal variability model
in order to document variability. This combination
reduces system’s complexity and maintains a whole view
of the system’s component based architecture and
ensures traceability of the variability.

Based on this view and the OVM model, we have
proposed an aspect oriented approach to reconfigure the
architecture in order to satisfy the user’s needs.

Context representation in a formal way is one of the
trends of self-adaptive systems. Our perspective is
therefore to explore context variability representation.

7. References

[Alv12] V. Alves, D. Schneider, M. Becker, N.
Bencomo, P. Grace, “Comparitive study of
variability management in software product
lines and runtime adaptable systems”,
Variability Modelling of Software-Intensive
Systems, Sevilla, Spain, vol. 1, pp. 9-17,
2012.

[Alv17] F. Alvares, E. Rutten, L. Seinturier,
“Domain-specific language for the control of
self-adaptive component-based architecture”,
1st ed., vol 130, Journal of Systems and
Software, pp.94-112, 2016.

[Arc09] M. Acher et al., “Modeling context and
dynamic adaptations with feature models”,
International Workshop Models at Run.time,
Denver, USA, pp. 10, 2009.

[Bos15] J. Bosch, R. Capilla, R. Hilliard, “Trends in
systems and software variability”, 3rd ed.,
vol. 32, IEEE Software, pp.44-51, 2015.

[Cos07] C.Costa, J.Pérez, J.Á.Carsí, “Dynamic
adaptation of aspect-oriented components”,
Component-Based Software Engineering,
Medford, USA, vol.1, pp.49-65, 2007.

[Ecc16] J. Echeverria, F. Pérez, C. Cetina, O. Pastor,
“comprehensibility of variability in model
fragments for product configuration”,
Conference on Advanced Information
Systems Engineering, Ljubljana, Slovenia,
vol. 1, pp. 476-490, 2016.

[Gal11] M. Galster, P. Avgeriou, “Variability in
software architecture: current practice and
challenges”, 5th ed., vol. 36, ACM
SIGSOFT Software Engineering Notes,
pp.30-32, 2011.

[Gal14] M. Galster, D. Weyns, D. Tofan, B.
Michalik, P. Avgeriou, “Variability in
software systems— a systematic literature

review”, 3rd ed., vol.40, IEEE Transactions
on Software Engineering, pp.282-306, 2014.

[Hil10] R. Hilliard, “On representing variation”,
ECSA 2010 workshops: Workshop on
Variability in Software Product Line
Architectures, Copenhagen, Denmark, vol.
companion, pp.312-315, 2010.

[Lou13] S. Loukil, S. Kallel, M. Jmaiel, “Runtime
adaptation of component based systems”,
Networked Systems, Marrakech, Morocco,
vol. 1, pp. 284-288, 2013.

[Poh05] K. Pohl, G. Böckle, F.V. Linden, “Software
product line engineering - foundations,
principles, and techniques”, Springer, 2005.

[Poh07] K. Pohl, A. Metzger, “Variability
management in software product line
engineering”, International Conference on
Software Engineering, Minneapolis, USA,
vol. companion, pp. 186-187, 2007.

[Sai09] M. Salehie, L. Tahvildari, “Self-Adaptive
software: landscape and research
challenges”, 2n ed., vol. 4, ACM
Transactions on Autonomous and Adaptive
Systems, pp.1-42, 2009.

[San17] I. Santos, T.A. Oliveira, E.S. Almeida, R.M.
Andrade, “Dynamically adaptable software is
all about modeling contextual variability and
avoiding failures”, 6th ed., vol. 34, IEEE
Software, pp. 72-77, 2017.

[Wol08] R. Wolfinger, S. Reiter, D. Dhungana, P.
Grunbacher, H. Prahofer, “Supporting
runtime system adaptation through product
line engineering and plug-in techniques”,
International Conference on Composition-
Based Software Systems, Madrid, Spain, vol.
1, pp.21-30, 2008.

An Islamic application based on self-adaptive component

Page 129International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

