
Boubaker Soltani Afifa Ghenai Nadia Zeghib

LIRE Laboratory
Constantine2 – Abdelhamid Mehri University, Constantine, Algeria
{boubaker.soltani, afifa.ghenai, nadia.zeghib} @univ-constantine2.dz

Abstract
Serverless Computing is emerging as an
undeniable paradigm for the deployment of
(multi)cloud applications. It is mainly
characterized by the use of stateless loosely-
coupled functions that are composed together
to perform useful actions. This approach,
contrarily to monolithic one, makes easier the
maintenance and the evolution of the
applications, since the functions can be
independently revised and reprogrammed.
However, one principle in Serverless
computing is that function execution should
be within a short duration (five minutes max
in most Cloud provider platforms), after
which the function is abruptly terminated
even if it has not completed its task.
Moreover, the max duration cannot be
extended without a negative effect on the
platform performance. This leads to prevent
functions requiring longer time from being
adopted as Serverless functions. This paper
deals with this drawback. It proposes a
distributed migration-based approach which
promotes the execution of long-duration
Serverless functions: each running function
that reaches the maximum duration limit is
repeatedly transferred to another cloud
platform where it is carried on. In this aim,
the migration-based system architecture, the
migration technique and the migration
algorithm are described. The proposed

approach use is illustrated by a case study: a
generic machine learning application built
over the scientific platform ANTDROID.

1. Introduction
Cloud computing is now commonly used to describe

the delivery of software, infrastructure and storage
services over the internet. In this field, there are
generally two parts that may be made available under
the client control: the application code and the
underlying infrastructure hosting that application. In
this context, Serverless computing provides a great
opportunity for developers seeking relief from the
burden of infrastructure. This computing model
allows building and running applications and services
without having to manage infrastructure. In fact,
Serverless Computing is an event-driven approach
that abstracts the infrastructure management away
from the client. Aspects like scalability, provisioning
and fault tolerance are automatically handled by a
Serverless platform, while the Cloud user focuses
only on his functional code [Bald17]. This code
comes in the form of a set of stateless functions that
are agnostic of where are they going to be executed
[Bald17]. Serverless platforms adopt a pay-per-
execution billing strategy, i.e., contrarily to traditional
Cloud platforms that host the client program in a
listening running server (hence, the client pays as
long as the server is running even if there are no
requests), a Serverless platform does not start a server
until a request is made. In this way, the client is billed
for each invocation, meaning that no payment if no
requests [Kuh17]. The Serverless architecture is
relatively a new paradigm and only few pioneers have

Copyright © by the paper’s authors. Copying permitted only for private
and academic purposes.

In: Proceedings of the 3rd Edition of the International Conference on

Advanced Aspects of Software Engineering (ICAASE18), Constantine,

Algeria, 1,2-December-2018, published at http://ceur-ws.org

Page 42

A Migration-Based Approach to Execute Long-Duration Multi-
Cloud Serverless Functions

investigated this domain. Amazon AWS Lambda is a
compute service that supports many languages like
node.js, C#, Python and Java on AWS infrastructure.
Source code is provided as ZIP file and deployed in a
container that is allocated the necessary hardware
resources. The combination of code, configuration
and dependencies is what is called a Lambda function
[Sbar17]. The author admits that a Lambda function
can only run for a maximum of five minutes. Azure
Functions [Kum17] is Microsoft’s version of a
Serverless platform. They provide a technique named
the consumption plan to enhance function scalability
during execution [Azr18]. A function in such plan is
limited (by default) to five minutes, but this value can
be increased up to ten minutes [Azr18]. Google Cloud
Functions [Stig18] is another promising Serverless
platform which limits the function to nine minutes
max [Goo18]. Moreover, according to [Fox17],
Serverless platforms are still hosting short- running
functions due to the faced difficulty of scheduling
long-running tasks and their SLA (service level
agreements) management, but the authors advocate
that it is possible in the future that Serverless
platforms will host such tasks. Current procedure to
execute long-duration workloads is not to provision
them as Serverless functions (e.g. as a listening server
instead) [Fox17] [Sbar17].

Consequently, in current Serverless platforms, the
function execution should be within a short duration
(five minutes max in most Cloud provider platforms),
after which the function is abruptly terminated even if
it has not completed its task. This leads to prevent
functions requiring longer time from being adopted as
Serverless functions.

 In the aim to overcome this drawback, we take
advantage from Multi-cloud paradigm features and
propose a distributed migration-based approach
which promotes the execution of long-duration
Serverless functions.

The Multi-Cloud paradigm allows considering the
distribution and provider-independence aspects. In
fact, Multi Cloud [Groz14] is the usage of multiple,
independent clouds by a client or a service. This
paradigm is dedicated to accomplish the task of
scheduling workloads to resources deployed across
multiple clouds. A Multi-cloud is, however, not the
same as Cloud federation which refers to a set of
cloud providers that intentionally interconnect their
infrastructures to make a unified resource pool

[Groz14]. This distribution and independence allows
us to apply our repeated migration-based approach to
cope with the aforementioned problem.

The remainder of this paper is organized as follows:
Section 2 discuses some works based on monolithic
application decomposition that are relevant to our
work. Section 3 is dedicated to the presentation of our
migration-based system architecture. Section 4
illustrates our proposal via a case study. Finally,
Section 5 concludes the paper with ongoing work.

2. Related Work
The investigated literature is classified switch to two

categories: works that focused on well-designing
functions at design time, i.e., from the beginning, be
careful to program functions that do not surpass the
maximum limit; and works that focused on
decomposing pre-existing monolithic applications to
smaller independent functions.

2.1. Design-Time Function Creation

In [Ader17], set of requirements assisting the
development of microservices benchmark application
for repeated empirical research in software
architectures was provided [Ader17]. The e-
commerce European software Otto is planned to be
rebuilt from scratch switch to a microservice concept
of Verticals (isolated parts from each other, no shared
states or infrastructures) [Hass17]. Sascha et al.
[Alpr15] propose a microservice-based architecture
for business process modeling. An application in their
model is decomposed to resources and entities, where
a service is dedicated for each resource. Authors of
[Tarm17] are tackling the limit of the traditional
method for analyzing and designing microservice
architectures by proposing a new one based on
holistic analysis and design (from identifying the
organizational identity and objectives to modeling the
microservice dependency graph) [Tarm17].
Containerized microservice [Venu17] is a typical
combination nowadays, due to the promising
container technology solutions like Docker.
Nevertheless, authors notice lack of performance
consideration in microservice building and identify
open issues and research guidelines. The Table 1
summaries the main advantages and limits of the
design–time function creation approaches.

Page 43

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

Table 1: Design-Time Function Creation Approaches Summary

Papers Application domain Advantages Limits
[Ader17] Software empirical research Evaluative Requirements Function execution time is

once fixed in design-time. So,
(in/de)creasing the max limit
requires redesigning the
function to meet the new time
limit.

[Hass17] E-commerce apps Scalability and agility
[Alpr15] Business process modeling Flexibility and agility
[Tarm17] Holistic analysis/design More details are dragged
[Venu17] Containerized microservices Lightweight virtualization

2.2. Monolithic Application Decomposition

In [Kecs16], authors offer an approach based on
ENTICE project’s Image synthesis technique. The
principle is to generate dynamic VM images and their
required software dependencies (without irrelevant
parts) [Kecs16]. Service Cutter [Gys16] uses 16
software’s coupling criteria extracted from academia
and industry practices. It uses domain models and
other artifacts as coupling information sources;
represents them as a graph; before estimating the
parts that may be split to independent loosely-coupled
services. Authors in [New15] give the outlines of
decomposing a monolithic application by

determining the different contexts that the monolith
encompasses, moving the source code selectively to
each context package, then choosing one of them to
begin the separation process on it (priority criteria
like: pace of change, security). In [Maz17], authors
present a formal microservice extraction model to
allow algorithmic recommendation of microservice
candidates in a refactoring scenario. This model is
similar to [Gys16] approach. It has two
transformations: construction, which converts the
monolith to graph and clustering, which extracts
microservices from graph. The major advantages and
limits of these approaches is summarized in Table 2.

Table 2: Monolithic Application Decomposition Approaches Summary

Paper Decomposition based on Advantages Limits
[Kecs16] VM images Facilitated by Cloud platforms  Requires manual

intervention.
 Decomposition may be

impracticable.
 Application altering may

be undesirable.

[Gys16] Design artifacts Closer to user goals isolation
[New15] Context packages Explicit domain isolation

[Maz17] Source code Directly executable result

2.3. Discussion

According to the above works summarized in Table
1 and Table 2, the decomposition may be
impracticable or leads to fixed-duration functions (do
not fit a frequently-changing limit environment).
Moreover, it may require manual intervention, or may
have a specific application domain. Hence, it seems
that the decomposition has significant limits and it is
not suitable to deal with long-duration Serveless
functions. In the following, we propose an approach

which does not imply any structure reforming (no
redesign consideration concerns). It is mainly based
on the migration principle in Multi-cloud computing.
The key idea is that each running serverless function
that reaches the maximum duration limit is repeatedly
transferred to another cloud platform where it is
carried on.

Page 44

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

3. The Proposed Migration Approach
In this section, we propose a distributed migration

approach based on Multi-Cloud Serverless
architecture. First, we describe briefly this
architecture that uses Docker containers at runtime
for executing user functions. This platform is the
distributed link that makes the different clouds find
each other. Second, we describe the used migration-
based technique which is accomplished in two
phases: monitoring and migration.

3.1. Distributed Serverless Architecture

Docker [Vohr16] is a container technique that
bundles the dependencies of a specific application in
a single deployable unit called Docker image that can
be executed at any node running Docker engine.
Docker Containers can be connected to combine their
resources for the software running within. Dockerfile
is a collection that embraces all commands of
configuration and downloads required API for the
application to be ready for execution. Then it builds
the container either from scratch or upon other base
image (usually, a base container consists of an
operating system and some very basic tools)
[Vohr16]. Each function in the system needs a finite
set of container images in order to be able to properly
work (its software dependencies).

We adopt our distributed Serverless architecture
shown in Figure 1 [Solt18]. This architecture is a Peer
to Peer (P2P) system that spans several Cloud
provider platforms (a Middleware for Multi Cloud).
In this paper, we show the role of two needed
components.

(a) Container Image Registry (CIR): a registry of
container images for different programming language
runtimes. This registry is extensible, so runtimes can
be added/ removed from it and each node in the Multi
Cloud system has its own CIR (for its functions)
[Solt18].

(b) The Function Manager (FM): among its roles, it
ensures the communication between different nodes
in the Multi Cloud Serverless system. In this paper,
we use it to migrate functions from node to another
along with its all dependencies, so, no worry about
their existence in destination [Solt18].

Figure1: Distributed Serverless Architecture[Solt18]

3.2. Migration-Based Thechnique

First, we define a variable in our system: MaxLimit.
It represents the maximum allowed time (in seconds)
for a function to be executed before it is scheduled for
migration (abruptly terminated in traditional
Serverless) and it is configurable by system
administrators switch to their needs (five minutes by
default).

The novel contribution is adding new specific
images and functions to the Container Image
Repository (CIR) and the Function Registry (FM)
respectively. The new added elements details are as
follows:

3.2.1. Function Monitor Image (FMI): It is the
runtime image for the monitoring task. We are
choosing Prometheus as implementation for it.
Prometheus [Prm1t18] is an open-source system
monitoring and alerting toolkit and it can be
configured with Docker [Prm2t18]. This image
has the interfacing API for monitor (see next
point 3.2.2) to use Prometheus. The Monitor API
Docker image is represented in Figure 2.

3.2.2. Monitor: It is a specific function that has as
role to count the consumed time during
execution, for each function in the local node
using FMI API and all functions that have ran
more than or equals MaxLimit are passed to FUS
for migration (see next point). The monitor is
periodically invoked to ensure continuous
function refresh (thirty second by default, but it is
configurable).

Page 45

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

Figure 2: Monitor API Docker Image

3.2.3. Function Urgent Scheduler
(FUS): this function is the scheduler that receives
the list of functions that have reached MaxLimit
(from monitor). It selects, for each one, a random
node and informs the selected node for the
function’s dependencies (names only). The node
responds back by asking for its missing images;
the set passed by FUS to its local FM. Finally,
the local FM migrates the function towards the
remote FM all along with its missing images
(delta images) and its current memory state.
Algorithm 1 describes how FUS works.

Algorithm 1

Input: List<function> long
Output: List<function, nodeID, deltaImages> migr
For each f in long:

 (1) fmid = Selects random node
 (2) sends(fname, dependenciesNames) to fmid
 (3) receives (deltaImages) from fmid
 (4) adds (f, fmid, deltaImages) to migr

End for;

(5) returns migr to local FM
(6) FM adds the complete deltaImages to migr
(7) FM sends each f to its target

Figure 3: Urgent Scheduler Algorithm

4. Case Study
In the aim of showing the actual contribution of our

approach and its usefulness, we consider an

application with at least one long-running function.
Our illustrating case study is a generic machine
learning application of three Java-based Serverless
functions built over the scientific platform called
ANTDROID [Hadr12].

4.1. System Description

ANTDROID [Hadr12] is a federated SaaS available
to scientists for sensing the activities of mobile users
for their own experiments. The scientist component of
the platform provides an interface allowing them to
connect external services to the platform to extract
and reuse dataset collected from their experiments’
participants (e.g., visualization, analysis) as shown in
Figure 4.

Figure 4: AntDroid Architecture [Hadr12]

This interface will be exploited by a special docker
image of our Serverless system (stored

in CIR) to build the AntDroid Connect Service or
ACS as shown in Figure 5.

Figure 5: ACS Docker Image

ACS image is now the dependency runtime for all
the application’s three functions (as they do not need

Page 46

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

more than usual Java runtime environment
functionality). The details of the functions as well as
their minimum estimated time before termination are

given in Table3. The three functions are executed
sequentially one after another switch to their order in
Table 3.

Table 3: Example of Functions Set

Function name Role Duration
Filter Accesses the scientist collected dataset to extract the subset of valuable data. 20 min
Learner Iterates the filtered data to acquire new knowledge (statistical indicators). 8 min
Viewer Shows the calculated results in graphical plots (like Pie plots). few seconds

4.2. Application of The Proposed Approach to
AntDroid

Since the dataset collection may be very large and
continuously fed by interactions (tens of gigabytes),
the two functions filter and learner are estimated to
be long, and hence, subjects for this paper procedure
to be applied upon. The filter function, hence, will be
migrated 3 times in the respective moments 5min,
10min and 15min after it starts. We show in the
following figures how does that scenario happen
(only once for filter for the sake of illustration). Table
4 discusses the three figures steps and meanings.

Figure 6: Migration Scenario (a)

Figure 7: Migration Scenario (b)

Figure 8: Migration Scenario (c)

Page 47

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

Table 4: Migration Scenario Details

Figure part Details

(a) Application starting point.

 As shown in Figure 6.

(1) The client calls the http link: fmid-url/filter.
(2) The FM selects the filter function and its dependency ACS image.
(3) The ACS is started and filter function now executes.

(b) After 5 min.

 As shown in Figure 7.

(1) The local timer notifies the FM (each 30 sec).
(2) The FM prepares to start the new monitoring cycle.
(3) The FMI image and monitor function are loaded to memory.
(4) monitor detects that filter reached its max limit. It notifies FM.

(c) Migration phase.

 As shown in Figure 8.

(1) FM prepares the FUS scheduler function.
(2) FUS is started within its container.
(3) FUS executes its algorithm, determines the migration destination and informs FM.
(4) FM migrates filter from Node1 to Node2.

From this presented illustration of our technique
where the filter function was (same for learner)
migrated as much as needed (3 times here) until its
termination, the developer concerns himself less
about time constraints and any factors affecting them
during design-time (like unpredictable overloading of
Serverless infrastructures, data volumes), focusing
more on functional requirements of his application.

The above case study shows clearly that our
proposed approach allows the execution of long
duration Serverless functions. We intend to consider
some key aspects to improve its efficiency. First,
during the function migration, the destination cloud
may not provide the same level of QoS (Quality of
Service) desired by the migrated function (although
all the dependencies are ensured) for many reasons,
e.g. the new host may be in a period of high charge
workloads. Another issue is the time necessary to
execute the algorithm of this paper added to the
required time to transfer the function state and its
dependencies. This time can differ from Cloud-pair
network links affected by parameters like geo-
locations, links’ bandwidth and size of transferred
functions and libraries. The random aspect of the
Algorithm1 will be studied as a more fair function
distribution between nodes. An evaluation of the
incurred latency of Algorithm1 will be conducted by
measuring the diverse parameters mentioned in this
paragraph, which gives more realistic dimension to
this architecture. The main tool for this evaluation
will be Semi-physical simulation which is essentially

the adoption of virtualization techniques to simulate a
big number of physical machines, while in reality
there are only a few of them.

5. Conclusion
In this paper, we have tackled the limit of the

Serverless principle: all functions should terminate
their execution in a short period (typically five
minutes). We have proposed a distributed migration
approach based on Multi-Cloud Serverless
architecture. This migration-based technique deals
with Serverless functions that run for a long duration.
Our technique consists of transferring a target
function that reaches its limit in term of execution
time, to another Cloud platform to be resumed there.
By repeatedly applying this step, a function – no
matter how long – finishes its task normally. This
algorithm is designed to be fast and simple in term of
scheduling decision, because its main goal is not
optimizing resource utilization, but to save long
functions from being cut off. We have illustrated the
use of the proposed approach through the case study
of a generic machine learning application built over
the scientific platform ANTDROID. In future, we
plan to investigate in the optimization of the
scheduler algorithm. Another interesting work may
concern considering more fair function distribution
between nodes instead of mere randomness-based
selection, all without losing the urgent aspect of the
algorithm.

Page 48

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

6. References
[Bald17] Ioana Baldini, Paul Castro, Kerry Chang,

Perry Cheng, Stephen Fink, Vatche Ishakian,
Nick Mitchell,Vinod Muthusamy, Rodric
Rabbah, Aleksander Slominski, Philippe
Suter. Serverless Computing: Current
Trends and Open Problems. Springer,
December,2017.
https://arxiv.org/pdf/1706.03178.pdf

[Kuh17] Jorn Kuhlenkamp and Markus Klems.
Costradamus: A Cost-Tracing System for
Cloud-based Software Services. Service-
Oriented Computing: 15th International
Conference, ICSOC 2017, Malaga, Spain,
November 13–16, 2017, pp.657-672.

[Sbar17] Peter Sbarski with Forewords by Patrick
Debois, Donald F. Ferguson. Serverless
Architectures on AWS. Manning Shelter
Island; 2017.

[Kum17] Praveen Kumar Sreeram. Azure Serverless
Computing Cookbook. Packt Publishing
Ltd;August,2017.
https://azure.microsoft.com/mediahandler/files/res
ourcefiles/ff388333-6cd0-4b47-
a33e3c3296a5141b/Azure_Serverless_Comp
uting_Cookbook. pdf

[Azr18]https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale, accessed in
5/23/2018.

[Stig18] Maddie Stigler. Beginning Serverless
Computing, Developing with Amazon Web
Services, Microsoft Azure and Google
Cloud, Apress; 2018.
https://www.apress.com/us/book/9781484230831

[Goo18] Google Cloud Functions documentation:
https://cloud.google.com/functions/quotas,
accessed in 5/23/2018.

[Fox17] Geoffrey C. Fox, Vatche Ishakian, Vinod
Muthusamy and Aleksander Slominski
(IBM). Report from workshop and panel on
the Status of Serverless Computing and
Function-as-a-Service (FaaS) in Industry and
Research. First International Workshop on
Serverless Computing (WoSC), June 5-8,
2017, Atlanta,GA,USA.

[Groz14] N. Grozev and R. Buyya, “Inter-Cloud
architectures and application brokering:
taxonomy and survey,” in Journal of
Software: Practice and Experience, vol. 44,
no. 3, pp. 369–390, Mars. 2014.

[Ader17] Aderaldo C., Mendonça N., Pahl C.,
Jamshidi P., Benchmark requirements for
microservices architecture research. In
Proceedings of the 1st International
Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based
Software Engineering, ECASE, May 2017,
Buenos Aires, Argentina, pp. 8-13.

[Hass17] Wilhelm Hasselbring and Guido Steinacker.
Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce. 2017
IEEE International Conference on Software
Architecture Workshops (ICSAW), 5-7 April
2017, Gothenburg, Sweden.

[Alpr15] Sascha Alpers and Christoph Becker.
Microservice Based Tool Support for Business
Process Modelling. Enterprise Distributed Object
Computing Workshop (EDOCW), IEEE 19th
International, Sept. 2015.

[Tarm17]Ahmad Tarmizi Abdul Ghani, Mohd.
Shanudin Zakaria. A Method for Analyzing
and Designing Microservice Holistically.
(IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 8,
No. 12, 2017.

[Venu17]M.V.L.N.Venugopal. Containerized
Microservices architecture. International
Journal Of Engineering And Computer
Science ISSN:2319-7242 Vol.6(11), pp.
23199-23208, November 2017.

[Kecs16] Kecskemeti G., Marosi A., Kertesz A., The
ENTICE approach to decompose monolithic
services into microservices. In International
Conference on High Performance
Computing & Simulation (HPCS 2016), July
18-22, 2016, Innsbruck, Austria, pp. 591-
596.

[Gys16]Michael Gysel,Lukas Kölbener,
Wolfgang Giersche and Olaf Zimmermann.
Service Cutter: A Systematic Approach to
Service Decomposition. 5th European
Conference on Service-Oriented and Cloud

Page 49

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions ICAASE'2018

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

Computing (ESOCC), Sep 2016, Vienna,
Austria. Springer International Publishing,
LNCS-9846, pp.185-200, 2016.

[New15] Sam Newman. Building Microservices:
Designing Fine-Grained Systems. O'Reilly
Media, Feb. 2015 (chapter 5).

[Maz17] Genc Mazlami, Jurgen Cito, Philipp Leitner.
Extraction of Microservices from Monolithic
Software Architectures. The 24th IEEE
International Conference on Web Services
(ICWS 2017) June 25-30, 2017, Honolulu,
HI, USA

[Vohr16] Deepak Vohra. Pro Docker. Apress, ISBN-
13 (pbk): 978-1-4842-1829-7, ISBN-13
(electronic): 978-1-4842-1830-3; 2016.

[Solt18] Boubaker Soltani, Afifa Ghenaï and Nadia
Zeghib. Towards Distributed Containerized
Serverless Architecture in Multi Cloud
Environments. The 15th International
Conference on Mobile Systems and
Pervasive Computing (MobiSPC) Gran
Canaria, Spain, August 13-15, 2018.

[Prm1t18] Prometheus - Monitoring system & time
series database. https://prometheus.io/,
accessed 27/05/2018.

[Prm2t18]https://docs.docker.com/config/thirdparty/prome
theus/, accessed 27/05/2018.

[Hadr12] N. Haderer, R. Rouvoy and L. Seinturier,
“AntDroid: A Distributed Platform for Mobile
Sensing,” Research Report RR-7885, Inria, Feb.
2012.

Page 50

A Migration-Based Approach to Execute Long-Duration Multi- Cloud Serverless Functions

International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

