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ABSTRACT
Effective personalization of web experiences constitutes matching
the intent and interest of a user (or a group of users) to content
they consume, while optimizing a set of target engagement metrics.
With improved content consumption tracking via web analytics,
such personalization is not only feasible but also valuable for a
content publisher/owner with large volumes of content to choose
from. However the multitude of media (desktop, mobile, etc.) and the
diversity of users’ interests necessitates automation in this process
of constructing personalized content experiences. In this paper, we
propose a genetic algorithm based framework that chooses a subset
of content items (from a large collection) that are relevant to a given
user and determines their respective sizes and relative positions to
construct a layout that is optimized for a chosen engagement metric.
Comparisons against existing frameworks based on crowd-sourced
annotations indicate improved prominence of key content (based
on historic engagement metrics) by the proposed approach, while
improving the information diversity of the content presented in the
layout.

CCS CONCEPTS
• Human-centered computing→ Human computer interaction
(HCI); • Computing methodologies→ Learning to rank.

KEYWORDS
layout; content ranking; optimization

ACM Reference Format:
Balaji Vasan Srinivasan, Vishwa Vinay, and Niyati Chhaya. 2019. Content-
based Layout Optimization. In Joint Proceedings of the ACM IUI 2019
Workshops, Los Angeles, USA, March 20, 2019. , 8 pages.

1 INTRODUCTION
With the evolution of digital technology, content is increasingly be-
ing consumed in a variety of environments ranging from desktops to
mobiles to wearable devices. An enterprise with an online presence
would like to engage with its customers across these channels. To
do so, it would need to create engaging content and experiences
appropriate for each channel, and this can be a non-trivial task. An
engaging experience requires relevant, non-redundant and diverse
information [26]. Once the content is available, it needs to be trans-
formed and delivered based on the mode of consumption. Every
enterprise would want to optimize certain commercial metrics via
its digital experiences while maintaining a high engagement level
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with the target audience. The commercial metrics vary with the kind
of enterprise, e.g. number of subscription sign-ups triggered from
the experience for a media house, number of orders for a retailer,
etc.

Currently, an enterprise employs a team of web designers and
developers who put together an experience from a repository of
content in a manner suitable for consumption on a chosen device
by a user segment [21]. The designer/developer starts with a target
metric (e.g. orders, signups) to be optimized and short-lists content
items that have historically performed well on that metric. The set
of content items are then laid out into an experience appropriate
for the corresponding medium - for e.g., mobile layouts may be
narrower with popular content items placed at the top, while desktop
layouts can accommodate more items with high user interest areas
reserved for the popular items. This allocation of content items
to locations in the experience is an iterative process - items that
gather more engagement from users may progressively be promoted
to more prominent positions. Similarly, extensive experimentation
(A/B testing) may be involved in identifying truly good quality
content rather than items that attract user attention by merely being
placed in attractive locations.

This manual process limits the extent of personalization achiev-
able by an enterprise given the sheer volume of available content
to choose from, the multitude of media for experience delivery and
the variety of target consumer preferences. The effort involved mul-
tiplies when the experience is dynamic and changes in response to
user activity. This calls for a mechanism to automate the process of
rendering content in a given layout while optimizing a target metric
across various consumers or audience segments. Such a mechanism
can both provide assistance to content developers and designers,
as well as aid personalized experience delivery at scale by quickly
putting together renditions for varied target audience settings.

We consider the problem of automatically constructing layouts of
content items (also referred to as fragments in the rest of the paper).
These fragments can be of different sizes (Figure 2) and we refer to
each size of the fragments as one of its variants. The target is a home
page like experience similar to Figure 1 which displays summaries
of these individual fragments that a user can click through for a
‘detailed information page’. We aim to personalize this experience
by automatically choosing a subset of the content from the reference
collection optimized for certain metrics and also choose the appropri-
ate size variant depending on the required emphasis for the selected
content. The proposed approach is a genetic algorithm-based frame-
work [14] where the fitness function captures various factors that
contribute to the engagement on a given layout - prominence of pop-
ular items, relevance to the target user and diversity of the displayed
content. We concentrate on rectangular grid-like layouts - which
are common in several home page templates. The algorithm starts
with a metric that we choose to maximize, a reference collection
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of fragments (and their variants) and the target layout configuration
(such as the size), and proceeds to select and lay out the appropriate
variants of the content on the grid.

Figure 1: A sample home page layout for desktop, mobile and
tablets. As would be expected, the layout, emphasis and choice
of fragments changes from the desktop to mobile versions.

2 RELATED WORK
In this section, we provide an overview of papers addressing prob-
lems similar to the one described here.

Layout optimization is the process of finding a good layout ef-
ficiently and attempts to find techniques that create well serving
layouts for different purposes. Gonzalez et al. [15] explored the prob-
lem of optimizing the content in a newspaper layout using simulated
annealing. Barbrand [4] extended this work using a genetic algo-
rithm framework. Duarte et al. [11] use a tree-map based structure to
layout images efficiently. However, all these works focus on reducing
the gaps/white-spaces in between the fragments and do not account
for the content that is being laid out. Often the layouts are dictated
by the historic performances and the information presented in the
fragments. In our approach, we use a genetic algorithm framework to
account for these content factors along with the engagement metrics
to optimize the layout distribution.

Kumar et al. [19] create web pages from sample templates by
identifying 1 : 1 mappings between layout elements. Srinivasan
et al. [27] extend this and propose ESCORT that maps important
content to important parts of the layout based on a predefined notion
of the ‘criticality’ of content items. However, the importance of a
fragment is often determined by multiple factors and the approach in
[27] cannot scale for compound importance functions. Our approach
allows for such scaling across multiple content related characteristics
as components of a composite ‘fitness function’. We use ESCORT
as one of our baselines and show improvement with our framework
in both information diversity and prominence of key fragments.

Bin packing [3, 9] is a class of algorithms for the assignment of
pre-selected items to locations. The underlying optimization problem
starts with a set of rectangles (or any other shape) and finds the
optimal way of ‘packing’ them into specified locations, i.e., ‘bins’.
Bin packing has been used for various applications including supply

chain management [12], scheduling problems [22], and video-on-
demand applications [31].

Bin packing can be particularly well-suited for grid layouts, due
to parallels between the bins and the cells in the grid layouts. In our
proposed approach, we utilize the First Fit Decreasing approximation
of the bin packing algorithm [17] to define a decoder (defined later)
and pack an ordered list of fragments into a grid. As we show later,
such an approach aids in placing prominent fragments in prominent
locations of the grid. Similar to methods in the earlier section, bin
packing requires that each fragment be associated with a single
weight that dictates its priority. Our method not only removes the
need for such a singular characterization of the content, but also
allows for considering interactions between fragments.

Another closely related problem is that of Search Engine Re-
sult Page (SERP) composition [29] in the context of Aggregated
Search [18], where results from multiple verticals are blended into a
single experience. The verticals are for example web, images, videos
and local. Typically, one of the verticals (e.g. the web) is nominated
as primary and results from the other verticals are introduced at
pre-selected slots. The pre-selected slots along the primary vertical
defines the layout, and results from each source need to be mapped
to the slots/bins. There have been studies on what constitutes a good
SERP [2, 28], with factors including the specific verticals that the
results are from, and coherence across the verticals. Arguello [1]
provides a comprehensive overview, including the related problem
of evaluating a given SERP layout. The scenario described in the
current paper shares many of the same concerns as above for two
dimensional layouts [8] and we also consider the impact of inter-
fragment diversity, as well as allowing for individual fragments to
not be of uniform size.

Closest in spirit to the current paper are the works described in
[23–25]. The application scenario considered in these papers are
interactivity assistance in the construction of graphic designs. With
input from design principles, factors capturing design quality can
be encapsulated into an energy function that can then be optimized.
The fitness function commonly used within a genetic algorithm
setup serves a similar purpose. In the current paper, we have not
considered aesthetics - focusing instead on individual item properties
(relevance) and inter-item considerations (diversity). An advantage
of the framework described here is however that it is easily extensible
by extending the fitness function to include other factors.

While layout optimization and content distribution in a 2-d space
have been independently explored, to the best of our knowledge,
automatic laying-out of content with simultaneous optimization of
engagement and content metrics across mediums is less studied and
is our primary contribution.

3 GENETIC ALGORITHM FRAMEWORK
In this section, we describe the problem in detail so as to motivate
the use of genetic algorithms as the solution approach. Revisiting the
problem definition, we have a set of candidate content items, each of
which is called a ‘fragment’. Each fragment is a representation of the
content to be used for the experience and a subset of these fragments
need to be chosen for the target experience. We assume that each
fragment includes some content - e.g. text in the form of a title or
description, or images and other visual content. Other metadata,
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Figure 2: Content Element/Fragment and its different variants
considered in our analysis. Due to the proprietary nature of the
underlying content used for the layout, we use an ‘indicative’
image and text here. However, all our experiments included the
actual content from a popular media platform.

such as the historical performance of the content in terms of user
engagement, may also be available. The fragments are considered
to have different variants - each of different size. Figure 2 shows
different variants of the fragments considered in our paper. Such
variants would typically be defined via a template used commonly
across several fragments. Layout optimization involves identifying a
subset of the provided fragments that make the layout, as well as the
position and relative sizes of the individual fragments. Note that we
take the fragments and their constituent content to be a given, and
optimize their assembly into a layout. Optimizing the aesthetics of
the layout is beyond the scope of our exploration.

The target layout is described in terms of its shape and size,
and here we focus on grid-shaped rectangular layouts defined by
the number of rows (NR) and columns (NC). Such a layout can
accommodate a maximum of L NR × NC fragments, each of unit
size. The set of displayed fragments might be fewer than L if larger-
sized fragments have been chosen - for example, popular/highly
relevant content might deserve more screen area. The algorithm also
simultaneously optimizes an engagement metric like the expected
number of clicks on fragments.

Fragments that are likely to make larger contributions to the
engagement are preferred in regions of the screen that attract most at-
tention. Existing literature (e.g. [5]) provides guidance about where
these might be. A strategy to maximize engagement would be to
place the content items with most historical engagement in the lo-
cations corresponding to high user attention. While intuitive, this
greedy strategy has the downside that it does not account for inter-
content characteristics and might result in a situation where two
very similar fragments are placed next to each other - this can be
undesirable from a user’s perspective.

The optimization problem is therefore complicated by having
to account for interactions among content items. Two layouts with
the same set of fragments that are different only in terms of the
positions of the fragments might have very different characteristics
from the users’ perspective due to the difference in the user attention
to different fragments [5].

A concrete illustration of the scenario considered in the current
paper is the creation of genre/category level pages at a site like
IMDB. In fact, the experiments described in Section 4 address this
setting. Given a genre (e.g. ‘action’, ‘comedy’, ‘drama’), we could
utilize a historical metric (e.g. revenue or ratings) to pick movies in
order of their popularity. Given constraints on the number of items
that could be included (due to the size of the layout), we might
decide to display the top-ℒ most popular movies. If the list is to
be personalized, the global popularity needs to be balanced against
relevance to the individual. We might decide to allow some of the
movies to be present in tiles of a larger size - e.g. allow the top-ranked
movie to take up 2 slots in the grid layout and therefore drop the
bottom ranked item from the shortlist. Also, to ensure diversity in the
displayed fragments, an item of lower popularity might be promoted
into the layout. Therefore, the layout construction algorithm has to
not only choose the set of items, but also their individual positions
and sizes, to ensure that the resulting experience is engaging.

The discontinuous nature of the perceived quality of the layout
with respect to these configurations, coupled with the large search
space means that this problem does not lend itself easily to tradi-
tional optimization approaches. To account for this, we propose
a genetic algorithm framework. Genetic algorithms [14, 30] are a
class of computational approaches that are typically concerned with
problems that are non-linear, and where it is not possible to treat
each parameter as an independent variable that can be solved in
isolation from the other variables. The proposed genetic algorith-
mic framework simultaneously optimizes the performance metrics
of experience fragments along with content-affinities and diversity
properties.

This framework begins with the assignment of a Chromosome -
which is a representation of the layout that is being optimized. We
initialize this to a vector of size of ℒ and with each entry being an
identifier to a unique fragment. The vector is initialized to the set of
fragments in descending order of their respective metrics. Since the
distribution is pivoted on this initialization, we ensure that the initial
distribution has the best (engagement) metric combination.

Central to the genetic algorithm framework is the notion of a
fitness function, which takes the current configuration, represented
by the Chromosome, as input and outputs a number indicating the
quality of the layout that would result from displaying this set of
fragments laid out as controlled by the decoder (described in detail



IUI Workshops’19, March 20, 2019, Los Angeles, USA Balaji Vasan Srinivasan, Vishwa Vinay, and Niyati Chhaya

later). Apart from the metric tied to each fragment, the fitness func-
tion also accounts for the inter-content affinities, expected relevance
to the user, overall content diversity, and coverage of all possible
aspects and concepts across the content in the input fragment set,
motivated by their use in information retrieval scenarios [10]. The
resulting fitness value gives an objective measure of the goodness of
the distribution of fragments in the layout across the content param-
eters and the target metric. The fitness function is thus a mechanism
within the framework that allows easy extensibility. Note that the
different factors affecting the fitness may not agree with each other.
For example, the best collection of fragments as per the individual
metrics might have very low inter-fragment diversity - and hence
may not be the optimal experience for the consumer (due to redun-
dant information). Our fitness function addresses this by including
a variety of factors to determine the ‘goodness’ of the collection of
fragments.

The decoder takes an ordered list of fragments along with the
layout configurations to distribute the fragments currently within the
Chromosome on to the layout. To ensure that a sufficient variety of
configurations of fragments is explored, a mutation operation needs
to be defined that makes alterations to the existing Chromosome. If
a particular mutation leads to an increase in the fitness value, the
corresponding change is retained. In the proposed framework, the
purpose of mutation is 2-fold. Firstly, it aids in the exploration of
different permutations of the input set of fragments thus evolving
the chromosome/layout to a distribution that has better overall fit-
ness. Additionally, a factor is used to insert fragments that would
have otherwise not featured in the distribution. This not only al-
lows newer fragments with no performance metrics to feature in
the distribution but can also introduce better content diversity. After
exploring alternative configurations in this manner across many iter-
ations/generations, the Chromosome with the highest fitness can be
identified, and this is taken to be the optimized layout of the content.

Repeating this sequence of steps for every target user (or user
segment) for the respective metric (based on the consumption en-
vironment) yields the personalized experience for every possible
combination. Algorithm 1 outlines the different steps in the pro-
posed framework. In the subsequent subsections, we elaborate the
key components of our framework: decoder, fitness computation and
mutation.

3.1 Decoder
The Chromosome corresponds to a set of input candidate fragments
that need to be allocated a location in the layout and is an ordered set
of fragments. The decoder controls how the linear ordered collection
of fragments is arranged according to the target layout dimensions
provided by the designer. It takes the fragments (each of a currently
chosen size) in the order defined by the Chromosome along with the
layout dimensions and outputs the arranged layout. This allocation
can be simple (e.g. via a reverse raster scan), but should be able to
handle the fact that fragments potentially are of differing sizes. In this
paper, we use a decoder inspired by the bin packing algorithm[20]
which is a variant of the knapsack algorithm in 2−dimensions. We
extend the complete bounding box-based strategy using the First Fit
Decreasing (FFD) algorithm[16].

Algorithm 1: Genetic Algorithm Framework for content-based
layout optimization

Input: ℱ : Set of all fragments,ℳ: metric to optimize, ℒ:
Layout size to optimize

Output: Decoded Layout
Layout ← Chromosomeℱ ,ℳ,ℒ;
Layout. f itness← computeFitnessLayout;
curGeneration← 0;
repeat

tempLayout ← mutateLayout;
tempLayout. f itness← computeFitnesstempLayout;
if (tempLayout.fitness-Layout.fitness)>0 OR
RandomNumber < δ then

Layout ← tempLayout;
end
curGeneration ;

until curGeneration > totalGeneration;
return decodeLayout

The FFD algorithm starts with a ranked set of fragments (as
defined by the Chromosome) and iteratively creates an updated
layout (bin dimension) and an updated fragment list (of all fragment
variants that have not been placed on the layout yet) till the point all
locations on the layout have been filled. We leverage the study in
[5] to assign an exponentially-decaying weight/importance to every
bin in the layout based on their 2-dimensional location. The bins are
then filled in the order of the assigned importance - thus ensuring
that important parts of the layout are filled before the other parts.
Utilizing the ranking from the Chromosome ensures achieving the
target layout with the key fragments in key locations. Figure 3 shows
a schematic diagram for the algorithm.

It is easy to see that the decoding is a highly discontinuous op-
eration. Making a minor alteration in the Chromosome - e.g. via
a mutation - potentially alters the fitness of the resulting layout in
non-trivial ways. The proposed genetic algorithm framework ad-
dresses this by decoupling the optimization and fitness computation.
Running the framework across several generations explores various
layout against the fitness function to achieve a stable optimized lay-
out. The proposed framework is generic since it allows the fitness
function to be a black box, and ensures that the resulting layout puts
the key fragments in key locations.

3.2 Fitness function
Given a spatial arrangement of fragments (i.e., output of the De-
coder), the fitness function produces a numeric value indicating
how desirable the given configuration is. In that sense, the fitness
computation needs to encapsulate factors that affect the quality of a
particular layout. We use [10] to help design the components of this
fitness function. In [10], set in the Information Retrieval domain, an
initial set of results for a user’s query are available. Based on this
evidence, we may decide to add new terms to the query that were
not provided explicitly by the user (‘Query Expansion’), expecting
that these will likely return more relevant results. The risk of doing
so is that the added terms do not match the user’s intent, thereby
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Figure 3: Sequence of steps in the Bin Packing based decoder

leading to a drop in quality of results. The author uses ‘coverage’ and
‘balance’ across topics/aspects, and trades these off against relevance.
We follow a similar template. Our proposed algorithm includes the
following factors in our fitness computation to account for different
aspects of the layout.

(1) Metric-contribution indicates the total expected value of the
engagement metric for this chosen set of fragments displayed
in the given arrangement. Since we would like to pick a layout
that maximizes the metric value, we would choose to place
fragments that have historically seen larger values of the met-
ric at locations that are most likely to receive user attention.
We compute a weighted average of individual fragment met-
rics, where the weight is based on its current assigned location
in the 2-dimensional and represents user attention based on
an exponential decay function as in the user study in [5]:

exp−
i2 j2

NR
2 NC

2 * M (1)

for an item that the Decoder is currently placing at row i and
column j on the grid, and M is the value of the engagement
metric for this item.

(2) While the metric captures historical performance across a set
of users, it is important to ensure that all the fragments that
are part of the current display include those that are relevant
to the current user. The fitness function therefore includes the
fragment’s relevance to ensure that utility of the fragments to
the target user. This component helps achieve personalization
since the computed fitness is now dependent on a particular
user. When the fragments have textual content associated
with them, relevance can be computed by standard measures
(e.g. tf-idf) with respect to the user profile - based on historic
preferences.

(3) The candidate set of fragments span topical concepts (ex-
tracted from the text in the title and description). The fitness
computation attempts to ensure that the chosen set in the lay-
out (represented by L) is representative of the larger candidate
set (represented by C) in the sense that:

(a) the important topic/concepts in the candidates are present
in the chosen set, this is termed as coverage. We define

coverage as
i∈L a∈A xia
‖L‖‖A‖

(2)

where xia is the weight of concept attribute a to item i
(b) where possible, all topics/concepts in the full set of candi-

dates are represented in the final chosen set, this is termed
as balance. We define balance as

a∈A

(︃
i∈C xia
‖C‖

−
i∈L xia
‖L‖

)︃
(3)

We extract the key entities in the fragment (from the title and
description) as its concepts. The combination of coverage
and balance over the attributes yields a diverse selection of
fragments that covers information about different aspects of
the initial set. Increasing diversity is a well known strategy
that reduces the risk of producing a layout with no relevant
content for a given user [7].

We compute the fitness as a weighted-sum of these factors to get
an estimated utility/quality of the layout. Note that our framework
is generic - other factors that we expect to contribute to the quality
of a particular layout can be readily incorporated, with the rest of
the mechanism within the framework designed to optimize the net
fitness.

3.3 Mutation
Genetic algorithms operate by constructing multiple layout config-
urations, and evaluating each via the fitness function. Mutation is
the process of taking the current configuration (represented by the
Chromosome) and producing an altered version of it. This step is
used to explore alternate configurations to hopefully identify a more
optimal (as per the fitness function) layout. In the proposed approach,
the mutation component includes one of the following 3 steps:

(1) With probability α1, choose fragment in the top 20-percentile
of the fragments ordered by their individual metrics, and
select its variants whose Mcost > Σ, where M is the metric
value as before, cost is its size. The current nominated size
of the fragment is taken to be the largest one that satisfies
the above constraint. This ensures that apart from choosing
a good set of fragments and their corresponding positions,
promising fragments are given a larger share of the layout
(screen) real estate.
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(2) With probability α2, exchange the position of two chosen frag-
ments in the chromosome. Via the Decoder, the fragment’s
location in the final displayed layout will now be different.
This alternative, aids in exploring different permutations of
fragments in the same Chromosome, i.e., alternate locations
for each fragment.

(3) With probability α3, swap one of the fragments in the chosen
set with a fragment that is in the larger candidate set but not
in the layout right now. This alters the set of fragments that
will be in the layout.

In our experiments, we empirically set α1 0.3, α2 0.6, α3 0.1.
Exploring different sets of fragments, as well as different configu-
rations, attempts to ensure that the final chosen layout is of high
quality. The key idea in the genetic algorithmic framework is to run
the mutations over a large number of iterations (generations) and
this will yield a stable generation that has an optimal fitness across
the various parameters of evaluation.

4 EVALUATION
To demonstrate how the algorithm works, we used the set of frag-
ments based on the top 1000 movies in IMDB for 2006 to 2016
from Kaggle1. In our dataset, every movie’s data included its title, a
short description about the movie, its genre, its IMDB Rating, IMDB
User Votes along with its revenue. We used the movie revenue as a
surrogate for its historic performance. The movie description and
genre were used to determine the content level features in our fitness
function. For our experiments, we defined variants of the fragment
with sizes (height-by-width) - 2x2, 2x1, 1x2 and 1x1 as shown in
Figure 2. Since the proposed algorithm does not modify the internals
of the fragments (or its variants), we assume that the aesthetics of
the fragments are not modified with these variants.

We constructed different layouts based on the movies belonging
to the major genres (Action, Adventure, Comedy, Crime, Drama,
Mystery, Romance, Thriller) in the dataset. Layouts of sizes suitable
to a mobile environment (e.g. 4x3, 5x3) were defined with shorter
columns and the desktop grids were defined with more columns.
Every grid is then populated by each of the candidate methods. We
extend the ESCORT approach in [27] as our primary baseline for
comparisons. ESCORT defines a criticality/ranking for different
‘slots’ in the layout and we use [5] to define this in our setup. We
use the Maximum-Marginal Relevance based diversified ranking
[6] to define the criticality of the fragments. Additionally, we also
include the version of the proposed Genetic Algorithm (GA) where
our fitness function was based on the target metrics and relevance
to the user (without the diversity considerations). Finally, we also
included a random layout rendition - thus resulting in 4 distinct
layouting methods.

To evaluate the ‘goodness’ of the proposed layout, we conducted
two different experiments on Amazon Mechanical Turk2. Annota-
tors were limited to those who have over 100 completed hits with
95% acceptance rates. Additionally, since the dataset is based on
Hollywood movies, we limited the annotators’ geo to US only.

As mentioned previously, the layout optimization algorithm for
personalized delivery optimizes a target metric. This calls for the

1https://www.kaggle.com/PromptCloudHQ/imdb-data
2https://www.mturk.com/

fragments that have performed well on the target metric to be placed
in prominent locations. In our approach, a bin packing based decoder
together with the fitness ranking ensures that the good-performing
fragments are placed in key locations. To evaluate this, our first
survey is aimed at capturing the perceived importance of the various
fragments at different locations in the layout. Every layout produced
by each of the methods were annotated by 5 distinct users - each
user annotating the prominence of 4 fragments at different locations
in the layout generated by all 4 candidate methods - resulting in 16
annotations for this category per annotator.

However, as discussed before, optimizing just based on good-
performing fragments can lead to redundant layouts. Our approach
avoids this by having additional content-based metrics in our fitness
function to introduce diversity of the information in the fragments.
To evaluate this, our second survey asked annotators to rate the ‘infor-
mation diversity’ of layouts from two different algorithms. Repeating
this across different combinations yields a preference ranking of dif-
ferent algorithms in terms of the diversity that they afford. Every
method combination is annotated by 5 different annotators, with
every annotator annotating all 6 possible combinations.

Thus every annotator recorded 22 total annotations. We paid 25
cents per worker, and the work took 4 minutes on an average. Initial-
izing the different layouts based on one of the 8 genres mentioned
above allows for debiasing any content-induced biases in the annota-
tion. To avoid any grid-size induced bias, we expose every annotator
to a single grid-size only. Finally, ordering of the methods in the two
tasks were shuffled to safeguard against positional/order induced
biases.

4.1 Prominence of key fragments
The first experiment measures the perceived importance of various
fragments at different locations in a layout. Figure 4 shows a screen
shot of the performed evaluation where we asked the annotators to
annotate the perceived importance of a highlighted part of the layout
on a scale of 0 − 100.

For every layout, we calculate the Pearson’s correlation ρ between
the human-annotated perceived importance of the fragment in the
layout and its actual metric. Table 1 shows the correlation between
the perceived importance and the metric value for the proposed
method (GA+diversity) against the various approaches including the
one in [27] - ESCORT.

The average correlation indicate that the 3 approaches (ESCORT,
GA-Relevance, GA-Diversity) exhibit a good correlation between
the perceived importance of the fragments against its metrics un-
like the Random layout (as would be expected). Further, note that
both the frameworks based on the proposed approach (GA and
GA+diversity) beat ESCORT [27] in terms of the overall correlation
- indicating that the proposed approach does well in placing key
fragments in prominent locations. Between GA and GA+Diversity,
the framework without diversity performs better since it specifically
optimizes the metric (prominence).

4.2 Content Diversity in the layout
The additional factors in our fitness function further ensures a diverse
set of fragments being shown in the layout to avoid content redun-
dancy. To measure this, we further asked the human annotators to

https://www.kaggle.com/PromptCloudHQ/imdb-data
https://www.mturk.com/
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ESCORT GA-Relevance GA-Diversity Rand
All Grids 0.3161 0.4297 0.3777 0.0565

Mobile Grids 0.3874 0.5014 0.4785 0.0468
Web Grids 0.2319 0.3451 0.2587 0.0679

Table 1: Pearson’s Correlation between ‘perceived importance’ of a movie fragment against its actual metric (Revenue) across multi-
ple layout settings.

Please answer the question below 
based on your impression about the layout

Avatar...

The Avengers...

The Dark Knight...

Jurassic World...

Finding Dory...

The Dark Knight Rises...

Please rate your perceived significance of the highlighted cell 
relative to the rest of the overall layout. i.e., how likely are you to 

click-through on the highlighted item given the others?

50

Next

Figure 4: Survey to get the perceived importance of a fragment
in the layout. Every annotator was asked to annotate the per-
ceived importance of the indicated fragment based on their lay-
out position. Table 1 shows the statistics around the ratings
from the annotators.

compare the content diversity between two layouts. Figure 5 shows
the corresponding human experiment.

Please answer the question below based on your
impression about the layout

Avatar... The
Avengers...

The Dark
Knight...

Jurassic World...

Finding Dory...

The Dark
Knight Rises...

Toy Story 3... The Hunger
Games... Frozen...

Please select
the layout
that is a
better

arrangement
of a more

representative
set of items 
i.e., which
layout are
you more

likely to have
a higher

engagement
with? 
<<Left

 Both have
same content

 Right>>

Avatar...

The
Avengers...

The Dark
Knight...

Jurassic World...

Finding Dory...

The Dark
Knight Rises...

Next

Figure 5: A screen shot of the survey to compare diversity of
layouts from various algorithms. Every annotator was asked to
compare the layouts from two algorithms in terms of informa-
tion diversity. Table 2 shows the statistics around the ratings
from the annotators across different pairs.

We compute the WMW statistic (extended from learning-to-rank
problems [13]) to measure the fraction of all possible layout pairs
where one layout is marked more diverse than the other by the
annotators. A lower WMW statistic indicates a relatively less diverse
layout against the compared approach. The statistics for various
configuration is summarized in Table 2. A value of WMW statistic
> 0.5 indicate that more than half of the total annotations favored
Method 1 over Method 2.

It can be seen that the proposed approach (GA+Diversity) con-
sistently outperforms the other approaches in terms of information
diversity. Across all the settings, approximately 60% of the annota-
tors rated our approach to be more diverse over ESCORT [27]. Note
that a random selection of fragments was rated to be more diverse
against all candidate approaches. This is expected since the variety
in the dataset yields such diversity. While diversity is preferrable,
this comes at the cost of prominence to key fragments as indicated
by Table 1.
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Method 1 GA-Diversity GA-Diversity GA-Relevance Random Random Random
Method 2 GA-Relevance ESCORT ESCORT GA-Diversity GA-Relevance ESCORT
All Grids 0.6825 0.6508 0.7143 0.6825 0.7143 0.7460

Mobile Grids 0.7941 0.7941 0.9412 0.5588 0.6765 0.7059
Web Grids 0.5517 0.5272 0.5517 0.8276 0.7586 0.7931

Table 2: WMW Statistic between pairs of layouts as annotated by annotators towards diversity computation. Every cell indicates the
WMW statistic (fraction of annotators rating the Method 1 to produce more diverse layout than the Method 2.

Tables 1 and 2 establish that the proposed approach produces lay-
outs with diverse information without compromising on the promi-
nence for key fragments.

5 CONCLUSION
We have presented an algorithm to automatically layout a set of
fragments across different layouts by simultaneously optimizing
for different metrics and content factors. Human annotations of the
resulting distribution indicate superior performance of the proposed
approach over existing baselines. Future work includes further qual-
itative experiments to extract aspects of layouts that govern users’
engagement with them. Once these have been identified, these factors
would need to be incorporated into the layout generation algorithm.
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