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ABSTRACT
Languages are best learned in immersive environments with rich
feedback. This is specially true for signed languages due to their
visual and poly-componential nature. Computer Aided Language
Learning (CALL) solutions successfully incorporate feedback for
spoken languages, but no such solution exists for signed languages.
Current Sign Language Recognition (SLR) systems are not inter-
pretable and hence not applicable to provide feedback to learners. In
this work, we propose a modular and explainable machine learning
system that is able to provide fine-grained feedback on location,
movement and hand-shape to learners of ASL. In addition, we also
propose a waterfall architecture for combining the sub-modules to
prevent cognitive overload for learners and to reduce computation
time for feedback. The system has an overall test accuracy of 87.9 %
on real-world data consisting of 25 signs with 3 repetitions each
from 100 learners.
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1 INTRODUCTION
Signed languages are natural mediums of communication for the
estimated 466 million deaf or hard of hearing people worldwide [16].
Families and friends of the deaf can also benefit from being able
to sign. The Modern Language Association [2] reports that the
enrollment in American Sign Language (ASL) courses in the U.S.
has increased nearly 6,000 percent since 1990 which shows that
interest to acquire sign languages is increasing. However, the lack
of resources for self-paced learning makes it difficult to acquire,
specially outside of the traditional classroom setting [26].

The ideal environment for language learning is immersion with
rich feedback [27] and this is specially true for sign languages [9].
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Extended studies have shown that providing item-based feedback in
CALL systems is very important [35]. Towards this goal, extensive
language learning softwares for spoken languages such as Rosetta
Stone or Duolingo support some form of assessments and automatic
feedback [31]. Although, there are numerous instructive books [23],
video tutorials or smartphone applications for learning popular
sign languages, there hasn’t yet been any work towards providing
automatic feedback as seen in Table 1. We conducted a survey [13]
of 52 first-time ASL users (29M, 21F) in 2018 and 96.2 % said that
reasonable feedback is important but lacking in solutions for sign
language learning (Table 2).

Table 1: Some ASL learning applications for smartphones.

Application Can Increase Vocab Feedback
ASL Coach No None
The ASL App No None

ASL Fingerspelling No None
Marlee Signs Yes None

SL for Beginners No None
WeSign No None

Studies show that elaborated feedback such as providing mean-
ingful explanations and examples produce larger effect on learning
outcomes than just feedback regarding the correctness [35]. The
simplest feedback that can be given to a learner is whether their
execution of a particular sign was correct. State-of-the-art SLR and
activity recognition systems can be easily trained to accomplish
this. However, to truly help a learner identify mistakes and learn
from them, the feedback and explanations generated must be more
fine-grained.

The various ways in which a signer can make mistakes during
the execution of a sign can be directly linked to howminimum pairs
are formed in the phonetics of that language. The work of Stokoe
postulates that the manual portion of an ASL sign is composed of
1) location, 2) movement and 3) hand-shape and orientation [30]. A
black box recognition system cannot provide this level of feedback,
thus there is the need for an explainable AI system because feedback
from the system is analogous to explanations for its final decision.
Non-manual markers such as facial expressions and body gaits
also change the meaning of signs to some extent but they are less
important for beginner level language acquisition, so these will be
considered for future work.

Studies have also shown that the effect of feedback is highest
if provided immediately [35], thus feedback systems should be
real-time. The requirement for immediate feedback also restricts
the usage of complicated learning algorithms that require heavy
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Figure 1: System Model for Feedback.

computing [6] and extensive training. The usability and usefulness
of applications is enhanced if learning is self-paced, learners are
allowed to use their own devices, and the learning vocabulary can
be easily extended. However, current solutions for SLR require re-
training to support unseen words and large datasets initially. To
solve these challenges, we designed Learn2Sign(L2S), a smartphone
application that utilizes explainable AI to provide fine-grained feed-
back on location, movement, orientation and hand-shape for ASL
learners. L2S is built using a waterfall combination of three non-
parametric models as seen in Figure1 to ensure extendibility to new
vocabulary. Learners can use L2S with any smartphone or com-
puter with a front-facing camera. L2S utilizes a bone localization
technique proposed by [17] for movement and location based feed-
back and a light-weight pre-trained Convolutional Neural Network
(CNN) as a feature extractor for hand-shape feedback.

The methodology and evaluations are provided in Sections 3
and 4. As part of the work, we collected video data from 100 users
executing 25 ASL signs three times each. The videos were recorded
by L2S users in real-world settings without restrictions on device-
type, lighting conditions, distance to the camera or recording pose
(sitting or standing up). This was to ensure generalization to real-
world conditions, however, this makes the dataset more challenging.
More details about the resulting dataset of about 7500 instances
can be found in [13].

2 RELATEDWORK
There have been many works on providing meaningful feedback for
spoken language learners [8, 21, 22]. On the practical side, Rosetta
Stone provides both waveform and spectrograph feedback for pro-
nunciation mistakes by comparing acoustic waves of a learner to
that of a native speaker [31]. There has also been some recent work

Table 2: Survey Results from 52 Users of the Application.

Category Response
Importance
of Feedback Yes: 96.2% No: 3.8%

Movement
Feedback

Correctness: 9.6%
Colored Bones: 1.9%
Sentence: 15.4%

Correctness+Sentence: 9.6%
All: 65.3

Handshape
Feedback

Circle around handshape: 63.5%
Actual handshape: 36.5%

Self-Assessment
Not helpful: 1.9%
Somewhat: 5.8%

Very helpful: 93.3%

Expandability
Not helpful: 5.8%
Somewhat: 7.7%

Very helpful: 86.5%

on design principles for using Automatic Speech Recognition (ASR)
techniques to provide feedback for language learners [36]. Sign
Language Recognition (SLR) is a research field that closely mirrors
ASR and can potentially be utilized by systems for sign language
learning. However, to the best of our knowledge, no such system
exists. This can be explained by the inherent difficulties in SLR as
well as the lack of detailed studies on design principles for such
systems. In this work, we propose some design principles and an
explainable smart system to meet this goal.

Continuously translating a video recording of a signed language
to a spoken language is a very challenging problem and has been
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(a) TIGER mostly in bucket
1 for left-hand.

(b) DECIDE in buckets 3 and
6 for right-hand.

Figure 2: Automatic bucketing for Location Identification
for varying distances from camera. Left Wrist-Yellow, Right
Wrist-Red, Eyes - White, Shoulders-Green.

tackled recently by various researchers with some success [6]. For
the purposes of this application, such complex measures are not
desirable, as they mandate extensive datasets for training and large
models for translation which decreases their usability. Isolated
Sign Language Recognition has the goal of classifying various sign
tokens into classes that represent some spoken language words [11,
12, 18, 29]. Some researchers have utilized videos [14] while some
others have attempted to use wearable sensors [18, 19] with varying
performances. In this work, we utilize the insights and advances
from such systems to help a new learner acquire the sign language
words. To our knowledge, this work is the first attempt at such a
practical and much needed application.

For this work, we require an estimation of human pose, specifi-
cally the estimates on the location of various joints throughout a
video, known as keypoints. There have been several works towards
this goal [3–5, 25, 32, 33]. Some of these works first detect the key-
points in 2D and then attempt to ‘lift’ that set to 3D space while
others return the 2D coordinates of the various keypoints relative
to the image. In order to fulfill the requirement to use pervasive
cameras, we did not focus on the approaches that utilize depth
information such as Microsoft Kinect [20]. Thus, we utilized the
pose estimates from a Tensorflow JS implementation of a model
proposed by Papandreou et al. [17] which can run on devices with
or without GPUs (Graphical Processing Units).

3 METHODOLOGY
Stokoe proposed that a sign in ASL consists of three parts which
combine simultaneously: the tab (location of the sign), the dez (hand-
shape) and the sig (movement) [30]. Signs like ‘HEADACHE’ and
‘STOMACH ACHE’ that are similar in hand-shape and movement
may differ only by the signing location. Similarly, there will be
other minimal pairs of signs that differ only by the movement or
hand-shape. Following this understanding, L2S is composed of three
corresponding recognition and feedback modules.

3.1 User Interface
For initial data collection and for testing the UI, we developed an
android application called L2S. We preloaded the application with
25 tutorial videos from Signing Savvy corresponding to 25 ASL
signs [24]. The application has three main components: a) Learning
Module b) Practice Module, and c) Extension.

3.1.1 LearningModule. The learningmodule of the L2S application
is where all the tutorial videos are accessible. A learner selects an
ASL word/phrase to learn and can then view the tutorial videos.
The learner can pause, play, and repeat the tutorials as many times
as needed. In this module, the learner can also record executions of
their signs for self-assessment.

3.1.2 Practice Module. The practice module is designed to give au-
tomatic feedback to the learners. A learner selects a sign to practice
and sets up their device to record their execution. After this, L2S
determines if the learner performed the sign correctly. The result
is correct if the sign meets the thresholds for movement, location,
and hand-shape and a ‘correct’ feedback is given. If, the system
determines that the learner did not execute the sign correctly, an ap-
propriate feedback is provided as seen in Figure 1. Details about the
recognition and feedback mechanisms is discussed in Section 3.4.

3.1.3 Extension Module. To extend the supported vocabulary of
L2S, a learner can upload one or more tutorial videos from a source
of their choosing. The application processes them for usability
before they appear in the Learning Module as new tutorial sign(s).

3.2 Data Collection
We collected signing videos from 100 learners, for 25 ASL signs
with three repetitions each in real-world settings using L2S app.
Learners used their own devices, with no restrictions on lighting
conditions, distance to the camera or recording pose (sitting or
standing up). After reviewing a tutorial video, a learner was given
a 5 s setup time before recording a 3 s video using a front-facing
camera. Both the tutorial and the newly recorded video were then
displayed in the same screen for the user to accept or reject. This
self-assessment served not only as a review but it also helped prune
incorrect data due to device or timing errors as suggested by the
new learner survey in Table 2.

3.3 Preprocessing
Determining joint locations: Since, different devices record in
different resolutions, all videos for learning, practice or extension
are first converted to a 320*240 resolution. Then, PoseNet Javascript
API for single pose estimation [17] was used to compute the esti-
mated locations and confidence levels for the various keypoints as
seen in Table 3. Figure 2 shows the estimated eyes, shoulder and
wrist locations for the signs TIGER and DECIDE for all the frames
in one video.
Normalization: There is a difference in scale of the bodies relative
to the frame-size corresponding to the distance between the learner
and the camera. This scaling factor can negatively impact recog-
nition since the relative location, movement and hand-shape will
vary with distance. We perform min-max normalization and zero-
ing based on the distance between the average estimated locations
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Table 3: 4 out of 17 ‘keypoints’ for one frame in a video

Part Score x y
Left Shoulder 0.8325 180.0198 196.2646
Right Shoulder 0.78601 138.7879 195.5847
Left Wrist 0.6844 198.9818 223.4856
Right Wrist 0.1564 1.9084 211.0473

Figure 3: Feedback Sensitivity vs. Performance.

for the right and left shoulders throughout the video frame as sug-
gested by [15]. Normalization was found to be specially important
for correct movement recognition.

3.4 Recognition and Feedback
L2S is designed to give incremental feedback to learners for the
various modalities in sign language: a) Location b) Movement and
c) Hand-shape. The various models are arranged in a waterfall
architecture as seen in Figure 1. If the location of signing was not
correct, then immediate feedback is provided and the learner is
prompted to try again. Similarly, if the movement of the elbows or
the wrists for either hand was incorrect, the learner is prompted
to try again. Finally, if the shape and orientation of either of the
hands does not appear to be correct, a hand-shape based feedback
is provided. Consequently, the learner can move on to a practice
a new sign, only if all these modalities were sufficiently correct.
A waterfall architecture was chosen in the final application over
a linear weighted combination to make learning progressive and
to decrease the cognitive load on the learner due to the potential
of mistakes in multiple modalities. This architecture also helps
to reduce the time taken for recognition and feedback since the
models are stacked in an increasing order of execution time. Each
of the feedback screens shown to the user also has a link to the
tutorial video. Users can also manually tune the amount of feedback
by altering the value of ‘feedback sensitivity’ in the application
settings. Increasing this value alters the thresholds for each of the
sub-modules so that the overall rate of feedback is increased. This
involves a trade-off in performance which is summarized in Figure 3.

3.5 Location
To correctly and efficiently determine the location for signing, we
first assume the shoulders stay fairly stationary throughout the
execution of a sign. This is a fair assumption for ASL since there are
no minimal pairs exclusively associated with a signer’s shoulders.
Then we divide the video canvas into 6 different sub-sections called
buckets as seen in Figure 2. Then, as the learner executes any given
sign, the location of both the wrist joints is tracked for each bucket
resulting in a vector of length 6.

This same procedure is followed for the tutorials, and a cosine-
based comparison between is done between the two vectors. A
heuristic threshold that is determined during training is utilized
as a cut-off point. If the resulting cosine similarity is lower than a
threshold, some feedback is shown to the learner as seen in Figure 4.
For each hand, the user’s own video is replayed in Graphics Inter-
change Format (GIF) with a red highlight on the location section
that was incorrect and a green highlight on the section of the frame
where the sign should have been executed. A text feedback with
details and a link to the tutorial is also provided and the learner is
prompted to try again.

3.6 Movement
Determination of correct movement is perhaps the single most
important feedback we can provide to a learner. We compute a
segmental DTW distance between a learner and the tutorial us-
ing keypoints for the wrists, elbows and shoulders as suggested
in [1]. Normalization as discussed in Section 3.3 was found to be
very important. Experimental results showed that segmental DTW
outperformed DTW or Global Alignment Kernel (GAK).

The dataset had a wide variation in the number of frames per
video. It was found that this affected the distance scores adversely.
Thus, as an additional step of preprocessing, the video with the
higher number of frames was down-sampled before comparison and
the segmental DTW is utilized to find the best sub-sample matching.
Thresholds for the signs were determined experimentally using 10
training videos for each sign. If segmental DTW distance between
a learner’s recording and a tutorial was higher than the threshold
for each arm section, then a movement-based feedback is provided
as seen in Figure 1. A GIF is replayed to the user with the section(s)
of the arm for which the movement was incorrect in red as seen in
Figure 5b. A textual feedback is also generated with an explanation
after which the user is prompted to watch the tutorial and try again.

3.7 Hand Shape and Orientation
ASL signs which are otherwise similar, may differ only by the
shape or orientation of the hands. Since, CNNs have state-of-the-
art image recognition results, we utilized Inception v3 or Mobilenet
CNN depending on the device being used. A model that was pre-
trained on ImageNet is retrained using hand-shape images from the
training users. The wrist location obtained during pre-processing
was used as a guide to auto-crop these hand-shape images. During
recognition time, hand-shape images from each hand are extracted
automatically in a similar way from a learner’s recording. Then 6
images for each hand are passed separately through the CNN and
the softmax layer is obtained and are concatenated together as seen
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in Figure 1. Similar processing is done on the tutorial video to obtain
a vector of the same length. Then a cosine similarity is calculated
on the resultant vector. If the similarity between a learner’s sign
and that of a tutorial is above a set threshold for a sign, then the
execution is determined to be correct, otherwise the hand-shape
based feedback as seen in Figure 5 is provided.

Although the retrained CNN could theoretically be used as a
classifier, we use it only as a feature extractor for cosine similarity
to ensure that the system can extend to unseen classes. A new
tutorial can then be effectively added to the systemwithout the need
for retraining. An analysis of the effectiveness of hand-shape and
orientation recognizer is provided in Section 4.Similar to location
and movement, feedback for hand shape and orientation is also
provided in the form of a replay GIF and text. A zoomed in image
of the incorrect hand shape is shown side by side with the correct
image from a tutorial as seen in Figure 5(a).

4 RESULTS AND EVALUATION
An ideal system should give feedback to a learner only if their
execution is incorrect. Giving unnecessary feedback for correct ex-
ecutions will hinder the learning process and decrease the usability.
Conversely, providing sound and timely explanations for incorrect
executions helps to improve utility and user trust. Smart systems
such as L2S that use explainable machine learning tend to have a
trade-off between explainability and performance which should be
minimized.

The overall performance of the system was tested for 10 test
users for a total of 750 signs. The training of the CNN for hand-
shape feature extraction and optimal threshold determination was
done using the remaining users. For each sign, 30 executions from
the test dataset were taken as true class while 30 randomly se-
lected executions from the pool of remaining signs was taken as

(a) Hand-shape feedback for AFTER. (b) Movement Feedback for ABOUT.

Figure 4: Feedback given by the app.

(a) HERE: Red box(upper):
Detected Location, Green
Box(lower): Correct Loca-
tion.

(b) DEAF: Red box(upper):
Detected Location, Green
Box(lower): Correct Loca-
tion.

Figure 5: Feedback for incorrect location for right hand.

incorrect class to avoid class imbalance. A pre-trained model from
C3D [34] was retrained with the data we collected and was used as
the baseline for comparison. This model has an accuracy of 82.3 %
on UCF101 [28] and 87.7 % in YUPENN-Scene [7] datasets. The final
recognition accuracy of C3D on L2S dataset using the same train-
test split was 45.38 %. Our approach achieves a higher accuracy of
87.9 % while still offering explanations about its decisions in the
form of learner feedback.

To obtain the results, data collected from one learner was selected
at random and served as the tutorial dataset. Then each sign for each
user in the test dataset was compared against the corresponding
tutorial sign. The location module had an overall recall of 96.4 % and
precision of 24.3 %. The lower precision is due to the fact that many
signs in the test dataset had similar locations. We performed a test
comparing only the signs ‘LARGE’ to the sign ‘FATHER’ and both
the precision and recall were 100 %. The movement module had an
overall recall of 93.2 % and a precision of 52.4 %. The hand-shape
module had a recall of 89 % and a precision of 74 %. The overall
model is constructed as a waterfall combination of all three models
such that the movement model is executed only when the location
was found to be correct, and the hand-shape model is executed only
when both the location and movement were correct. The overall
precision, recall, f-1 score and accuracies is summarized in Table 4.

5 DISCUSSION AND FUTUREWORK
We demonstrated the need for a feedback based technological solu-
tion for sign language learning and provided an implementation
with a modular feedback mechanism. The user preference for the
desired amount of feedback can be changed by altering the value for
‘Feedback Sensitivity’. The trade-off between ‘Feedback Sensitivity’
and amount of feedback received as well as other performance met-
rics is summarized in Figure 3. Although, we designed our feedback
mechanism based on principles from linguistics and user survey,
only a large scale usage of such an application will provide defini-
tive best practices for the most effective feedback. In such future
studies, issues such as the extent of user control for determining
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Table 4: Precision(P), Recall(R), F-1 Score (F1) and Accuracy(A) for 25 ASL tokens.

Sign P R F1 A Sign P R F1 A Sign P R F1 A
About 0.92 0.71 0.80 0.85 Decide 0.91 0.55 0.69 0.74 Here 0.92 0.96 0.94 0.96
After 0.85 0.92 0.88 0.92 Father 0.86 0.86 0.86 0.92 Hospital 0.96 0.86 0.91 0.93
And 0.86 0.86 0.86 0.92 Find 0.54 0.81 0.65 0.81 Hurt 0.81 0.92 0.86 0.91
Can 0.96 0.77 0.85 0.89 Gold 0.88 0.81 0.84 0.89 If 0.79 0.90 0.84 0.91
Cat 0.96 0.59 0.73 0.78 Goodnight 0.96 0.59 0.73 0.78 Large 0.96 0.63 0.76 0.79
Cop 0.91 0.91 0.91 0.95 goout 0.88 0.85 0.87 0.91 Sorry 0.85 1.00 0.92 0.95
Cost 0.85 0.79 0.81 0.87 Hearing 0.85 1.00 0.92 0.95 Tiger 0.58 0.64 0.61 0.76
Day 0.96 0.80 0.87 0.91 Hello 0.96 0.81 0.88 0.91 Average 0.86 0.82 0.83 0.88
Deaf 0.56 0.88 0.68 0.83 Help 0.88 1.00 0.93 0.96

types of feedback and the possibility of peer-to-peer feedback for
on-line learning has to be evaluated as suggested by works such
as [10]. This work provides the foundations and feasibility for in-
teractive and intelligent sign language learning to pave the path
for such future work.

We collected usage and interaction data from 100 new learners
as part of this work, which will be foundational to assist future
researchers. Although, the focus of this work was on the man-
ual portion of sign languages, the preprocessing includes location
estimates for the eyes, ears and the nose. This can be utilized for in-
cluding facial expression recognition and feedback in future works.
We evaluated only 25 isolated words for ASL, but in the future,
this work can be extended to more words and phrases and to in-
clude other sign languages since the general principles will remain
the same. In this work, we used sign language as a test applica-
tion, however, the insights from this work can be easily applied to
other gesture domains such as combat sign training for military or
industrial operator signs.

6 CONCLUSION
There is an increasing need and demand for learning sign language.
Feedback is very important for language learning and intelligent
language learning softwares must provide effective and meaningful
feedback. There has also been significant advances in research for
recognizing sign languages, however technological solutions that
leverage them to provide intelligent learning environments do not
exist. In this work, we identify different types of potential feedback
we can provide to learners of sign language and address some chal-
lenges in doing so. We propose a pipeline of three non-parametric
recognition modules and an incremental feedback mechanism to
facilitate learning. We tested our system on real-world data from a
variety of devices and settings to achieve a final recognition accu-
racy of 87.9 %. This demonstrates that using explainable machine
learning for gesture learning is desirable and effective. We also
provided different types of feedback mechanisms based on results
of a user survey and best practices in implementing them. Finally,
we collected data from 100 users of L2S with 3 repetitions for each
of the 25 signs for a total of 7500 instances [13].
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