
Groove Explorer: An Intelligent Visual Interface for Drum Loop
Library Navigation

Fred Bruford
Centre for Digital Music,

Queen Mary University of London
London, UK

f.w.c.bruford@qmul.ac.uk

Mathieu Barthet
Centre for Digital Music

Queen Mary University of London
London, UK

m.barthet@qmul.ac.uk

SKoT McDonald
ROLI Ltd.

London, UK
skot.mcdonald@roli.com

Mark Sandler
Centre for Digital Music

Queen Mary University of London
London, UK

m.sandler@qmul.ac.uk

ABSTRACT
Music producers nowadays rely on increasingly large libraries of
loops, samples and virtual instrument sounds as part of the compo-
sition process. Intelligent interfaces are therefore useful in enabling
navigation of these databases in a way that supports the production
workflow. Within virtual drumming software, producers typically
rely on large libraries of symbolic drum loops. Due to their large
size, navigating and exploring these libraries can be a difficult pro-
cess. To address this, preliminary work is presented into the Groove
Explorer. Using Self-Organizing Maps, a large library of symbolic
drum loops is automatically mapped on a 2D space according to
rhythmic similarity. This space can then be explored via a Max/MSP
prototype interface. Early results suggest that while the algorithm
works well for smaller datasets, further development is required,
particularly in the similarity metric used, to make the tool scalable
to large libraries.

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; • Infor-
mation systems → Clustering and classification; • Computing
methodologies→ Machine learning.

KEYWORDS
Music Information Retrieval; Search; Visualization; Self-Organizing
Maps; Drum Loops

ACM Reference Format:
Fred Bruford, Mathieu Barthet, SKoT McDonald, and Mark Sandler. 2019.
Groove Explorer: An Intelligent Visual Interface for Drum Loop Library
Navigation. In Joint Proceedings of the ACM IUI 2019 Workshops, Los Angeles,
USA, March 20, 2019 , 4 pages.

IUI Workshops’19, March 20, 2019, Los Angeles, USA
© 2019 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. This volume is published and copyrighted by its editors

1 INTRODUCTION
Since the early days of Music Information Retrieval (MIR) as a
research field, one significant topic of research has been in the in-
telligent visual organization of music data as a means of managing
and understanding the increasingly large quantities of data arising
from advances in music content digitization [1]. Within digital au-
dio workstation (DAW)-based music production environments, the
searching and mining of music databases for production content
is a common task. Producers frequently make use of assembled
libraries of various different types of data, such as samples, loops,
synthesizer presents and virtual instruments. Exploring and nav-
igating these libraries can increasingly become a bottleneck for
producers due to their large size, and often inadequate searching
functions.

An example of this problem is found within the symbolic drum
loop libraries used in virtual drumming software. Software emula-
tions of drum kits are finding increasing use in music production for
generating realistic, expressive drum kit parts ‘in the box’, without
requiring recording equipment, a drum kit or a drummer. Examples
of this kind of software include SuperiorDrummer [14], Steven Slate
Drums [13] and FXpansion’s BFD3, upon which this work is based
[3].

These pieces of software work by combining a drum synthesis
engine with a pattern library to sequence the sounds into realistic,
idiomatic and expressive drumming. In BFD there are roughly 2500
of these sequences, referred to as G̀rooveś, within the Core library,
but thousands more in third-party addons and expansion packs.
Unfortunately, this library can be very difficult to navigate; as well
as being very large, it uses limited metadata and names which can
be difficult to interpret.

To address this problem, we present ongoing development of
the Groove Explorer, a prototype tool for visual exploration of this
symbolic drum loop library. Using Self-Organizing Maps (SOMs)
[8], the Grooves within the library are automatically mapped across
a 2D space according to rhythmic similarity. A user can then ex-
plore this 2D loop space, with the goal of making the process of
discovering and choosing loops quicker, easier and more enjoyable.

First, related work that inspired this project will be discussed.
Then the details of the mapping algorithm will be described, along



IUI Workshops’19, March 20, 2019, Los Angeles, USA Fred Bruford, Mathieu Barthet, SKoT McDonald, and Mark Sandler

with implementation details of the prototype tool. Then, the results
of an initial evaluation on the algorithm’s output mapping quality
will be presented. Finally, conclusions will be made considering the
limitations of the algorithm and evaluation methodology, and an
outline of further research will be provided.

2 RELATEDWORK
A growing body of work now attempts to use MIR to address the
limitations of DAW-based music production. The development of in-
telligent visual navigation tools for the many types of data libraries
used in music production is a significant area of this research. By
automatically sorting music data according to similarity, it is sug-
gested that visualizations can make it quicker, easier and more
enjoyable to find music data [12].

A particular focus has been in improving the navigation of drum
sample libraries. In [7], Shier et al. apply principal component anal-
ysis (PCA) to a set of timbral features extracted from kick, snare
and hi-hat samples to map the samples onto a 2D grid representing
two dimensions of similarity. The same problem is tackled in [16]
by Turquois et al, instead using t-distributed stochastic neighbor
embedding (t-SNE), and in [2], where Fried et al. employ embed-
ded kernelized sorting to perform the mapping. They additionally
developed a tool for exploring synthesizer sounds in a similar way
[2]. For sample navigation, they found that users could find sam-
ples quicker using the intelligent mapping versus traditional folder
diving.

There has similarly been research specifically into the explo-
ration of loops. In [11], authors used force-directed graphs to sup-
port exploration of the freesound.org library. For drum loops specif-
ically, the concept of rhythm spaces has been proposed to explore
generative maps of drum rhythms for electronic dance music [6].
The same authors have also begun to address the challenges of
implementing such a system, generating a 2D map of 9 drum loops
based on a number of rhythmic descriptors and multi-dimensional
scaling [4].

3 ALGORITHM
The core mapping algorithm used in the Groove Explorer is the
Self-Organizing Map (SOM). The SOM, first developed by Teuvo
Kohonen [8] is a nonlinear dimensionality reduction technique,
designed primarily for the visualization of high-dimensional data.
Essentially a neural network, it is usually organized as a 2D grid
of nodes, each with its own weight vector. SOMs differ from most
other neural network architectures in that they utilize competitive
learning. After the nodes have been randomly initialized, for each
input vector the node with the closest matching weight vector
is calculated and deemed to be the ’winner’. The winning node
and surrounding neurons are then updated and moved closer to
the input vector. The update rule updates the nodes by decreasing
amounts at larger distances from the winner, with the winner node
being changed the most.

In addition to the radius function, a learning rate reduces the
amount of updating over time, ensuring the map converges over
its training period. To calculate similarity between input vectors
and node vectors, a Euclidean distance function is typically used,
although any similarity metric can be used. Once the map has been

trained, the final map can be generated of the winner node position
for each input data item. As each data item is mapped onto a node,
to capture the topological structure of the input data, the number
of neurons must be large compared to the number of input data
items.

It is possible to perform additional clustering operations on the
output map to aid visualization. The U-matrix is a popular visual
clustering method for the SOM that shows distances between neigh-
boring node vectors as a heatmap [17]. Areas with high levels of
similarity are clusters, and shown on the output heatmap as dark
areas. The map of each data item on its respective winner node can
then be overlaid on the U-matrix.

3.1 Feature design
To feed into the SOM, raw symbolic drum loops were represented
as 160-point feature vectors. The input loops were all 2 bars in
length, reduced to 5-part polyphony, and quantized to semiquaver
time steps (16 per bar), with velocities for each hit. Each time step
for each part was therefore a point on the feature vector. All of the
loops were in 4/4 time. While the raw loops used 10-part polyphony,
some of the parts were grouped by functional and timbral similarity,
as shown in Table 1.

Table 1: Kit piece grouping for feature construction

Group Drum kit parts
1 Kick
2 Snare
3 Closed hi-hat, ride bell, cymbal bell, ride bow
4 Crash cymbal, open hi-hat
5 Hi tom, mid tom, low tom

Grouping kit pieces by functionality and similarity was done
partly to reduce computational intensity, but also to make the simi-
larity function more accurate. By grouping kit pieces, rhythms in
similar kit parts could be compared against each other, instead of
just considering each instrument individually.

3.2 Similarity metric
The calculation of the SOM relies on a similarity metric to calcu-
late the difference between individual Groove vectors and nodes.
Ensuring this similarity metric is musically and perceptually valid
is crucial to ensure the output mapping correlates with the user’s
perception of similarity between drum loops in the space.

While the edit or swap distance is considered by some to be the
most robust metric for calculating monophonic rhythm similarity
[15], recent work has indicated coincidence or Hamming distance-
based metrics to correlate closer to human similarity perception in
the specific case of polyphonic electronic drum loops [5, 9, 18]. The
Hamming distance counts the number of corresponding positions
in two rhythm vectors where the value matches. In the case of drum
loops, the values at each beat position are binary, with a 1 for a
hit and 0 silence for a given drum part at a given time step. It then
takes an average over the vectors’ length.

BFD’s Grooves also have velocities for each hit, ranging between
0 for silence, and 1 for the loudest hit. To account for continuous



Groove Explorer : An Intelligent Visual Interface for Drum Loop Library Navigation IUI Workshops’19, March 20, 2019, Los Angeles, USA

velocity values, a Euclidean vector distance function is an appropri-
ate technique that is analogous to a coincidence-based metric like
Hamming distance in that it computes a measure of the combined
distance between corresponding points in the vectors.

4 IMPLEMENTATION
The code for all feature construction and SOM computa-
tion was written in Python 2.7, and can be accessed at
https://github.com/fredbru/musicsom. For training the SOM, scripts
for both CPU and GPU computation were written for added flex-
ibility, but GPU computation was used for the large maps due to
increased speed. The GPU SOM code was written using CUDA
via the Numba just-in-time compiler Python library [10]. Using an
NVIDIA Tesla P100 GPU, a performance increase of around 10x was
achieved in training an 80x60 map. It is expected that by employing
a cluster of GPUs, the training process could be sped up much more
as a further parallelization could be achieved.

With non-4/4 Grooves removed, the BFD Core dataset con-
tains approximately 2300 Grooves. The Grooves are structured
and tagged in terms of 12 genres and 59 ‘Palettes’. Palettes repre-
sent sub-groups of loop style, each containing around 20-40 similar
Grooves, with names such as ‘Smooth Jazz’ and ‘Trash Metal’. Each
Groove in one Palette is therefore of the same genre.

4.1 User interface
For interactively navigating the Groove map, the prototype Groove
Explorer was designed in Max/MSP, the UI of which is shown in
Figure 1. The Max/MSP patch loads the SOM output maps as JSON
files of Groove metadata and map coordinates. Each circular object
represents a Groove, which is played back when clicked. The user
can zoom in and pan across the map, and save Grooves in their own
custom bank within BFD. It is possible to switch between coloring
Grooves according to genre and according to Palette.

Figure 1: Groove Explorer Prototype UI

The Max UI communicates with BFD with a sufficiently low
latency for real-time use in a DAW. To load and play back Grooves,
the names of selected Grooves are sent from Max to BFD via a

TCP/IP socket to a Python background script. This script then
parses these messages to generate commands in the right format
for a Lua interface used for BFD scripting. Important features of
BFD, such as its drum sample playback engine and audio mixing
features can therefore be accessed alongside the Groove Explorer.
Additionally, Python integration opens up the future possibility of
real-time updating of the SOM from the UI.

5 EVALUATION
A pilot evaluation of the mapping quality of the Groove Explorer
was carried out using Palette and genre tags provided in the soft-
ware as a benchmark. To assess the ability of the SOM to separate
Palettes, the subgenre groupings in the dataset, a smaller map was
first generated using a group of 8 Palettes, one for each major genre,
for a total of 252 Grooves. To test the ability of the Groove Explorer
to represent the structure of the data on a large scale, a map of
the whole BFD Core Groove library was generated, with genre
tags used to offer a higher-level indicator of similarity correlating
with human categorization. The small SOM dimensions were 16x16
nodes and the larger 80x60. The small map was trained on the CPU
of a Dell XPS-15 9550 laptop running Ubuntu 18.10, for a training
time of 30 minutes, or 2000 epochs. Due to its much larger size,
the larger map was trained using a NVIDIA Tesla P100 GPU, for a
training time of 3 days, or 3500 epochs.

The SOM output was plotted as the winner node positions for
each Groove overlaid over the U-matrix. That way as well as ob-
serving the map positions of groove, it was possible to evaluate the
ability of the algorithm to perform clustering.

6 RESULTS AND DISCUSSION
In the first map, shown in Figure 2, the algorithm is able to separate
most of the Palettes into separate parts of the map, showing that it is
successfully grouping many of the Grooves according to similarity.
The Pop V3, Jungle V1, Peter Erskine Rock, Heavy Metal and Funk
V3 Palettes are all in their own clear groups, with fairly few outliers.

Figure 2: 8 Palette 16x16 SOM Output with U-matrix

https://github.com/fredbru/musicsom


IUI Workshops’19, March 20, 2019, Los Angeles, USA Fred Bruford, Mathieu Barthet, SKoT McDonald, and Mark Sandler

However, some Palettes are less well separated from others
‘Smooth Jazz’ in particular. Similarly, the Country and Blues Palettes
are plotted on top of each other, although this makes some sense
as they are similar genres. While the mapping makes topological
sense, the U-matrix is not able to cluster entirely successfully, other
than the Rock Palettes in the bottom-left of the map. This could
be the result of a high level of variation within the input features
making clusters unclear.

Although the mapping corresponds quite well to the tagging in
the smaller SOM, the larger map, shown in Figure 3, did not clearly
separate genre groups, and did not show any real clusters in the U-
matrix. Grooves within the same Palette are clustered together still,
but Palettes themselves are not really grouped with other Palettes
of the same genre. This could indicate a limitation in the similarity
function, as it is unable to take account of the higher-level stylistic
characteristics of drum loops that motivate human categorization. It
could suggest limitations in using factory-supplied genre meta-tags
as ground-truth categories for evaluation, due to the high amount
of variance within genres, crossover between genres, and possible
inconsistencies in tagging. For an evaluation truly representative
of the practical quality of the map, a user study is required.

Figure 3: BFD Core Library SOM with U-matrix

7 CONCLUSIONS AND FURTHERWORK
As a work in progress, the Groove Explorer represents a positive
step towards easier navigation of drum loop libraries. The current
visualization approach is capable of arranging and separating loops
by stylistic categories in the case of smaller data libraries. However,
for datasets spanning a larger range of styles and genres, the sys-
tem is not yet able to convincingly express the higher-level genre
organization. This could indicate a limitation of the SOM, or lim-
itations in the use of genre tags as a ground truth. Alternatively,
the issue could be in the similarity metric; metrics based purely on
rhythm similarity may be unable to pick up stylistic similarities
of expressive drum loops. Further investigation is required into

other similarity metrics, along with the development of alternative
features for drum loop analysis. Investigation into different visu-
alization techniques other than the SOM could also prove useful.
Finally, a study should be carried out involving music producers to
assess the usability of the interface and mapping.

REFERENCES
[1] Matthew Cooper, Jonathan Foote, Elias Pampalk, and George Tzanetakis. 2006.

Visualization in Audio-Based Music Information Retrieval. Computer Music
Journal 30, 2 (June 2006), 42–62.

[2] Ohad Fried, Zeyu Jin, Reid Oda, and Adam Finkelstein. 2014. AudioQuilt: 2D
Arrangements of Audio Samples using Metric Learning and Kernelized Sorting..
In NIME. 281–286.

[3] FXpansion 2019. BFD3. Retrieved Feb 17, 2019 from https://www.fxpansion.
com/products/bfd3/

[4] Daniel Gómez-Marín, Sergi Jordà, and Perfecto Hererra. 2017. Drum rhythm
spaces: from global models to style-specific maps. In CMMR.

[5] Daniel Gómez-Marín, Sergi Jordà, and Perfecto Herrera. 2015. Pad and Sad: Two
awareness-Weighted rhythmic similarity distances. In Proceedings of the 16th
International Society for Music Information Retrieval Conference (ISMIR).

[6] Daniel Gómez-Marín, Sergi Jordà, and Perfecto Herrera. 2016. Rhythm Spaces.
In MUME.

[7] Jordie Shier, Kirk McNally, and George Tzanetakis. 2017. Sieve: A plugin for the
automatic classification and intelligent browsing of kick and snare samples. In
WIMP.

[8] T. Kohonen. 1990. The self-organizing map. Proc. IEEE 78, 9 (Sept. 1990), 1464–
1480.

[9] Cárthach Ó Nuanáin, Perfecto Herrera, and Sergi Jorda. 2015. Target-based
rhythmic pattern generation and variation with genetic algorithms. In Sound and
Music Computing Conference.

[10] Numba 2019. Numba: A High Performance Python Compiler. Retrieved Feb 17,
2019 from https://numba.pydata.org/

[11] Gerard Roma and Xavier Serra. 2015. Music performance by discovering commu-
nity loops. In Proceedings of the Web Audio Conference (WAC), Paris.

[12] Markus Schedl. 2017. Intelligent User Interfaces for Social Music Discovery
and Exploration of Large-scale Music Repositories. In In Proceedings of the 2017
ACM Workshop on Theory-Informed User Modeling for Tailoring and Personalizing
Interfaces. 7–11.

[13] Steven Slate Drums 2019. Steven Slate Drums - World-Class Virtual Drum
Instruments & Replacers. Retrieved Feb 17, 2019 from http://stevenslatedrums.
com/

[14] Toontrack 2019. Superior Drummer 3. Retrieved Feb 17, 2019 from https:
//www.toontrack.com/product/superior-drummer-3/

[15] Godfried Toussaint. 2004. A Comparison of Rhythmic Similarity Measures.
In Proceedings of the 16th International Society for Music Information Retrieval
Conference (ISMIR). 23.

[16] Chloé Turquois, Martin Hermant, Daniel Gómez-Marín, and Sergi Jord̀. 2016.
Exploring the Benefits of 2D Visualizations for Drum Samples Retrieval. In NIME.
329–332.

[17] Juha Vesanto and Esa. Alhoniemi. 2000. Clustering of the self-organizing map.
IEEE Transactions on Neural Networks 11, 3 (May 2000), 586–600.

[18] Richard Vogl, Matthias Leimeister, and Cárthach Ó Nuanáin et al. 2016. An
Intelligent Interface for Drum Pattern Variation and Comparative Evaluation of
Algorithms. Journal of the Audio Engineering Society 64, 7/8 (Aug. 2016), 503–513.

https://www.fxpansion.com/products/bfd3/
https://www.fxpansion.com/products/bfd3/
https://numba.pydata.org/
http://stevenslatedrums.com/
http://stevenslatedrums.com/
https://www.toontrack.com/product/superior-drummer-3/
https://www.toontrack.com/product/superior-drummer-3/

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Feature design
	3.2 Similarity metric

	4 Implementation
	4.1 User interface

	5 Evaluation
	6 Results and Discussion
	7 Conclusions and Further Work
	References

