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Abstract. We propose the Word Pair Convolutional Model (WoPCoM)
for the CL-Aff 19 shared task at the AAAI-19 Workshop on Affective
Content Analysis. The challenge is the classification of speaker-described
happy moments as social events and/or activities in which they have
agency. WoPCoM leverages the regular structure of language on an ar-
chitectural level in a way that recurrent models cannot easily answer,
by learning convolutional word pair features that capture the important
intra- and inter-phrasal relationships in a sentence. It performs with
an average accuracy of 91.45% predicting the social label and 86.49%
predicting the agency label assessed on a 10-fold cross validation. This
represents a performance improvement of 0.92% for predicting the social
label, but only 0.04% on predicting the agency label, over a simpler deep
LSTM baseline. In spite of similar performance on these metrics, WoP-
CoM demonstrates desirable results when other metrics such as training
time, model-intermediate class separation, and overfitting propensity are
considered, warranting further study.
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1 Introduction

1.1 CL-Aff Shared Task

This paper will address the challenge put forth in the CL-Aff shared task [6] at
the AAAI-19 Workshop On Affective Content Analysis. The task involves rating
a happy moment for speaker agency and social interaction given only a sentence
describing the moment.

HappyDB is a corpus of 100,000 crowd-sourced happy moments. Workers
on Amazon Mechanical Turk were tasked with recalling and writing sentences
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describing happy moments from three “recollection periods” since they have
occurred, the past 24 hours, the past week, and the past month. [1] From this
corpus a training set of 10,000 sentences, each labelled with speaker agency
and social attributes, was produced. The social label is assessed as “yes” if the
moment in question directly involved people other than the speaker, and “no”
otherwise. The agency label is rated “yes” if the speaker had direct control
over the action described in the moment, and “no” otherwise. For example, the
moment “My boyfriend bought me flowers” would be rated as “yes” for social
and “no” for agency, whereas “I took my dog for a walk” would be “no” for
social and “yes” for agency.

1.2 Related Work

As this is a new shared task, previous approaches to this specific problem do
not exist. Because we have selected a deep learning-based approach to the task,
we consider neural networks for sentence-level semantic classification, and the
word embedding approaches that underpin most methods in that domain related
work.

Word embeddings are a powerful tool for NLP tasks due to their capacity to
capture both semantic and syntactic data without a need for feature engineering
[9]. Despite shortcomings like susceptibility to common unigrams [4] and no
mechanism for representing syntactic relationships, a bag of words approach to
creating word vectors establishes a good theoretical baseline for identifying and
addressing various weaknesses in word encoding models.

Embeddings from Language Models (ELMo), 1024-dimensional word vectors
assessed using a bidirectional LSTM applied across the characters in a sentence,
are the current state of the art in latent word vector representation [13]. ELMo
embeddings have been demonstrated to bring peak performance on a variety of
downstream tasks against other universal word embedders such as Word2Vec
and GloVe [12]. We selected pre-trained ELMo embeddings for our approach
because of this past record of performance on downstream tasks, and their two
most useful properties: the learning of meaningful sub-word units [2] by virtue
of their character-based processing, and their capture of richer semantic con-
text at the word level from their use of the full sentence context in generating
constituent word vectors. While Google’s Universal Sentence Encoder has been
demonstrated to perform better than ELMo on semantic relatedness and tex-
tual similarity tasks [12], we require the granularity provided by word-level rather
than sentence-level embeddings for our approach to the task.

1.3 Design Rationale

Our neural network design arose by first considering how we would implement a
feature engineering approach, and then determining how a neural network could
learn similar features to the ones we would have hand-engineered.

The “agency-ness” and “social-ness” of the vast majority of sentences we
considered at this stage hinged on a few critical features. For example, the “I
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walked” in “I walked my dog to the park” is critical for understanding the
agency of the speaker. Perhaps this pair of words could be captured by a two-
word filter evaluating personal pronouns to the left of active verbs. Through
the consideration of these toy examples our hypothetical feature engineering
approach began to take shape.

By approximating distributions of certain semantic-syntactic concepts such
as personal nouns, social verbs, and action verbs in the embedding space the
probability a word belongs to such classes can be estimated. The word count
distance between two words in a sentence can be roughly correlated with their
syntactic relationship. Coupled with semantic-syntactic information about the
individual words themselves features correlated with sentence meaning would
arise.

Rather than hand engineer these word probability distributions we would
design the initial layers of the neural network to learn them. Rather than hand
engineer the two-word filters we would use convolutional layers to learn them.
Inspired by the dilated convolution approach employed by WaveNet [10] to gen-
erate audio samples by capturing various levels of sample stride, we decided
to create a filterbank of varying dilation factor size-two convolutional filters to
capture various inter- and intra-phrasal relationships. We were confident in this
approach because it would allow us to constrain the solution space and build in
insights from the structure of language that are not present in the far more gen-
eral sequence learning recurrent methodologies such as LSTM-based [5] models.

English is a strongly head-initial language with a subject-verb-object word
order. The word determining the syntactic category of an English phrase gen-
erally precedes its complements, leading to the formation of right-branching
grammatical structures. Nouns generally form constituent noun phrases of the
verbs they follow [14]. Taken together, this information about the regular struc-
ture of English sentences offers an opportunity to design network architectures
that capture the important interplay between key pairs of words in a sentence.
In other words, because we can rely on the direction between pairs of words to
matter in many of these examples, a filter-based conceptualization of how to
process sentences for semantics makes sense.

These observations justified the design of the Word Pair Convolutional Model
(WoPCoM), hinging on the importance of pairs of words and the flexibility of
neural networks to form a prediction.

2 Approach

Almost all of the classes we considered boiled down to a prototypical feature
f(x(n), k) = P (x(n) ∈ S1)P (x(n + k) ∈ S2) for input sentence x of words
x(n), word count separation k and word classes S1 and S2. For example, one
possible feature for testing speaker agency in a sentence might consider S1 to
be the set of personal nouns and S2 to be the set of active verbs for k = 1,
which would capture subclauses common to active sentences such as “I took” in
the example sentence above, or “we went,” “I made,” etc. Similar features for
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labelling social interactions can be envisioned. Through the convolution of these
features across the sentences, the labels could be ascertained. While modelling
the probability distributions of the various word sets and considering all the
important features by hand is not feasible, we hypothesized that a convolutional
neural network (CNN) could solve both of these problems at once, implicitly
learning the distributions of word classes and choosing which classes to select
for simultaneously during the learning process. What follows are the insights
from our model design process through the models we considered.

We chose to use ELMo vectors as the input feature for all models. All mod-
els were implemented using PyTorch [11] and AllenNLP [3], all of our code is
available at https://github.com/luminositylab/CL-AFF-ST.

2.1 Baseline Recurrent Model

We first considered a näıve model employing a long short-term memory (LSTM)
layer with variable hidden size taking the sentence set of ELMo embeddings
as input. The final hidden state of the LSTM was processed through a single
fully-connected layer with output size 2, and then a sigmoid function to map all
possible outputs to the (0, 1) probability range, representing the probability of
membership to the two classes.

2.2 Word Pair Convolutional Model

In our prototypical feature engineering formulation of the task we considered a
feature extractor convolving across a vector of class membership probabilities
for each word in the sentence to extract various intermediate word pair class
attributes that could be used in higher-level classification. However, due to the
feasibility issues discussed above and the lack of a ground truth objective to train
word class probabilities with, we opted for a looser type of pre-CNN processing, a
set of linear layers separated by ReLU operations with no strict class probability
constraint at the output. We do this by taking the ELMo-evaluated sentence set
of word vectors through a 1024 × N linear layer, with N corresponding to the
number of word attributes we want the WoPCoM to learn.

Two-vector convolutional filters of varying stride are then applied across the
sentence set of size N word attribute vectors to evaluate word pair semantic-
syntactic features. Through the varying dilation of the filters different types of
syntactic relationships can be captured, allowing for intra- and inter-phrasal
relationships to be assessed. We implemented our feature extractors as a set of
five 1-dimensional 2×N ×NC convolutional layers with dilation factors varying
from 1 to 5. The output dimension NC (number of classes) is configurable to
allow for evaluating different quantities of word pair relationships, and can be
considered analogous to the hidden state size in the LSTM implementation.

To “pool” the five sentence-length convolution outputs we feed them through
an LSTM with hidden size NC and take the final NC × 1 hidden state as the
“pooled” output of the five filter sets. Those vectors are then concatenated into
one vector, and fed through a linear 5NC×2 layer to map these feature outputs

https://github.com/luminositylab/CL-AFF-ST
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Fig. 1. A diagram of the layer outputs of the WoPCoM model for a single sentence.

to the two classes. Finally, these feature outputs are evaluated as probabilities
through the sigmoid function. Figure 1 depicts the WoPCoM model by showing
selected layer outputs in the processing of a single sentence batch.

2.3 Hyperparameters

Baseline For the baseline recurrent model a hidden representation size of 25
was used.

WoPCoM For the final implementation the word class count N was set to 100,
and the convolutional filter set output size NC was set to 50.

2.4 Training

The Adam optimizer [7] was used with a learning rate of 0.0001.

The models were trained with random batches of 50 same-length sentences
to minimize necessary input padding. A patience factor of 10 was used to allow
variable-length training, once 10 epochs pass without a drop in validation loss,
training is halted. Mean-squared error was used as the loss metric.

Class labels were tokenized as 0 for “yes” and 1 for “no.” This means that
the model is really learning negative probabilities (probability that the sentence
is not social/agency) but this has no bearing on final accuracy. To compute
accuracy, F1, and AUC the output probabilities are rounded to 0 or 1.
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3 Results and Discussion

We evaluated WoPCoM and our baseline model using 10-fold cross validation,
achieving the results in Table 1. Results that have over a 0.5% improvement
from the baseline are in bold.

Social Agency
Model Accuracy F1 AUC Accuracy F1 AUC

LSTM Baseline 90.58% 91.31% 95.72% 86.22% 90.68% 91.81%
WoPCoM 91.45% 91.90% 96.08% 86.49% 90.82% 91.93%
Table 1. A diagram of the layer outputs of the WoPCoM architecture for a single
sentence.

To illustrate the general separation of classes performed by WoPCoM t-SNE
projection [8] was employed to generate Figure 2. Note that the “Social Only”
and “Agency Only” classes both overlap significantly with the most heavily
“Social & Agency” region, while overlapping significantly less with each other’s
regions.
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Fig. 2. t-SNE projection of the 5×NC post-pooling filter set outputs for each sentence.

WoPCoM shows a modest improvement over the LSTM baseline on the social
classification task, but the difference between its performance and the LSTM per-
formance on the agency classification task is meager. This disparity could have
meaningful implications about the underlying data, warranting further study.
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Figures 3 and 4 depict the progression of validation and test accuracy across
epochs for WoPCoM and the LSTM baseline. They demonstrate that despite
having similar numbers of internal parameters, WoPCoM has a tendency to
resist the kind of dramatic overfitting that takes place with the LSTM baseline.
It is important to note that these accuracy figures only assess a given sentence as
accurate if both social and agency are properly labelled, meaning the individual
accuracy numbers being produced by these models are actually higher when
considering each individual task.
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Fig. 3. Validation (red) and training (blue) accuracy for WoPCoM across epochs.
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Fig. 4. Validation (red) and training (blue) accuracy for the LSTM baseline across
epochs.



8 M. Saxon and S. Bhandari et al.

4 Conclusions and Future Work

Through the process of training and testing these models many times we have
come up with some informal observations in addition to the concrete. Some con-
firm basic concepts in machine learning, such as the efficacy of deeper architec-
tures at fitting to the complex underlying distributions at the cost of overfitting.
We began paying attention to which models quickly fit to high accuracy across
relatively few epochs, and which models maintained a relatively narrow gulf
between the training and validation loss across many epochs.

One potential advantage we found to WoPCoM as opposed to the LSTM is
that it tends to resist overfitting. The training and test loss both saturate around
the same epoch, and there does not come a point where the overfitting pattern
of simultaneously decreasing training loss and increasing validation loss takes
place. This might be a result of the constraints on the solution space structure
described briefly above. We are interested in applying a more detailed analysis
to this phenomenon.

We plan to complete future work to look more rigorously to validate param-
eters of our approach that were chosen almost arbitrarily, such as the choice
of two-word convolution filters, and dilation factors up to five, against similar
approaches leveraging three- or four-word filters and larger dilation factors, as
well as pit WoPCoM or models designed with a similar philosophy against more
radically different architectures on more established tasks.

Currently we are using pretrained ELMo embeddings, we suspect that for
task/dataset-specific problems such as this shared task word embeddings learned
from the unlabeled data directly could improve performance. An unsupervised
approach employing an autoencoder that shares the sentence-feature compres-
sion architecture of WoPCoM could potentially be adapted to improve perfor-
mance as well.

We would also like to investigate the utility of the WoPCoM architecture
we’ve developed to applications with scarcity of training data and build on this
architecture to fit on such problems better.
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