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Abstract. Modeling affect via understanding the social constructs be-
hind them is an important task in devising robust and accurate systems
for socially relevant scenarios. In the CL-Aff Shared Task (part of Affec-
tive Content Analysis workshop @ AAAT 2019), the organizers released
a dataset of ‘happy’ moments, called the HappyDB corpus. The task
is to detect two social constructs: the agency (i.e., whether the author
is in control of the happy moment) and the social characteristics (i.e.,
whether anyone else other than the author was also involved in the happy
moment). We employ an inductive transfer learning technique where we
utilize a pre-trained language model and fine-tune it on the target task
for both the binary classification tasks. At first, we use a language model
pre-trained on the huge WikiText-103 corpus. This step utilizes an AWD-
LSTM with three hidden layers for training the language model. In the
second step, we fine-tune the pre-trained language model on both the
labeled and unlabeled instances from the HappyDB dataset. Finally, we
train a classifier on top of the language model for each of the identification
tasks. Our experiments using 10-fold cross validation on the corpus show
that we achieve a high accuracy of ~93% for detection of the social char-
acteristic and ~87% for agency of the author, showing significant gains
over other baselines. We also show that using the unlabeled dataset for
fine-tuning the language model in the second step improves our accuracy
by 1-2% across detection of both the constructs.

Keywords: Happy Moments - Inductive transfer learning - Language
model fine-tuning - Agency Prediction - Social Characteristic Detection

1 Introduction

In our quest to better model happy moments and characterize them, it is im-
portant to understand which entities were involved in the happy moments, and
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the psychology and behaviours which make people happy. Once the reasons and
behaviours which trigger happiness are identified, techniques can be effectively
developed to steer towards such behaviours which can increase people happiness
levels. It is therefore useful to answer questions like (1) whether the author was
in control of the happy moment (referred to as agency in this paper), and (2)
whether multiple people contributed to the happy moment (referred to as social
characteristic in this paper). The CL-AFF shared task at AffCon2019° focuses
on answering these two research questions. Asai et al. [1] developed a database
of 100K happy moments, HappyDB, using crowd sourcing and made it publicly
available. We use this dataset to build models for answering the two questions.

Recently, there has been significant progress in the area of inductive transfer
learning for natural language processing (NLP). Training deep learning mod-
els from scratch requires enormous amount of labeled data for achieving high
accuracy. In recent times though, there have been advancements which give bet-
ter performance on tasks like text classification from only a few labeled data
instances [6].

In this work, we show that inductive transfer learning is greatly beneficial
in identifying the agency and social characteristics of happy moments in the
dataset. We also employ a variant wherein we utilize the ‘unlabeled’ happy mo-
ments and leverage it to increase the system performance. Our experiments using
10-fold cross validation on the corpus show that we achieve a high accuracy of
~93% for detection of the social characteristic and ~87% for agency of the au-
thor, showing significant gains over other baselines.

2 Problem Definition

We specifically attempt to solve Task 1 of the CL-Aff shared task, i.e., detecting
the agency and social labels of the given happy moment. Formally, we model the
task as follows.

Agency and Social characteristic detection: Given a happy moment H,
we intend to learn the agency label C1 and the social label C2. C1 indicates
whether the author is in control of the happy moment being described. C2,
on the other hand, indicates whether anybody else other than the author, i.e.,
whether multiple entities are involved in the happy moment being described.
We model both the tasks as binary classification problems. Thus, if author is in
control of the happy moment, C1=1; otherwise, C'1=0. Similarly, if anyone else
other the author is involved in the happy moment, C2=1; otherwise, C'2=0.

To solve these problems, we propose a semi-supervised inductive transfer
learning approach. Our approach is inspired by the ULMFiT architecture [6]
and AWD-LSTM [11] which we discuss in brief below.

3 https:/ /sites.google.com /view /affcon2019/cl-aff-shared-task
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3 Preliminaries

In this section, we discuss the ULMFiT architecture and the AWD-LSTM model
in brief.

3.1 The ULMFIiT Architecture

Previous research has proposed multiple models for exploiting inductive trans-
fer for Natural Language Processing (NLP) applications [5,12]. In this work,
we adapt a recently proposed architecture called ULMFiIT (Universal Language
Model Fine-tuning) for inductive transfer learning. The ULMFiT architecture
proposed by Howard and Ruder [6] uses multiple heuristics for fine-tuning of lan-
guage models (LMs) to avoid overfitting when training neural models on small
labeled datasets. The ULMFiT architecture not just reduces the LM over-fitting
but also prevents catastrophic forgetting of information which earlier models
built on LMs were susceptible to. We adapt the ULMFiT model for our induc-
tive transfer learning approach with a variant and show that inductive transfer
learning is greatly beneficial for identifying agency and social characteristics of
the happy moments in the given corpus. Besides exploiting just the labeled data,
our variant also utilizes the unlabeled corpus for fine-tuning the language model
which further improves the classification performance across both the constructs.

3.2 The AWD-LSTM Model

Our inductive transfer learning mechanism also makes use of the Averaged-
SGD Weight-Dropped Long Short Term Memory (AWD-LSTM) networks [11].
The AWD-LSTM uses DropConnect and a variant of Average-SGD (NT-ASGD)
along with several other well-known regularization strategies. We leverage the use
of AWD-LSTMs as it has been shown to very effective in learning low-perplexity
language models.

4 Approach: Inductive Transfer Learning

In this section, we describe the three phases of the proposed inductive transfer
learning approach. Figure 1 illustrates the overall system architecture.

The proposed inductive transfer learning framework for identification of the
‘agency’ and ‘social’ characteristics makes use of the following three phases in
order.

1. General Domain Pre-training: The first phase pre-trains the AWD-
LSTM based language model on a huge text corpus. In our case, we use
the pretrained language model trained on Wikitext-103 [11] dataset which
consists of 103 Million unique words and 28,595 pre-processed Wikipedia
articles. General domain pre-training helps the model learn basic character-
istics of the language in question. It is essential that the LM be pre-trained
on a huge corpus so that these general-domain characteristics are learned
well.



4 B. Syed et al.

Phase 1

Language

Model

(AWD LSTM)

WikiText-103 II

(a) LM Pre-training

Phase 2

Language
Model [ —
(AWD LSTM) |

Happy Moments
(Labeled

+ Unlabeled) ll

(b) LM fine-tuning

: Layer 1 :
i Embedding layer i Language
\ ' Model g
(AWD LSTM) :

Happy
Moments "

(c) Classifier fine-tuning
using labeled instances

Fig. 1: Inductive Transfer Learning mechanism to identify agency and social charac-
teristics. The same architecture is used for classifying agent and social characteristics

separately.

2. Language Model Fine-tuning for the Target Task: For this step, after

pre-training the language model with a huge corpus of the language texts,
we fine-tune it using both the labeled as well as unlabeled part of the happy
moments corpus. In this stage, we utilize task-specific data to fine-tune our
language model in an unsupervised manner. As proposed in [6], our fine-
tuning involves discriminative fine-tuning and slanted triangular learning
rates to combat the catastrophic forgetting nature of language models as
exhibited in previous works [5,12]. In discriminative fine-tuning, instead of
keeping the same learning rate for all the layers of the AWD-LSTM, a differ-
ent learning rate is used for tuning the three different layers. The intuition
is that since each of the layers represent a different kind of information [21],
they must be fine-tuned to different extents. Also using the same learning
rate is not the best way to enable the model to converge to a suitable re-
gion of the parameter space. Thus we adapt the slanted triangular learning
rate [6] which first increases the learning rate and then linearly decays it as
the number of training samples increases.

. Classifier Fine-tuning for the Target Task: The weights that we obtain
from the second phase are fine-tuned by extending the upstream architecture
with two fully connected layers with softmax activation for the classification.
In this phase, we adapt the gradual unfreezing heuristic [6] for our task. In
gradual unfreezing (GU), all layers are not fine-tuned at the same time,
instead the model is gradually unfrozen starting from the last layer, as it
contains the least general knowledge [21]. The last layer is first unfrozen
and fine-tuned for one epoch. Subsequently, the next frozen layer is unfrozen
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and all unfrozen layers are fine-tuned. This is repeated until all layers are
fine-tuned until convergence is reached.

5 Experiments

In this section, we describe the baselines and present comparisons between the
baseline and our proposed approach.

5.1 Baselines

Word embedding is a technique in NLP which maps words of a language into
dense vectors of real numbers in a continuous embedding space. Traditional
NLP systems such as BoW (Bag of Words) and TF-IDF (Term Frequency-
Inverse Document Frequency) are mainly syntactic representations and cannot
capture the semantic relationships between words. Word embedding techniques
have been gaining popularity in a range of NLP tasks like Sentiment analysis [10,
20], Named Entity Recognition [8, 18], Question Answering [15], etc.

As baselines, we use word embeddings and demographics features of the au-
thor of the happy moment like age, country, gender, marital status, parenthood,
happiness duration. We train multiple classifiers using these set of features.
Specifically, for the baselines, we use the following pre-trained word and sen-
tence embedding models: GloVe, Concatenated Power Mean, Google Universal
Embedding, fastText, Lexical Vectors and InferSent embeddings.

For word based embeddings, the embedding of the sentence is computed by
tokenizing the sentence into words and computing the average of all the embed-
dings of the words of the sentence. We formulate the problem of identifying the
social and agency attributes as text classification tasks. Hence, we use multiple
supervised learning algorithms like Logistic Regression (LR), Support Vector
Machines (SVM), Random Forests (RF), Neural Networks (with two hidden
layers), and boosting (XGB) to train the models.

In the following, we describe the word/sentence embeddings which we use as
baselines.

(1) fastText [2]: It is a skipgram based word embedding method, where each
word is represented as a bag of character n-grams. A vector representation is
associated to each character n-gram; words being represented as the sum of
these representations.

(2) GloVe [13] is an unsupervised learning algorithm for distributed word rep-
resentation. Training is performed on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations showcase interesting
linear substructures of the word vector space. We use the standard 300 dimen-
sional GloVe embeddings (GloVel) trained on 840B word tokens. As another
baseline, we also use 200 dimensional GloVe embeddings trained on a Twitter
corpus (GloVe2) containing 27B word tokens.

(3) InferSent [4] is another set of embeddings trained by Facebook. InferSent
is trained using the task of language inference. Given two sentences the model
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is trained to infer whether they are a contradiction, a neutral pairing, or an
entailment. The output is an embedding of 4096 dimensions.

(4) Concatenated Power Mean Word Embedding [16] generalizes the concept
of average word embeddings to power mean word embeddings. The concatenation
of different types of power mean word embeddings considerably closes the gap
to state-of-the-art methods mono-lingually and substantially outperforms many
complex techniques cross-lingually.

(5) Lexical Vectors [17] is another word embedding similar to fastText with
slightly modified objective. Fast Text [2] is another word embedding model which
incorporates character n-grams into the skipgram model of Word2Vec and con-
siders the subword information.

(6) The Universal Sentence Encoder [3] encodes text into high dimensional
vectors. The model is trained and optimized for greater-than-word length text,
such as sentences, phrases or short paragraphs. It is trained on a variety of
data sources and a variety of tasks with the aim of dynamically accommodating
a wide variety of natural language understanding tasks. The input is variable
length English text and the output is a 512 dimensional vector.

For each of the embeddings in the above list, we train models using different
supervised learning algorithms. We use the scikit-learn implementations of these
algorithms with the standard default parameters without any hyper-parameter

tuning.

Model LR RF NN SVM XGB

Acc.| F1 |AUC| Acc.| F1 |[AUC|Acc.| F1 |[AUC| Acc.| F1 [AUC|Acc.| F1 |AUC
Universal 84.98(84.77|79.29(82.35(80.49(70.12(85.30({84.75(|79.17|83.83[83.55(77.92(83.12(82.21(73.91
GloVel 75.37(72.41(60.29(75.17(70.37(57.28|75.17|71.91(59.52|85.30{71.84(59.43|85.26(70.81|{57.58
GloVe2 82.80(82.11|74.42(81.55| 79.3 | 68.3 [81.87(81.92| 73.8 |82.63|81.64|73.75(82.77|81.68|72.85
fastText 74.57|71.07(58.52(74.90(69.67|56.43|75.44|71.37(58.78|74.50(|64.58|51.52|76.03|70.77|57.51
InferSent 80.00(78.72|73.54(85.20(82.66|73.44(83.27(80.90(|74.91|79.35(78.27| 72.9 [85.84|84.51|77.09
LexVec 82.28(81.57|73.78(80.71(77.65|65.90({82.27({80.94|72.54(81.95(81.16| 73.2 [81.17|79.54|69.45
Concatenated [76.36(76.61(70.63(83.27(82.20(73.13[80.77|80.95(75.66(76.44(76.74|70.89|83.81|82.98|74.96
p-means

Table 1: 10-fold cross validation Accuracy, F1 and

models (embeddings+demography features)

AUC scores for Agency labels for the baseline

Model LR RF NN SVM XGB

Acc.| F1 |AUC| Acc.| F1 |AUC|Acc.| F1 |[AUC| Acc.| F1 [AUC|Acc.| F1 |AUC
Universal 91.51{91.51(91.51(90.93(91.21] 91.3 [92.04(91.95(91.99(91.70{90.86]/90.88{90.82]|90.83|90.86
GloVel 81.05(81.01|81.48|78.89(79.14|79.12{81.13|80.97|81.48|80.61|80.40|81.01{81.86|81.72|82.59
GloVe2 88.80(88.81|88.87(87.98(87.89|87.96(89.30(88.89|88.94(88.92|88.62|88.72|88.15|88.16|88.25
fastText 79.49(79.39(80.11|78.15|78.18(78.13|79.83|79.79(80.56|79.27(79.26({80.18|80.85(80.68|81.64
InferSent 86.40(86.76|86.71(87.54|88.63|88.70(88.45(88.97|89.04(85.53(85.84(85.77(89.64|89.93|90.04
LexVec 88.88(88.89(88.94(87.58(87.69|87.91(88.70(88.78|88.90(88.55(88.69|88.78(88.42|88.43|88.55
Concatenated [85.11(85.15(85.06(88.57|88.25|88.29(89.66(89.06(89.07(84.49(84.42|84.35[89.78|89.79(89.91
p means

Table 2: 10-fold cross validation Accuracy, F1 and AUC scores for Social labels for the baseline
models (embeddings+demography features)
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5.2 Hyper-parameter Settings

As suggested in [6], we use the AWD-LSTM language model with three layers,
1150 hidden activations per layer and an embedding size of 400. The hidden layer
of the classifier is of size 50. A batch size of 30 is used to train the model. The
LM and classifier fine-tuning is done with a base learning rate of 0.004 and 0.01
respectively. We built separate models for the ‘agency’ and ‘social’ classification
tasks.

5.3 Results and Analysis

Tables 1 and 2 show the accuracy of the models trained on different word em-
beddings across various machine learning algorithms for the Agency and Social
label prediction tasks respectively. Table 3 shows the performance of the induc-
tive transfer model utilizing the unlabeled corpus for LM fine-tuning as compared
with not utilizing the unlabeled corpus. We see that making use of the unlabeled
corpus has its advantages as it gives the highest accuracy across both agency
and social detection, beating other baselines strongly and outperforming the
inductive transfer model used when not making use of the unlabeled corpus.

Table 3: 10-fold cross-validation Performance using Inductive Transfer Learning for
both Agency and Social Characteristics Detection Tasks

Unlabeled data used Agency Social
in LM fine-tuning?

Accuracy| F-1 [ROC-AUC|Accuracy| F-1 [ROC-AUC
No 85.97 |85.45| 78.93 92.1 |92.11| 92.23
Yes 86.45 [86.16] 80.18 92.7 192.69| 92.71

6 Conclusions

In this work, we showed that the idea of using inductive transfer learning by
fine-tuning language models helps in giving robust performance across detection
of agency and social characteristics. We also showed that the use of unlabeled
data for LM fine-tuning in our second stage helped in improving performance
across 10-fold cross validation evaluation measures for both the tasks.

We plan to perform the given text classification using other pre-trained em-
beddings like ELMo (Embeddings from Language Models) [14], Skip-Thought
Vectors [7], Quick-Thoughts [9] and Multi-task learning based sentence repre-
sentations [19], and investigate if use of those embeddings can improve the clas-
sification accuracy. We would also like to experiment with other semi-supervised
techniques to improve the classification accuracy.
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