
An effective resource management approach in a FaaS environment

Andreas Christoforou, Andreas S. Andreou
Cyprus University of Technology

{andreas.christoforou,andreas.andreou}@cut.ac.cy

Abstract

Serverless computing introduces a new Cloud service
which consist an increasingly popular architecture for
building distributed applications. This paper investi-
gates and proposes a new resource management ap-
proach in a FaaS platform, based on intelligent tech-
niques. A number of experiments applied through an
indicative framework consisting of a client application
and a Lambda function. Three Genetic Algorithms
were employed to deliver optimal solutions in a multi-
objective environment.

1 Introduction

Serverless computing is a relatively new processing
paradigm or model that emerged through the con-
tinuous and vast development of the Cloud. Server-
less computing provides a service in which develop-
ers can write and deploy code without provisioning or
managing servers or containers. The adoption of this
paradigm has great impact on several software engi-
neering aspects such as development process, pricing
model and Quality of Sercice (QoS) assurance.

Despite the various benefits and advantages of
serverless computing, like zero server management, no
up-front provisioning, high availability, auto-scalability
and pay only for the resources used, there are also some
weaknesses that should also be taken into account: As
currently offered from providers, it is not suitable for
long term tasks because of the limited time a service
can run; additionally, there is increasing complexity of
the underlying architecture, which is intensified by the
lack of appropriate operational tools.

The main representative of this new service architec-
ture is Function as a Service (FaaS) or event-based pro-
gramming [1], where a function may triggered through
an api call or by an event. Since Amazon introduced
Lambda serverless platform in late 2014 [2], many other

cloud providers adopted and currently support and of-
fer this architecture. AWS Lambda [3], IBM Cloud
Functions [4], Google Cloud Functions [5] and Mi-
crosoft Azure Functions [6] are the major serverless
providers. This new cloud paradigm is becoming in-
creasingly popular and is gaining great attention from
the software industry and research community. A num-
ber of new technical challenges and open problems [7]
have emerged and a number of questions have been
set about the importance and the future of serverless
computing.

Resource management support in such a FaaS envi-
ronment is essential for the software development pro-
cess itself, which is directed towards satisfying the SLA
and providing QoS assurance. The identification of the
optimum scenario for resource allocation to serve ade-
quately a specific workload is a tedious, computation-
ally complex and time-consuming process since multi-
ple objectives need to be satisfied.

This research work is motivated by the following two
Research Questions (RQ)

• RQ1: Is it possible to implement easy to use
and efficient resource management algorithms in
a FaaS platform?

• RQ2: How intelligent techniques can deliver effi-
cient resource management to developers in a FaaS
environment with the minimum possible cost and
time?

The Amazon Lambda platform is considered a com-
plete platform as it offers the most features, while
presents the greatest market share; for these reasons
it was selected to constitute our experimental environ-
ment.

The rest of this paper is organized as follows: Section
2 provides a brief overview of relevant literature focus-
ing more on resource management approaches. Section
3 introduces the proposed approach which addresses

2

the two research questions. The experimental process
is described in section 4, while section 5 discuses the
results obtained. Finally, section 6 concludes the paper
and outlines future research steps.

2 Literature Review

A short literature review has been carried out that is
not limited to resource management approaches, since
very few relevant research works were identified.

Two research works refer to efficient resource man-
agement: In [8] a solution using a well-known re-
source allocation strategy for a Lambda platform was
presented based on the model predictive controller
(MPC). This solution designs a resource allocation
policy through the understanding of the run-time at-
tributes of the workload. The authors in [9] performed
a dedicated test to identify if cost optimization is feasi-
ble when utilizing increased resources for lowering pro-
cessing times.

Evaluation of main FaaS providers was performed
in [10] and relevant results were presented in terms of
throughput, network bandwidth, a file I/O and perfor-
mance computed according to concurrent invocations.
In [11], the authors report results from a comprehen-
sive investigation on the performance of microservices
hosted by a serveless platform. The investigation dealt
with implications of infrastructure elasticity, load bal-
ancing, provisioning variation, infrastructure retention,
and memory reservations. A micro-benchmark intro-
duced in [12] was used to evaluate the performance and
cost model of popular FaaS providers.

An open-source FaaS tool called Snafu was intro-
duced in [13] which is employed for managing, execut-
ing and testing functions across provider-specific inter-
faces. Finally the work of Hong et al. [14] describes
six serverless design patterns that can be used to build
serverless applications and services.

3 Multi-Objective Optimization
Approach

Our general aim is to allocate a sufficient amount of re-
sources in a FaaS environment that should be able to
serve a specific workload. By utilizing an exhaustive
algorithm we first aim to identify the optimal solutions
for both objectives, cost and performance. Exhaustive
approaches have great demands on resources and, sub-
sequently, on cost, and thus they cannot be the answer

to the first research question. In this research work an
exhaustive algorithm will be applied on a low demand
environment and a small scale workload with the re-
sults obtained being considered as the reference data
for the proposed intelligent approaches, the latter be-
ing able to reach to solutions faster. Our proposition is
the employment of a multi-objective genetic algorithms
(MOGAs) [15] as our optimization method that will
generate near-optimal solutions and their performance
will be compared with the reference optimal solutions
extracted by the exhaustive algorithm.

Genetic algorithms are a type of evolutionary algo-
rithm, which are widely used to solve search-based op-
timization problems by simulating the theory of natu-
ral evolution on a population of individuals (candidate
solutions). Problems like the one this study is dealing
with, require the optimization of multiple criteria at
the same time. In such a case multi-objective genetic
algorithms can be adopted, where the goal is to find
the best solution by otimizing a set of objective func-
tions. In case of conflicting or competing objectives,
a multi-objective genetic algorithm normally delivers a
set of optimal solutions instead of a single one. This
set of optimal solutions is called Pareto optimal set (or
Pareto front) and contains those solutions that are not
dominated by any other solution yielded during evolu-
tion. Each optimal solution constitutes a specific bal-
ance between the objectives under optimization, where
any improvement in one of them leads to worsening the
other (conflicting targets, e.g. cost vs time in our case).
Therefore, a decision maker is provided with the set of
optimal solutions and is therefore supported to take de-
cisions as to which values of the decision variables are
most suited based on the targets and the requirements
of his/her application.

In the context of our application, the candidate so-
lutions, or alternatively the decision variables, consist
of two of the available configuration options offered
by AWS Lambda platform, namely memory allocation
and number of maximum concurrency functions, as
well as a third variable, the batch size, that represents
the number of inputs that each individual function is
required to process. Our approach is graphically rep-
resented in Figure 1 where the three decision variables
in conjunction with the characteristics of the workload
define the level of Cost and Duration.

3

Figure 1: Proposed Multi-objective Optimization Approach

4 Experimental Process

4.1 Experimental Environment

An application that is used to perform the experimen-
tal process has been implemented by utilizing services
offered by Amazon AWS platform. More specifically,
this application is based on the idea introduced in
Amazon Big Data Blog 1 where in a map-reduce style
it counts the words in files stored in an S3 2 bucket.
This application streams the total number of words
each function has calculated, returns it back to the user
in real-time and demonstrates how a Lambda function
can efficiently process large amounts of data in short
time and provide immediate results to users.

In our experimentation study our application was
implemented as follows: On the client side, besides
the main function that triggers the whole process, a
cascade function was also implemented which is re-
sponsible to sense the workload size and accordingly
distribute the data in a synchronous way over a num-
ber of lambda functions. This function is also respon-
sible to collect and aggregate the results taken from
the lambda functions responses and when all func-
tions are completed it returns the final result to the
user. On the AWS platform a lambda function was
created that counts the words of a given batch of files
which are stored in a AWS S3 bucket. Data stored
in the S3 bucket represents the workload that will be
processed with specific features. Both the client and
lambda sides were implemented in Python 3.7 and the
integration with the AWS services, S3 and Lambda
was achieved through the Boto3 3, the AWS SDK for

1https://aws.amazon.com/blogs/big-data/building-scalable-
and-responsive-big-data-interfaces-with-aws-lambda/

2https://aws.amazon.com/s3/
3https://aws.amazon.com/sdk-for-python/

Figure 2: Experimental Environment

Python. The synchronous invocations of lambda func-
tions is executed and controlled by utilizing Python’s
multi-threading module. The integrated experimental
environment is depicted in Figure 2.

4.2 Exhaustive Algorithm

As mentioned before, our multi-objective optimization
approach was adjusted and configured based on the
AWS Lambda platform and taking into account the
available options offered. The two objectives are cost
and performance. The cost objective is the minimiza-
tion of the total cost required for the completion of the
process of the input workload and is calculated using
the formulas and rules as these are given by Amazon 4.
The calculation of the cost depends on the number of
lambda functions executions, the total duration of all
executed functions and the allocated memory. The per-
formance objective is also the minimization of the total
duration needed for the workload process completion
and is calculated as the time from the moment the

4https://aws.amazon.com/lambda/pricing/

4

user sends the start request until the application de-
livers back to the user the total count of words. The
set of decision variables consists of the memory allo-
cation size, the number of maximum concurrent func-
tions and the batch size. Memory allocation denotes
the amount of memory you want to allocate for your
lambda function. The values memory can get, ranged
from 128MB to 3008 MB with 64MB increment step.
The concurrent execution limit can be set from 1 to
1000. Finally, the batch size represents the number
of files that each function will process and in our ex-
periments its values are relative to the percentage to
the workload size and fall into the following set: [1, 2,
5, 10, 20, 25, 50, 100]. The S3 bucket which is used
for the workload, contains 100 text files with each file
containing 638 words. The exhaustive algorithm that
was used calculated and delivered all possible candi-
date solutions. To reduce execution time and cost we
discarded solutions for concurrency limit over 100 since
the size of the workload is 100 and it does not make
sense to take these solutions into account. The number
of Possible Solutions (PS) is calculated using equation
1 and is calculated to be equal to 36800.

|PS| = N ×M ×K (1)

where, N is the number of the possible values of the
concurrency limit and is equal to 100, M denotes the
total number of values for memory and is equal to 46
and K is the number of values the workload batch size
can get and is equal to 8.

4.3 Multi-objective Genetic Algorithms

We selected three well-known and widespread MO-
GAs to assess their ability to solve the problem in
hand and compare their results: The Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [15], the
Non-dominated Sorting Genetic Algorithm III (NSGA-
III) [16] and the Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) [17]. The selection of these specific
algorithms was made after performing some prelimi-
nary experimentation which indicated that these three
present a consistently good performance.

The relative configuration of the required parame-
ters, as well as the overall implementation of the al-
gorithms, were performed using Platypus 5, a Python-
based multi-objective optimization algorithms library.
The aim is to minimize a vector consisting of the two

5https://platypus.readthedocs.io/en/latest/index.html

objective functions, Cost and Duration, for values that
belong to the PS set (see equation 2).

minimizef(x) = (fduration(x), fcost(x)), x ∈ PS (2)

Since all three decision variables are real-valued, we
accordingly use best practices for setting the MOGAs
configuration. For crossover and mutation operators,
the Simulated Binary Crossover (SBX) and Polynomial
Mutation (PM) were selected respectively. The same
parameters and settings were used for all executions.
As one can easily discern from Figure 3, all algorithms
yielded very similar solutions which are almost identi-
cal to the reference optimal. A more detailed analysis
of the results follows in the next section.

5 Results and Discussion

The execution of the exhaustive algorithm on the ex-
perimental application delivered a complete list of PS.
The extracted values constitute the aggregation of five
different executions in order to minimize or even elim-
inate possible variations between the results under ex-
actly the same configuration conditions. As described
above, the results from the exhaustive algorithm were
considered as the reference data and were used for
the assessment of the three MOGAs employed. Each
MOGA was run 100 times for different values of fitness
evaluations (FE) ranging from 500 to 4500 with incre-
ment step 500. The Pareto optimal front that emerged
from the reference optimal solutions in contrast to the
Pareto near-optimal solutions yielded by each MOGA
for 1000 fitness evaluations, is depicted in Figure 3. By
observing the Pareto fronts, one can easily conclude
that all three MOGAs approached the optimal solu-
tions to a high degree; in fact, in some cases the dom-
inant MOGA solutions are exactly the same as those
of the reference set. At this point we will utilize some
metrics aiming to assess further and compare the per-
formance [18] of the three MOGAs we employed on our
approach.

5.1 MOGAs performance through quality
indicators

The hypervolume (HV) [19] and the inverted genera-
tional distance (IGD) [20] quality indicators were se-
lected to assist in comparing the three MOGAs with

5

Figure 3: Pareto front for 1000 fitness evaluations (FE)

respect to performance and scalability, given the abil-
ity of the aforementioned metrics to assess both con-
vergence and diversity (uniformity and spread) of the
algorithms. Specifically, the HV indicator assesses the
volume covered by the non-dominated solutions of a
Pareto front in the objective space. Therefore, the
larger the volume covered by the solutions generated
in a run, the higher the HV value, which indicates a
better performance. The IGD indicator assesses how
far the elements of the true Pareto front (reference data
in our case) are from the non-dominated points of an
approximation Pareto front. Therefore, the greater the
extent of the true Pareto front that is covered by the
non dominated points generated by a run in the objec-
tive space, the lower the IGD value, which denotes a
better performance. Each algorithm was run 100 times
for each number of FE and the median values of the
HV and IGD were calculated for each algorithm. These
values are presented in Tables 1 and 2 respectively.

The differences observed in the indicators values be-
tween the compared algorithms are too small, and this
most probably is the result of the small complexity
of the workload used; however, in cases of application
workloads with increasingly greater complexity and/or
scale, these differences will become more profound. As
regards the HV indicator, SPEA2 presents the best
performance, that is, the highest hypervolume value,
and this is consistent along all fitness evaluation num-
bers used. Second best for this indicator is the NSGA-
II. It is important to observe that in the case SPEA2 in
the 1000 fitness evaluations rub the HV value stabilizes
to a constant value from the second measurement on-

Table 1: Hypervolume(HV) values

FE HV (x10−6)
NSGA-II NSGA-III SPEA2

500 999667.063 999658.576 999755.043

1000 999755.043 999656.438 999960.329

1500 999960.329 999655.593 999960.329

2000 999960.329 999654.920 999960.329

2500 999960.329 999655.384 999960.329

3000 999960.329 999655.777 999960.329

3500 999960.329 999655.230 999960.329

4000 999960.329 999655.687 999960.329

4500 999960.329 999657.071 999960.329

Table 2: Inverted Generational Distance(IGD) values

FE IGD (x10−6)
NSGAII NSGAIII SPEA2

500 60727.255 61344.367 57375.237

1000 60250.148 57791.945 57792.130

1500 57792.130 57792.189 57792.130

2000 57792.130 57787.907 57792.130

2500 57792.130 57792.125 57792.130

3000 57792.130 57791.964 57792.130

3500 57792.130 57790.733 57792.130

4000 57792.130 57792.097 57792.130

4500 57792.130 57792.179 57792.130

6

Table 3: Pairwise comparison for HV indicator

NSGA-II NSGA-III SPEA2

NSGA-II 0.074 0.18

NSGA-III 0.005

SPEA2

Table 4: Pairwise comparison for IGD indicator

NSGA-II NSGA-III SPEA2

NSGA-II 0.241 0.18

NSGA-III 0.285

SPEA2

wards. The same behaviour is also observed for NSGA-
II but from the third measurement onwards. On the
contrary, NSGA-III presents more fluctuations in its
measurements.

In the case of the IGD indicator, things appear more
complicated since none of the algorithms seems to pre-
vail. A notable point is that for the lowest measure of
the fitness evaluations numbers, SPEA2 clearly outper-
forms the others. The values for NSGA-II and SPEA2
starting from the third measurement onwards are fully
identical, while NSGA-III shows ups and downs and in
three cases seems better than the other two.

The Wilcoxon signed-rank test was applied on both
quality indicators to detect whether or not a statisti-
cally significant difference exist among the three algo-
rithms. To handle the family-wise error rate accumu-
lated, p-values were adjusted using a post-hoc Holm
procedure. The p-values resulting from the pairwise
comparison for HV and IGD indicators are shown in
Tables 3 and 4 respectively where pairs of algorithms
with a statistically significant difference (p <0.05) are
shown in boldface. According to the pairwise com-
parisons, no significant difference is observed between
NSGA-II and NSGA-III, NSGA-II and SPEA2, and
NSGA-III and SPEA2 in either indicator except only
for the pair NSGA-III and SPEA2 in the case of HV.

6 Conclusions and Future Work

This research work performed a preliminary investiga-
tion to assess whether heuristic approaches for multi-
objective optimization, like the specific MOGAs used,

are able to solve the problem of finding a set of near-
optimal solutions that support developers in a FaaS
environment to select an efficient resource allocation
scheme with respect to cost and time. In our case
this was verified through the experimental process fol-
lowed; therefore, the question raised now, and will be
the source of future research work, is whether the sup-
port obtained by the MOGAs is worth investigating
further in terms of real-time response, ”execution on
the fly as workloads come in” and the level to which
this support can be generalized to cover also workloads
of unknown characteristics.

Acknowledgments

The paper is part of the outcomes of the Twinning
project Dossier Cloud. This project has received fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No.
692251.

References

[1] Fox GC, Ishakian V, Muthusamy V, Slominski A.
Status of serverless computing and function-as-
a-service (faas) in industry and research. arXiv
preprint arXiv:170808028. 2017;.

[2] Adzic G, Chatley R. Serverless computing: eco-
nomic and architectural impact. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM; 2017. p. 884–889.

[3] AWS Lambda;. Accessed: 2018-09-30. https:

//aws.amazon.com/lambda/.

[4] IBM Cloud Functions;. Accessed: 2018-09-30.
https://www.ibm.com/cloud/functions.

[5] Google Cloud Functions;. Accessed: 2018-09-30.
https://cloud.google.com/functions/.

[6] Microsoft Azure Functions;. Accessed: 2018-
09-30. https://azure.microsoft.com/en-us/

services/functions/.

[7] Baldini I, Castro P, Chang K, Cheng P, Fink S,
Ishakian V, et al. Serverless computing: Current
trends and open problems. In: Research Advances
in Cloud Computing. Springer; 2017. p. 1–20.

7

[8] HoseinyFarahabady M, Taheri J, Tari Z, Zomaya
AY. A dynamic resource controller for a lambda
architecture. In: Parallel Processing (ICPP), 2017
46th International Conference on. IEEE; 2017. p.
332–341.

[9] Hoang A. Analysis of microservices and server-
less architecture for mobile application enable-
ment (PhD Dissertation). California State Uni-
versity, Northridge; 2017.

[10] Lee H, Satyam K, Fox G. Evaluation of produc-
tion serverless computing environments. In: 2018
IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE; 2018. p. 442–450.

[11] Lloyd W, Ramesh S, Chinthalapati S, Ly L, Pal-
lickara S. Serverless computing: An investigation
of factors influencing microservice performance.
In: Cloud Engineering (IC2E), 2018 IEEE Inter-
national Conference on. IEEE; 2018. p. 159–169.

[12] Back T, Andrikopoulos V. Using a Microbench-
mark to Compare Function as a Service Solutions.
In: European Conference on Service-Oriented and
Cloud Computing. Springer; 2018. p. 146–160.

[13] Spillner J. Snafu: Function-as-a-service (faas)
runtime design and implementation. arXiv
preprint arXiv:170307562. 2017;.

[14] Hong S, Srivastava A, Shambrook W, Dumitras
T. Go serverless: securing cloud via serverless
design patterns. In: 10th {USENIX}Workshop on
Hot Topics in Cloud Computing (HotCloud 18).
USENIX; 2018. .

[15] Deb K, Pratap A, Agarwal S, Meyarivan T. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE transactions on evolutionary com-
putation. 2002;6(2):182–197.

[16] Deb K, Jain H. An evolutionary many-objective
optimization algorithm using reference-point-
based non dominated sorting approach, part
I: Solving problems with box constraints.
IEEE Trans Evolutionary Computation.
2014;18(4):577–601.

[17] Zitzler E, Laumanns M, Thiele L. SPEA2: Im-
proving the strength Pareto evolutionary algo-
rithm. TIK-report. 2001;103.

[18] Riquelme N, Von Lücken C, Baran B. Perfor-
mance metrics in multi-objective optimization. In:
Computing Conference (CLEI), 2015 Latin Amer-
ican. IEEE; 2015. p. 1–11.

[19] Zitzler E, Thiele L. Multiobjective evolutionary
algorithms: a comparative case study and the
strength Pareto approach. IEEE transactions on
Evolutionary Computation. 1999;3(4):257–271.

[20] Van Veldhuizen DA, Lamont GB. Multi-
objective evolutionary algorithms: Analyzing
the state-of-the-art. Evolutionary computation.
2000;8(2):125–147.

8

