
Studying the feasibility of serverless actors

Daniel Barcelona Pons, Álvaro Ruiz Ollobarren, David Arroyo Pinto, Pedro Garćıa López
Universitat Rovira i Virgili

Tarragona, Spain
{daniel.barcelona, alvaro.ruiz}@urv.cat, david.arroyop@estudiants.urv.cat, pedro.garcia@urv.cat

Abstract

Serverless is a very promising model with many bene-
fits to simplify the development of cloud applications.
However, many applications are not easy to build on a
serverless environment due to the lack of built-in key
features, such as state and function coordination. In
this paper we focus on the actor model. As this pop-
ular computational model challenges many aspects of
the current serverless tools, the feasibility of building
a serverless actor framework is unclear.

Our goal is to study whether the actor model can
be successfully deployed on top of a Functions as a
Service (FaaS) environment like AWS Lambda. To do
that, we design and build a prototype to evaluate the
serverless actors requirements and performance. We
conclude with a successful prototype implementation
and stating the necessary run-time extensions to the
serverless core to improve the support for serverless
actors.

1 Introduction

The serverless model benefits from several features that
make the developer’s life easier; such as scalability,
minimal deployment process, hardware and Operating
System configuration, and sub-second billing. The cur-
rent main offer of serverless services comes in the form
of Functions as a Service, where the user codes small
functions that respond to events.

Unfortunately, not all applications have a straight-
forward migration to the serverless architecture that
easily benefits from its advantages. This is the case
of the actor model, which is a highly popular compu-
tational pattern for building concurrent applications.
The model simplifies the job of composing parallel and
distributed executions by using a basic unit of compu-
tation: the actor.

An actor is an isolated, independent unit of compute
and state with single-threaded execution. Many actors
can execute simultaneously and independently of each
other to build complex applications. Actors can com-
municate between them by sending messages and act
upon them.

The actor model benefits from the serverless com-
puting framework in two main aspects:

• Billing. FaaS platforms charge per compute
time—at small-grained periods—and the amount
of resources consumed by the application, which
in this case is more cost-effective than having to
purchase or rent servers with much more coarse-
grained billing time units. We pay only for actual
actor run time.

• Scalability. Users do not need to spend their time
managing servers and setting up auto-scaling sys-
tems, as cloud providers are responsible for seam-
lessly scaling the capacity on demand. We can
have a virtually infinite number of concurrent ac-
tors. [1]

A simple, yet convenient use case would be the counter
example. In which, there’s no need to have a server
running an application to handle the counter incre-
ments, as the state only changes in reaction to events.
This counter example can’t be efficiently implemented
with stateless functions as they don’t guarantee state
persistence between invocations, so a remote external
storage must be used. In contrast, serverless actors are
a better fit as a result of their combination of state
persistence and fine-grained billing.

In this paper we discuss the feasibility of the actor
migration to a serverless environment and the series of
challenges that arise. This study begins defining the
main challenges that we have to solve to implement
serverless actors. After that, we design and implement

25



a solution on top of the current serverless offering ex-
plaining how we solve the previous challenges. Finally,
as a result of evaluating the solution, we discuss the
necessary run-time extensions to the serverless core to
improve the support for serverless actors.

2 Challenges

The base of our work is that a serverless function
(FaaS) constitutes an actor. Actors can receive mes-
sages and act upon them and their own state. They
only process one message at a time.

Serverless functions are not designed to support the
actor model. As a consequence, there are certain re-
quirements of implementing actors that are not offered
in current FaaS cloud services.

Addressing. The most important element of the actor
model is that actors can receive and send messages to
other actors. A message income implies the execution
of the actor. That actor processes the received message
by performing an action.

Despite that most cloud providers offer some kind of
invocation endpoints, they are all limited to invocation
requests, in other words, once a lambda functions is
running, it can’t receive external data unless it makes
an explicit request. Therefore, the usage of external
communication services is required.

In addition, the serverless model works better with
events, so the service should hold them until they are
processed.

Naming is another issue. Each actor instance needs
its unique identifier that other actors use to establish
communication and send messages.

Atomicity. The actor model works on the base of
atomicity of actors. To maintain a consistent state,
and execute correct actions in response to messages,
there cannot be more than one instance of the same
actor executing at the same time.

Serverless functions scale automatically by spawning
concurrent containers. This breaks the atomicity of
actors if two concurrent functions consume from the
same message channel. Therefore, we need to limit
function concurrency.

State. Actors are stateful and maintain a mutable
state that takes part in action decision and logic. On
the other hand, serverless functions are built stateless,
in a way that consequent calls to the same function may
not maintain previous state. Cloud providers don’t

Figure 1: architecture overview.

offer built-in state management for their FaaS services,
and external storage services must be used.

Passivation A key element for serverless actors is the
time with no message income.

In a fully event-driven system, actors should only
execute on message reception, as a reaction. This ap-
proach in a FaaS environment would be unfeasible, as
each actor invocation would imply a cloud function re-
quest and accesses to an external storage to load and
dump state (severely affecting performance).

However, keeping the actor running to avoid these
latencies, greatly increases computation cost, as we
would be billed for unproductive execution functions.

Performance. The actor model must be functional.
Therefore, a minimum performance is mandatory for
the viability of its adoption. This is a special require-
ment given the high network latencies of the remote
components such as distributed storage and communi-
cation.

3 Design and Implementation

In this section we present a solution1 for serverless ac-
tors on top of AWS. Nevertheless, the structure is sim-
ilar on other platforms like Azure.

Fig. 1 depicts an overview of the solution. We use
AWS Lambda as computation power for the serverless
actors. Each actor instance is a new function. Then,
spawning an actor means deployment and creation of
a new Lambda function. Actors’ state is persisted in

1prototype available at github.com/danielBCN/faasactors

26



DynamoDB. Finally, SQS queues are used to enable
communication between lambdas.

The problems discussed in the previous section are
solved in the following ways.

Addressing. Actors should react to messages and
hold them until they are processed. This could be done
with a messaging queue or an event bus. Messaging
queues permit to store the messages persistently until
the actor processes them.

A queuing service also solves the naming issue, since
actors and queues could share identifier. A message m,
which should be sent to an actor with identifier aid,
is queued to the queue with name aid. This approach
allows communication between actors (and from any-
where) by only knowing the actor’s identifier.

In our implementation, actors (and their queues) are
identified by a unique string. This eases the actor
knowing its name at any moment and simplifies ad-
dressing. We use Simple Queue Service (SQS) for our
queues, as it is integrated with the other cloud systems
and offers good performance. Each actor has its queue
and waits its messages on it. To communicate with an-
other actor, one only needs to know the other actor’s
name and send a message to the corresponding queue.

Atomicity. We could solve this issue by limiting func-
tion concurrency to one. This way, while there will not
be more than one invocation of the same function run-
ning at the same time, we can still exploit the FaaS
scalability and deploy a virtually infinite number of
different functions concurrently.

There are several ways of doing so. AWS Lambda
offers a configuration parameter for reserved concur-
rency [2]. Creating the function with a concurrency
reservation of one, multiple invocations are throttled
and only one function is executed at a time. However,
throttling can suppose significant delays in executions.

State. Our approach uses a disaggregated storage ser-
vice for persisting state. In this way, the state is re-
trieved from the store when the function is invoked and
stored back before the invocation finishes. This allows
persisting the actor for indefinite time at a reduced
cost (the storage service’s). In contrast, actors aren’t
always listening for messages, and need to be awaken,
which has an extra latency. The approach is closely
related to the passivation of actors.

In particular, we use Amazon DynamoDB. The ser-
vice presents latencies inferior to 10ms for puts and
gets of small strings.

Passivation. We are at a crossroads between com-
plete passivation of actors to avoid extra billing and
maintaining them running to avoid extra latency.

We propose a hybrid solution where actors’ state is
persisted on a storage system, which allows passivation
of actors when they haven’t received a message for a
while, solving the extra billing problem. But, when
invoked, they process all available messages on a single
execution (minimizing extra latency). Once the actor
is passivated, to process new messages, it would be
necessary to invoke it again with a special event, in
which case it will recover its state from the remote
storage.

This approach requires an event system with two
main properties. 1) To trigger a new execution when
the actor’s underlying function has been passivated.
2) When the function is running, notify it without en-
queueing more functions invocations. Unfortunately,
cloud providers do not offer this kind of event system
as far as we know. Such is the case for AWS Lambda
and SQS. A lambda function with the SQS trigger en-
abled, consumes all the available messages trying to
enqueue invocations. As a result, when the function
starts running and tries to receive messages, they are
no longer available. This behavior, indeed, requires an
external client that schedules the execution of actors.
This client is notified when an actor passivates. After
that, the client listens to the passivated actor queue, so
that when the first message arrives, the client invokes
the actor with the message in the payload.

3.1 Adapting actor’s code to FaaS

Actors usually communicate calling each other’s meth-
ods. Unfortunately, neither the underlying FaaS nor
SQS support remote method calling. Thus, we imple-
ment an abstraction layer following the Active Object
Pattern [3] to seamlessly handle the needed reflection.

Firstly, we inspect the code dependencies for every
actor and zip them into the AWS Lambda deployment
package. We find similar approaches in [4]. Then we
serialize every remote actor method call and send it
over SQS. And finally, we deserialize every SQS mes-
sage and call the appropriate actor method.

4 Related work

Microsoft’s Azure cloud offers features that seem to
be the most helpful to build a serverless actor frame-
work. Azure Durable Functions (ADF) [5] is an ex-

27



tension of Azure Functions and Azure WebJobs that
lets you write stateful serverless functions. These spe-
cial Functions as a Service can orchestrate other func-
tions, providing state management, checkpointing, and
sync/async function calling and chaining. ADF also in-
cludes eternal orchestration functions [6]. This feature
intends on maintaining a long execution of the same
function so that state is kept along. To avoid FaaS’ ex-
ecution time limit, functions detect when the end time
is near and create a new invocation with the state as
payload. Additionally, ADF provides singleton orches-
trators functions, which ensure that only one invoca-
tion of them is ran at a time. When invoked, functions
detect if there is already another instance of the same
function running; in which case, the function ends im-
mediately. Unfortunately, this singleton orchestrators
are not atomic at the moment of writing [7], so they
can’t be used to build serverless actors.

In [8] we find an example of an actor model imple-
mentation using Azure Durable Functions. In this ex-
ample, each orchestrator function (ADF) is an actor
with a specific instance identifier. The author makes
use of singleton orchestrators and their capability of
waiting for external events to perform actor opera-
tions. An actor receives messages from others by wait-
ing for external events. When the event is created, the
orchestrator function awakens, processes the message,
and calls itself with its state as payload by using the
eternal orchestration feature. Orchestrator instances
(actors) are created, queried or terminated through
HTTP-triggered functions, which, in turn, raise spe-
cial events specifying the instance identifier and the
desired actor operation. However, these orchestrator
functions don’t guarantee message delivery, events can
be lost depending on the function activity [9].

As for singleton functions, extra invocations that do
not perform any work imply additional costs. More-
over, the implementation requires extra steps in func-
tion invocation (HTTP) that involve additional com-
plexity and latency.

In addition, the state offered is limited for two rea-
sons: it uses eternal functions, so the state is trans-
ferred by payload; and it uses an external service for
persisting state when the function waits for message
events. That is, ADF persists the state between differ-
ent function activations by an Event Sourcing replay
mechanism [5, 6]. Consequently, not only there is an
overhead penalty when recreating the state, but also
function executions must be deterministic [5].

In summary, ADF seems to offer great tools to build

100 300 500 700

Number of messages

0

20

40

60

80

E
x
ec

u
ti

o
n
 t

im
e 

(s
)

Serverless Actor

FaaS

Figure 2: Serverless actor vs FaaS.

serverless actors. However, they still fall short to pro-
vide atomicity, state and invocation performance, and
guaranteed event delivery.

5 Evaluation

We evaluate our prototype and compare it to AWS
Lambda to prove the usefulness of serverless actors.
Many actor use cases require communication between
actors, which are not possible to implement using AWS
Lambda or any other FaaS available. Thus, we pick the
counter example. A simple use case which can be im-
plemented in both serverless actors and AWS Lambda.

The experiment consists of measuring the amount of
time that takes to process different loads of messages.
The implementations used in the experiment are as fol-
lows:

• Serverless actors: each actor’s message will be sent
through SQS. Then the message will be read by an
already running actor, or a new actor invocation
will handle the new message and the upcoming
burst. Each message will modify a counter vari-
able in the actor local memory.

• FaaS: each message implies a new function invo-
cation, which in turn will make a read and update
request to a remote DynamoDB.

In order to make a fair comparison, both implemen-
tations use a single concurrent lambda, 3 GB of mem-
ory, warm containers, and the same invocation process.
The experiment was repeated 10 times.

Fig. 2 shows the average and standard deviation for
the processing time length for both Serverless Actor
and FaaS implementation. We see that our serverless
actor prototype is up to 5.95× faster than the AWS

28



Lambda implementation. This is due to the high la-
tency of the invocation and remote storage which hap-
pens for every request. We also observe a significant
and increasing execution time deviation as a result of
the Lambda throtling process, which seems to postpone
lambda invocations if it receives frequent invocations.

6 Discussion

During the development of the design and implemen-
tation of serverless actors, we have found several re-
strictions that deserve a discussion. We believe this
is a consequence of services’ lack of built-in features
needed for the application.

One important aspect is addressing. Current FaaS
do not offer any kind of direct communication between
functions once they are invoked. Therefore, remote
services such as SQS must be used. While performant
enough for some cases, the distributed nature of this
service implies a suboptimal performance due to the
latency. A serverless system with complete support
for function’s intercommunication would get rid of this
performance penalty.

Passivation and event processing are the most im-
portant elements in a serverless actor system. Current
offering allows two major approaches. The one with
complete passivation can be thoroughly implemented
without external support but has a great penalty in
performance; whilst the hybrid solution for passivation
that processes messages directly from a queue is per-
formant, it still implies an external controller to wake
up passivated actors.

The solution here is, once more, in the cloud service
itself. We need run time support for functions capable
of awakening when messages arrive to a queue, but able
to read all available messages from that queue in a sin-
gle execution, without requiring two different sources
of events. This would suppose an internal manager
that knows the function’s state. This process would
send messages to a running function or create a new
invocation otherwise.

7 Conclusions

This paper studied the feasibility of building actors on
top of the current serverless offering. We presented the
main challenges that we must overcome and how we im-
plemented a prototype successfully solving them. The
evaluation compared our prototype to a serverless func-

tion and showed that our implementation processes up
to 5.95× more messages than its FaaS counterpart.

We have observed that, indeed, serverless actors are
possible. However, we also argue that run-time exten-
sions to the serverless core would be necessary. In par-
ticular, we claim that serverless functions would need
support for intercommunication and an event system
capable of processing messages efficiently and trigger-
ing new functions when necessary.

References

[1] S. Tasharofi, P. Dinges, and R. E. Johnson, “Why
do scala developers mix the actor model with other
concurrency models?” in European Conference on
Object-Oriented Programming. Springer, 2013, pp.
302–326.

[2] “AWS Lambda - Managing Concurrency,”
https://docs.aws.amazon.com/lambda/latest/dg/
concurrent-executions.html, 2018.

[3] R. G. Lavender and D. C. Schmidt, “Active object
– an object behavioral pattern for concurrent pro-
gramming,” 1995.

[4] J. Spillner, “Transformation of python appli-
cations into function-as-a-service deployments,”
arXiv preprint arXiv:1705.08169, 2017.

[5] “Durable Functions overview,” https://docs.
microsoft.com/azure/azure-functions/durable-
functions-overview, 2018.

[6] “Eternal orchestrations in Durable Functions
(Azure Functions),” https://docs.microsoft.com/
azure/azure-functions/durable-functions-eternal-
orchestrations, 2017.

[7] “Add singleton support for functions to ensure only
one function running at a time,” https://github.
com/Azure/azure-functions-host/issues/912, 2018.

[8] “Actors in Serverless using Azure Functions,”
http://khaledhikmat.github.io/posts/2017-12-27-
durable-functions, 2017.

[9] “External event message loss due to async activity
in orchestration,” https://github.com/Azure/
azure-functions-durable-extension/issues/515,
2018.

29


