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Estimation of the length of the process simulation
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The paper is devoted to the method of determining the simulation duration sufficient for
estimating of unknown parameters of the distribution law for given values of the relative
error and the confidence level. The method is developed for nonnegative random variables,
for nonnegative regenerating sequence and for nonnegative regenerating piecewise-constant
process. An algorithm for simulation a piecewise constant random process is proposed, the
result of which is the number of experiments or the duration of the simulation as well as the
estimates of unknown parameters obtained as a result of simulation.

The results of numerical experiments illustrating the application of the method for deter-
mining the simulation duration are given for a predetermined relative error and confidence
level. For the examples, two distributions are chosen from the families of one-parameter and
two - from two-parameter distributions. The simulation of random variables with the chosen
distributions took into account the simulation duration, sufficient for estimating the unknown
parameters of the distribution law for given relative error and confidence level. For chosen
distributions, series of experiments were performed at different values of the relative error
and the confidence probability.
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1. Introduction

One way to analyze the characteristics of a random process is to simulate it, when
the model of the calculated process is fully reproduced. Simulation simulation relies
on Monte Carlo methods - numerical methods for solving mathematical problems by
simulation random variables. The most important technique in this case is to bring
the problem to the calculation of mathematical expectations [1]. If the mathematical
expectation is unknown, the problem arises of estimating it with the required accuracy.
Methods are known for obtaining estimates for unknown parameters of the distribution
law of a random variable on the basis of a limited number of experiments [2, 3]. In this
case, it is necessary to determine the duration of the simulation, sufficient to estimate
the unknown parameters of the distribution law for given relative error and confidence
level. The method for determining the length of the simulation, based on the central
limit theorem, is proposed in [4]. The approach is also applicable to estimating the
characteristics of nonnegative regenerating process both in discrete or in continuous time.
The method makes it possible to obtain estimates of the characteristics of a random
process both in discrete and continuous time, i.e. the characteristics that depend on
the number of jumps in states and the characteristics that depend on the time of stay
in states. The method is applicable for the case of known values of the distribution
characteristics corresponding to the experiments, and for the case of unknown values of
the mathematical expectation and variance, for which they are obtained from existing
experiments.

In Section 2, the method is described for the case of simulation independent identically
distributed random variables. Section 3 presents the simulation algorithm. In Section
4, a numerical experiment was carried out for some of the laws of distribution — the
exponential distribution, the Weibull distribution, the Rayleigh distribution, and the
Pareto distribution, the characteristics of which are known [5]. For these distributions,
for a number of values of the relative error, for several values of the confidence probability,
a series of experiments were conducted and estimates of the mathematical expectation
�̃� and variance �̃� were obtained as well as a sufficient length of the series of experiments
(the duration of the simulation). A numerical experiment illustrates the operation of the
method for determining the length of simulation for a given relative error and confidence
level [4].

2. Method for determining the length of the simulation

In this section the method for determining the length of the simulation is described
according to [2].

Let n be the number of independent experiments on a nonnegative random variable
X, on the basis of which we estimate �̃� and �̃� for the mathematical expectation m>0
and variance D :

�̃� =

∑︀𝑛
𝑖=1 𝑥𝑖

𝑛
, (1)

�̃� =

∑︀𝑛
𝑖=1 (𝑥𝑖 − �̃�)2

𝑛− 1
. (2)

Suppose that the quantities m>0 and D are known [2]. Let us find the number of
experiments n for which

𝑃

{︂
|�̃�−𝑚|

𝑚
< 𝜖

}︂
≥ 𝛽, (3)

where 𝜖 is the required relative error, and 𝛽 is the confidence probability.
We express the probability on the left-hand side of the inequality in terms of the

normal distribution function Φ*(𝑥):
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𝑃

{︂
|�̃�−𝑚|

𝑚
< 𝜖

}︂
= 2Φ*

(︂
𝑚𝜖

𝜎�̃�

)︂
− 1, (4)

where 𝜎�̃� =
√︁

𝐷
𝑛

is a standard deviation �̃�. From the inequality

2Φ*
(︂

𝑚𝜖

𝜎�̃�

)︂
− 1 ≥ 𝛽 (5)

follows
𝑚𝜖

𝜎�̃�
≥ 𝑡𝛽 , (6)

where 𝑡𝛽 = 𝑎𝑟𝑔Φ*
(︁

1+𝛽
2

)︁
and 𝑎𝑟𝑔Φ*(𝑥) is the inverse of Φ*(𝑥) meaning the value of

the argument at which the normal distribution function is equal to x.
If mathematical expectation m and variance D are not known, we use their estimates

𝑚 = �̃� and 𝜎�̃� =

√︁
�̃�
𝑛

.
Thus, the required number n of experiments will be found from the inequality [3]:

�̃�𝜖 ≥ 𝑡𝛽

√︃
�̃�

𝑛
. (7)

Inequality (7) is also applicable in the case when the values 𝑥1, 𝑥2, ..., 𝑥𝑛 form a
nonnegative regenerating sequence, i.e. discrete time random process [6].

Denote 𝑉𝑛 = 𝑥1 + 𝑥2 + ... + 𝑥𝑛 and 𝑊𝑛 = 𝑥2
1 + 𝑥2

2 + ... + 𝑥2
𝑛, then

�̃� =
𝑉𝑛

𝑛
, �̃� =

𝑊𝑛

𝑛
−
(︂
𝑉𝑛

𝑛

)︂2

. (8)

Therefore, the required number of experiments can be found from the inequality

𝑡𝛽

⎯⎸⎸⎷ 1

𝑛

(︃
𝑊𝑛

𝑛
−
(︂
𝑉𝑛

𝑛

)︂2
)︃

≤
𝑉𝑛

𝑛
𝜖,

those 𝑊𝑛 ≤ (𝑉𝑛)2
(︂
𝐸 +

1

𝑛

)︂
. (9)

In order to avoid overflow when exponentiation of accumulated amounts, it is more
convenient to use its record in the following form:

𝑊𝑛

𝑉𝑛
≤ 𝑉𝑛

(︂
𝐸 +

1

𝑛

)︂
, (10)

where 𝐸 =
(︁

𝜖
𝑡𝛽

)︁2
.

The same approach can be applied in case of estimating characteristics of a continuous
time random process.

We consider a nonnegative regenerating piecewise-constant process X(t), which
assumes a constant value 𝑥𝑖 on the interval [𝑡𝑖−1, 𝑡𝑖) , 𝑡0 = 0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑛−1 <
𝑡𝑛 = 𝑇 [5], and denote

𝑉𝑇 =
𝑛∑︁

𝑗=1

𝑥𝑗 (𝑡𝑗 − 𝑡𝑗−1) , 𝑊𝑇 =
𝑛∑︁

𝑗=1

𝑥2
𝑗 (𝑡𝑗 − 𝑡𝑗−1) . (11)
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The mathematical expectation and variance of this process on the interval [0,T ) are
estimated by formulas

�̃� =
𝑉𝑇

𝑇
, �̃� =

𝑊𝑇

𝑇
−
(︂
𝑉𝑇

𝑇

)︂2

, (12)

and the required simulation duration of the T is found from the inequality

𝑊𝑇

𝑉𝑇
≤ 𝑉𝑇

(︂
𝐸 +

1

𝑇

)︂
. (13)

3. Simulation Algorithm

Let X(t) = (𝑋1(𝑡), 𝑋2(𝑡), ..., 𝑋𝐿(𝑡)) be a piecewise constant process with L compo-
nents, either in discrete or in continuous time.

Let nonnegative functions 𝐹 (𝑖)
𝑑 (X(𝑡)) and 𝐹

(𝑖)
𝑐 (X(𝑡)) be characteristics of the process

X(𝑡) in case of discrete or continuous time correspondingly with the mathematical
expectations

𝑚
(𝑖)
𝑑 = lim

𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

𝐹
(𝑖)
𝑑 (X(𝑡𝑘)), 𝑖 = 1, 2, . . . , 𝑁𝑑, (14)

𝑚
(𝑖)
𝑐 = lim

𝑇→∞

1

𝑇

∫︁ 𝑇

0
𝐹

(𝑖)
𝑐 (X(𝑡)) 𝑑𝑡, 𝑖 = 1, 2, . . . , 𝑁𝑐, (15)

where 𝑁𝑑 and 𝑁𝑐 are the corresponding numbers of characteristics.
The goal is to estimate 𝑚

(𝑖)
𝑑 and 𝑚

(𝑖)
𝑐 with predetermined values of relative error 𝜖

and confidence probability 𝛽. In addition the following input data should be determined:
𝑇𝑚𝑖𝑛 - duration of transit period before beginning of accumulating statistics; 𝑇𝑚𝑎𝑥 - the
maximum length of the simulation in case of failure to achieve the specified accuracy;
eps - infinitesimal increment in time units; 𝛿 - small quantity to avoid zero divide in
step d.

The algorithm for simulation a piecewise constant process to obtain estimates of
required characteristics is given below.

a) Set the duration of the transit period 𝑇𝑚𝑖𝑛 > 0, the maximum simulation duration
𝑇𝑚𝑎𝑥 > 𝑇𝑚𝑖𝑛 and determine the initial state of the process X(t):X = X(𝑡0).

For each characteristic 𝐹
(𝑖)
𝑑 of the process X(t), we zero out the quantities 𝑉

(𝑖)
𝑑 and

𝑊
(𝑖)
𝑑 , 𝑖 = 1, 2, ..., 𝑁𝑑. For each characteristic 𝐹

(𝑖)
𝑐 of the process X(t), we zero out the

quantities 𝑉
(𝑖)
𝑐 and 𝑊

(𝑖)
𝑐 , 𝑖 = 1, 2, ..., 𝑁𝑐. We set 𝑛 = 1 and 𝜏𝑛𝑒𝑥𝑡 = 0.

b) Set 𝜏𝑙𝑎𝑠𝑡 = 𝜏𝑛𝑒𝑥𝑡, and then for each component of the process 𝑋𝑗(𝑡) determine
the time of the next jump 𝜏𝑗 .

We determine the instant 𝜏𝑛𝑒𝑥𝑡 = 𝑚𝑖𝑛{𝜏 𝑗} of the nearest jump of the process X(t)
and the corresponding component 𝐽𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝜏 𝑗}, where 1 ≤ 𝐽𝑛𝑒𝑥𝑡 ≤ 𝐿.

If 𝜏𝑛𝑒𝑥𝑡 ≥ 𝑇𝑚𝑎𝑥, we set 𝜏𝑛𝑒𝑥𝑡 = 𝑇𝑚𝑎𝑥 + 𝑒𝑝𝑠.
We change the accumulated data:

𝑉
(𝑖)
𝑑 := 𝑉

(𝑖)
𝑑 + 𝐹

(𝑖)
𝑑 (X) ,

𝑊
(𝑖)
𝑑 := 𝑊

(𝑖)
𝑑 +

(︁
𝐹

(𝑖)
𝑑 (X)

)︁2
, 𝑖 = 1, 2, . . . , 𝑁𝑑, (16)

𝑉
(𝑖)
𝑐 := 𝑉

(𝑖)
𝑐 + 𝐹

(𝑖)
𝑐 (X) (𝜏𝑛𝑒𝑥𝑡 − 𝜏𝑙𝑎𝑠𝑡),
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𝑊
(𝑖)
𝑐 := 𝑊

(𝑖)
𝑐 +

(︁
𝐹

(𝑖)
𝑐 (X)

)︁2
(𝜏𝑛𝑒𝑥𝑡 − 𝜏𝑙𝑎𝑠𝑡), 𝑖 = 1, 2, . . . , 𝑁𝑐. (17)

c) If 𝜏𝑛𝑒𝑥𝑡 < 𝑇𝑚𝑎𝑥, then we set 𝑛 := 𝑛 + 1 and find the following state X of the
process X(t): X = X(𝜏𝑛𝑒𝑥𝑡).

If 𝜏𝑛𝑒𝑥𝑡 ≥ 𝑇𝑚𝑎𝑥, go to step f (the specified accuracy is not achieved).
d) If 𝜏 𝑙𝑎𝑠𝑡 > 𝑇𝑚𝑖𝑛 and for some values 𝑉

(𝑖)
𝑐 < 𝛿 or 𝑉

(𝑖)
𝑑 < 𝛿, then go to step b.

e) If 𝜏 𝑙𝑎𝑠𝑡 > 𝑇𝑚𝑖𝑛 and for some characteristic 𝐹
(𝑖)
𝑑 , we have

𝑊
(𝑖)
𝑑

𝑉
(𝑖)
𝑑

> 𝑉
(𝑖)
𝑑

(︀
𝐸 + 1

𝑛

)︀
,

then go to step b. If for some characteristic 𝐹
(𝑖)
𝑐 , we have 𝑊

(𝑖)
𝑐

𝑉
(𝑖)
𝑐

> 𝑉
(𝑖)
𝑐

(︁
𝐸 + 1

𝜏𝑙𝑎𝑠𝑡

)︁
,

then go to step b.
f) We calculate the estimates of the average values of the characteristics

�̃�
(𝑖)
𝑑 =

𝑉
(𝑖)
𝑑

𝑛
, 𝑖 = 1, 2, . . . , 𝑁𝑑, (18)

�̃�
(𝑖)
𝑐 =

𝑉
(𝑖)
𝑐

𝑇𝑚𝑎𝑥
, 𝑖 = 1, 2, . . . , 𝑁𝑐. (19)

g) End of simulation.
At the end of simulation one obtain the estimates �̃�

(𝑖)
𝑑 for discrete time process or

�̃�
(𝑖)
𝑐 for continuous time process as well as the number of experiments or simulation

duration. In case specified accuracy was not achieved the values �̃�(𝑖)
𝑑 and �̃�

(𝑖)
𝑐 correspond

to the estimates during determined period 𝑇𝑚𝑎𝑥.

4. Numerical results

For the simulation, we selected the distributions of non-negative continuous random
variables — the exponential distribution and the Rayleigh distribution (one-parameter),
the Weibull distribution and the Pareto distribution (two-parameter) [5]. For all
experiments three values of relative errors 𝜖 ∈ {10−2, 10−3, 10−4} and the confidence
probability 𝛽=0.95 are chosen.

Table 1 shows the simulation results for the exponential distribution

𝐹𝑒𝑥𝑝(𝑥) = 1 − 𝑒−𝜆𝑥 (20)

with the parameter 𝜆=3.
For several values of the relative error 𝜖 the number n of experiments necessary to

achieve the required accuracy with given confidence level 𝛽=0.95 is indicated, together
with the corresponding estimates �̃� for mathematical expectation and �̃� for variance.

Figure 1 and Figure 2 illustrate the convergence of estimates �̃� and �̃� to the exact
values

𝑚𝑒𝑥𝑝 =
1

𝜆
, (21)

𝐷𝑒𝑥𝑝 =
1

𝜆2
(22)

depending on the number of experiments.
In Figure 1 and Figure 2 the curves correspond to the estimate of the mathematical

expectation �̃� and variance �̃�, the straight line corresponds to the exact value of the
mathematical expectation 𝑚𝑒𝑥𝑝 ≈ 0.333 (21) and variance 𝐷𝑒𝑥𝑝 ≈ 0.111 (22).
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Table 1
The number n of experiments and numerical characteristics for the exponential

distribution with the parameter 𝜆=3

𝜖 = 10−1 𝜖 = 10−2 𝜖 = 10−3 𝜖 = 10−4

𝑛 = 372 𝑛 = 38261 ≈ 104 𝑛 = 3840310 ≈ 106 𝑛 = 384177934 ≈ 108

�̃� = 0.3 �̃� = 0.33 �̃� = 0.333 �̃� = 0.3333

�̃� = 0.1 �̃� = 0.11 �̃� = 0.111 �̃� = 0.1111

Table 2
The number n of experiments and numerical characteristics for the Weibull

distribution with the parameters 𝜆=1 and k=5

𝜖 = 10−1 𝜖 = 10−2 𝜖 = 10−3 𝜖 = 10−4

𝑛 = 25 𝑛 = 1939 ≈ 103 𝑛 = 201621 ≈ 105 𝑛 = 20162100 ≈ 107

�̃� = 0.9 �̃� = 0.92 �̃� = 0.918 �̃� = 0.9181

�̃� = 0.05 �̃� = 0.04 �̃� = 0.044 �̃� = 0.0442

Figure 1. Estimation of the mathematical
expectation as a function of the number of
experiments for the exponential distribution

Figure 2. Estimation of the variance as
a function of the number of experiments
for the exponential distribution

Table 2 shows the simulation results for the Weibull distribution

𝐹𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥) = 1 − 𝑒−( 𝑥
𝜆 )𝑘 (23)

with the parameters 𝜆=1 and k=5.
Figure 3 and Figure 4 illustrate the convergence of estimates �̃� and �̃� to the exact

values

𝑚𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = 𝜆Γ

(︂
1 +

1

𝑘

)︂
, (24)

𝐷𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = 𝜆2Γ

(︂
1 +

2

𝑘

)︂
− 𝜇2. (25)
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In Figure 3 and Figure 4 the curves correspond to the simulation estimate of the
mathematical expectation �̃� and variance �̃�, the straight line corresponds to the
analytical value of the mathematical expectation 𝑚𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = 0.9181 (24) and variance
𝐷𝑊𝑒𝑖𝑏𝑢𝑙𝑙 ≈ 0.0442 (25).

Figure 3. Estimation of the mathematical
expectation as a function of the number of
experiments for the Weibull distribution

Figure 4. Estimation of the variance as
a function of the number of experiments
for the Weibull distribution

Figure 5 and Figure 6 for the exponential distribution (20) and for the Weibull
distribution (23) show the dependence of the number of experiments on the relative
error.

Table 3 shows the simulation results for the Rayleigh distribution

𝐹𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝑥) = 1 − 𝑒
−𝑥

2𝑠2 (26)

with the parameter 𝑠=2.
Figure 7 and Figure 8 illustrate the convergence of estimates �̃� and �̃� to the exact

values

𝑚𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ =

√︂
𝜋

2
𝜎, (27)

𝐷𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ =
(︁

2 −
𝜋

2

)︁
𝜎2. (28)

Figure 5. The number of experiments, de-
pending on the relative error for the expo-
nential distribution

Figure 6. The number of experiments,
depending on the relative error for the
Weibull distribution
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Table 3
The number n of experiments and numerical characteristics for the Rayleigh

distribution with the parameter 𝑠=2

𝜖 = 10−1 𝜖 = 10−2 𝜖 = 10−3 𝜖 = 10−4

𝑛 = 73 𝑛 = 10334 ≈ 104 𝑛 = 1050831 ≈ 106 𝑛 = 110337255 ≈ 108

�̃� = 2.4 �̃� = 2.49 �̃� = 2.506 �̃� = 2.5066

�̃� = 1.1 �̃� = 1.67 �̃� = 1.713 �̃� = 1.7168

Table 4
The number n of experiments and numerical characteristics for the Pareto

distribution with the parameters 𝑥𝑚=2, 𝑘=3

𝜖 = 10−1 𝜖 = 10−2 𝜖 = 10−3 𝜖 = 10−4

𝑛 = 68 𝑛 = 10547 ≈ 104 𝑛 = 1222897 ≈ 106 𝑛 = 158976610 ≈ 108

�̃� = 1.4 �̃� = 1.49 �̃� = 1.499 �̃� = 1.5

�̃� = 0.3 �̃� = 0.61 �̃� = 0.715 �̃� = 0.75

In Figure 7 and Figure 8 the curves correspond to the estimate of the mathematical
expectation �̃� and variance �̃�, the straight line corresponds to the analytical value of the
mathematical expectation 𝑚𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ = 2.5066 (27) and variance 𝐷𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ = 1.7168
(28).

Table 4 shows the simulation results for the Pareto distribution

𝐹𝑃𝑎𝑟𝑒𝑡𝑜(𝑥) = 1 −
(︁𝑥𝑚

𝑥

)︁𝑘
(29)

with the parameters 𝑥𝑚=2, 𝑘=3.

Figure 7. Estimation of the mathematical
expectation as a function of the number of
experiments for the Rayleigh distribution

Figure 8. Estimation of the variance as
a function of the number of experiments
for the Rayleigh distribution

Figure 9 and Figure 10 illustrate the convergence of estimates �̃� and �̃� to the exact
values

𝑚𝑃𝑎𝑟𝑒𝑡𝑜 =
𝑘𝑥𝑚

𝑘 − 1
(𝑓𝑜𝑟 𝑘 > 1), (30)
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𝐷𝑃𝑎𝑟𝑒𝑡𝑜 =

(︂
𝑥𝑚

𝑘 − 1

)︂2 𝑘

𝑘 − 2
(𝑓𝑜𝑟 𝑘 > 2). (31)

In Figure 9 and Figure 10 the curves correspond to the estimate of the mathematical
expectation �̃� and variance �̃�, the straight line corresponds to the exact value of the
mathematical expectation 𝑚𝑃𝑎𝑟𝑒𝑡𝑜 = 1.5 (30) and variance 𝐷𝑃𝑎𝑟𝑒𝑡𝑜 = 0.75 (31).

Figure 9. Estimation of the mathematical
expectation as a function of the number of
experiments for the Pareto distribution

Figure 10. Estimation of variance as a
function of the number of experiments
for the Pareto distribution

Figure 11 and Figure 12 for the Rayleigh distribution (26) and for the Pareto
distribution (29) show the dependence of the number of experiments on the relative
error.

Figure 11. The number of experiments,
depending on the relative error for the
Rayleigh distribution

Figure 12. The number of experiments,
depending on the relative error for the
Pareto distribution

The results obtained in the series of the numerical experiment confirm the conclusion
that an increase in the number of experiments increases the accuracy of the estimates of
unknown parameters obtained on their basis.

5. Conclusions

In this paper we propose an algorithm for simulation of a regeneration multi-
component process. The length of the simulation is specified by the relative errors
of the process parameters. The algorithm makes it possible to obtain estimates the
characteristics of the process, both in discrete and continuous time, which depend on
the number of jumps in the states, and on the characteristics of the stay time in states.
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The result of the algorithm is the number of experiments (the number of process
jumps) or the duration of the simulation as well as the estimates of unknown parameters
obtained as a result of simulation.

The numerical experiment is an illustration of the work of the method for deter-
mining the simulation duration, sufficient for estimating the unknown parameters of
the distribution law for given relative error and confidence level. The evaluation of the
parameters obtained on the basis of a series of experiments, in the case considered -
mathematical expectation and variance, was compared with the exact values of these
parameters, the analytical form of which for taken distributions is known. We note that
the method makes it possible to determine a sufficient length of a series of experiments
also for the case when the values of the distribution law parameters are unknown, and
estimates for these parameters are obtained on the basis of simulation [2]. This method
is planned to be used in simulating random access [7] and adaptive radio access [8] for
LTE networks as a development of previous research.
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