
Transferable Anonymous Payments via TumbleBit in

Permissioned Blockchains

Claudio Ferretti1, Alberto Leporati1, Luca Mariot1, and Luca Nizzardo2

1 DISCo, University of Milano-Bicocca, Milano, Italy
{claudio.ferretti, alberto.leporati, luca.mariot}@unimib.it

2 IMDEA Software Institute, Madrid, Spain
luca.nizzardo@imdea.org

Abstract

We propose a modification to the TumbleBit protocol, the off-chain payment hub en-
abling anonymous transactions among users in the Bitcoin network. Specifically, we modify
the first step of the protocol by making the tumbler node sending a P2SH transaction on
the blockchain claiming that any user can redeem 1 Bitcoin by providing a SHA-2 preim-
age of a value chosen by the Tumbler. We remark that our modification enables Bob to
transfer its Bitcoin to a third user, and argue that this modified TumbleBit protocol could
find applications in permissioned blockchains, for example in the context of anonymous
payments between different banks or fintech companies.

1 Introduction

The advent of Bitcoin back in 2008 [21] gave people the perception of being able to exchange
value over the web in a trustless and anonymous way. Nevertheless, it is now widely known
that Bitcoin anonymity properties are weaker than initially expected, as underlined in several
recent works [16, 26]. These anonymity weaknesses opened the way to a research effort devoted
to provide anonymity-enhancing services for Bitcoin, like [30, 11, 20]. In a few words, the aim of
these works is to mask the addresses of payers and payees among a set of different payers/payees,
so that each pair (payer, payee) is difficult to sort out.

Once dealing with such a problem, one can simply employ a trusted mixer of transactions,
in a way that as soon as the mixer behaves honestly, no data is leaked. But how can we be
sure that such a mixer is not spoofing clients data for some reason? In a way, an optimal
solution would guarantee anonymity even with respect to the mixer itself. Moreover, apart
from preserving privacy, we must also avoid that a greedy mixer steals coins while processing
the mixing of transactions. In general, we want to provide a service where a mixer cannot link
transactions between payer and payee and, on top of that, he is prevented from stealing coins.

An interesting solution to this problem was proposed by Heilman et. al in [14], with the
introduction of TumbleBit. TumbleBit is a unidirectional unlinkable payment hub that uses an
untrusted intermediary, called Tumbler, to enhance anonymity. In TumbleBit, payments are
backed in Bitcoin, and the tumbler cannot break users’ anonymity, nor steal users’ Bitcoins,
nor create money and send it to itself. Moreover, TumbleBit improves on scalability, since
payments are enforced by off-chain interactions between payer, payee and tumbler. Specifically,
on-chain operations are only involved in two points of the protocol, namely during the setup of
the channel payments and the cash-out phase.

In their original form, blockchains have been conceived as distributed data structures which
may be used to enforce public verifiability among a set of mutually distrusting parties, without
the need to resort to a trusted third party. Hence, blockchains such as that of Bitcoin are
permissionless by design, meaning that any party can join the network and can read and write



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

transactions over the blockchain. Recently permissioned blockchains have also been proposed,
where read and write access are granted by the network administrators only to certain autho-
rized actors. Examples of permissioned blockchains frameworks include Hyperledger Fabric [2],
Corda [6], and MultiChain [13]. A natural question is whether permissioned blockchains are
actually useful in any real-world use case. As a matter of fact, the ability to select authorized
users who can interact with the blockchain implicitly assumes that they are not mutually dis-
trustful – thus rising the legitimate doubt that any application domain where a permissioned
blockchain is proposed can be addressed by traditional centralized databases approaches. Wüst
and Gervais [31] investigated this issue in depth, describing several scenarios where it makes
sense to use a permissioned blockchain, including interbank payments, supply chain management
and decentralized autonomous organizations.

Depending on the underlying use case, anonymity can be an important feature also in
permissioned blockchains. One example is the aforementioned scenario of interbank payments,
where different banks needs to transfer financial value between them or their customers. As
noted in [31], this problem is usually addressed through the involvement of a central bank that
acts as a trusted third party. Using a permissioned blockchain in this case could simplify the
whole payment process. In fact, the central bank would only behave as a trusted authority
giving read and write access on the blockchain to the banks participating in the system, and
it would not be involved in the verifiability of the transactions. It seems reasonable, however,
that banks taking part in this permissioned blockchain would like to keep their monetary flows
anonymous. Of course, the actors involved in this application scenario could also be any kind
of organizations other than banks that wish to exchange money among them while holding in
high regard the privacy of their transactions, such as fintech companies [10]. Consequently, the
use of tumbler nodes to anonymize transactions among users is also motivated in the context
of permissioned blockchains.

In this paper we propose a modification of the TumbleBit protocol which enables the anony-
mous transfer of a token to a third party. In particular, the tumbler node is involved in the
initial transfer of the token between Alice and Bob, as per the original protocol. However,
Bob can subsequently forward the received Bitcoin to a third player, Charlie, without the ne-
cessity of interacting again with the Tumbler, while the anonymity of the whole transaction
is preserved. In order to accomplish this feature, we modify the initial part of the TumbleBit
protocol by using a Pay-To-Script-Hash (P2SH) transaction, whose escrow condition consists in
providing a pair of SHA-2 preimages respectively chosen by the Tumbler and Bob. Contrarily,
in the original protocol a multisignature escrow transaction is posted on the blockchain, which
requires both the Tumbler’s and Bob’s signatures to redeem the escrowed Bitcoin. We remark
that this modification allows Bob to anonymously transfer the token received from Alice to
Charlie without needing further interaction with the Tumbler, due to the fact that our P2SH
transaction does not bind the receiver to a specific address, as in the case of the 2-of-2 escrow
transaction used in the original protocol. However, we also note that using our modified pro-
tocol in permissionless blockchains is not secure, since a malicious miner could steal Bitcoins
by mauling the modified P2SH transaction [3]. Generally speaking, mauling is an attack where
an adversary who knows a transaction T of a user can construct a second transaction which
is semantically equivalent but syntactically different. In our case, mauling can occur in per-
missionless blockchains since a dishonest miner can take Charlie’s transaction which contains
the pair of preimages necessary to redeem the Bitcoin, and include them in a new transaction
where the recipient address is that of the miner. Hence, our protocol can be adopted to enable
transferable anonymous payments only in a permissioned setting where the validators nodes
are trusted, such as in the interbank payment scenario mentioned above.

2



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

The rest of this paper is structured as follows. Section 2 covers all necessary background
definitions and notions about Bitcoin transactions, which will be used in the description of our
protocol modification. In Section 3 we give a general survey of the anonymization approaches
in the existing literature. Section 4 focuses on the original TumbleBit protocol, while Section 5
describes our modification to the first escrow phase and discusses its main properties, namely the
possibility of a further anonymous transfer without involving the Tumbler. Finally, in Section 6
we sum up the main contribution of this paper, remarking its limitations in a permissionless
setting, and discussing its possible application in permissioned blockchains.

2 Background on Bitcoin Transactions

We now recall the basic elements and operations involved in Bitcoin transactions, focusing in
particular on those that we will use in the description of the TumbleBit protocol. For further
information on the subject, we refer the reader to [22].

In the Bitcoin network, each user U is identified by a public address PKU , which corresponds
to an ECDSA public key. The amount of Bitcoins a user possesses is determined by a set of
transactions, all of which are registered on the Blockchain, and which specify the sum of Bitcoins
that have been currently transferred to that user.

In particular, each transaction is composed of multiple inputs and outputs, which are respec-
tively payers’ and payees’ public addresses. Each output in a transaction T1 can be transferred
only to a single input of another transaction T2. In particular, double-spending the quantity of
Bitcoins contained in the output of T1 would require having two transactions T2 and T3, each
pointing to the output of T1 in one of their inputs. However, this event is prevented by the secu-
rity properties of the Bitcoin protocol, which under certain assumptions (i.e., that an attacker
cannot control more than 50% of the miners in the network) ensures that double-spending
transactions are not added to the Blockchain.

Bitcoin transactions can be of different types, and they can be specified in the Script lan-
guage. In particular, the transactions involved in the TumbleBit protocol are the following:

• Offer Transactions, To: in these transactions, a payer A commits to pay a certain quan-
tity of Bitcoins to any other party in the Bitcoin network who is able to sign another
transaction satisfying a certain condition C. Transaction To is also signed by A.

• Fulfill Transactions, Tf : this is the transaction that a payee B must produce and post on
the Blockchain in order to redeem the Bitcoins offered to him by A in an offer transaction
To. In particular, Tf contains the public key of B, points to the output of To, and contains
a predicate which satisfies condition C in To. Transactions Tf is also signed by B.

The typical workflow of an offer-fulfill transaction pair is as follows: first, the offer transac-
tion To is registered on the Blockchain. Second, when the fulfill transaction Tf is also validated
on the Blockchain, the Bitcoins specified in To are transferred from A (i.e. the entity who
signed To) to B (the entity who signed Tf ).

In the Script language, both types of transactions can be specified by A and B using the
Pay-To-Script-Hash (P2SH) format, originally proposed in the Bitcoin Improvement Proposal
BIP16 [1]. More specifically, in a P2SH transaction A stores in her To offer transaction the
hash of a redeem script, which contains the condition C to be satisfied in order to validate the
fulfill transaction. On the other hand, B generates the fulfill transaction Tf by including the
redeem script of the corresponding To and a set of input values that are fed to the script. If the
hashed version of the redeem script in Tf equals the one contained in the offer transaction To,

3



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

then the redeem script is run over the set of input values, and condition C is met if and only
if the script returns true as output value.

The condition C that must be satisfied by the fulfill transaction can also be of different
types. In particular, the two basic types of conditions employed in the TumbleBit protocol and
in our modification are the following:

• Hashing condition: given a cryptographic hash function H : {0, 1}∗ → {0, 1}m and a value
y ∈ {0, 1}d, the condition C in To states that Tf must report a preimage x ∈ H−1(y) of
y, that is, a value x ∈ {0, 1}∗ such that H(x) = y. In what follows, we will assume that
the underlying hash function is SHA-2 [23], with length of the message digest fixed to
d = 256 bits.

• Signing condition: given a digital signature scheme S = 〈Sgn, V er,KE ,KD〉, condition C
in To specifies that the signature S of the fulfill transaction Tf must verify under a public
key PK ∈ KD, that is, V erPK(Tf ) = S. As in the case of TumbleBit, we will assume
in the following that the digital signature scheme is ECDSA over the Secp256k1 elliptic
curve [25], in order to make it compatible with the Bitcoin scripting language.

The hashing and signing conditions can also be composed by requiring that two preim-
ages/signatures are provided to fulfill the offer transaction, as described below:

• Double-Hashing condition: given a cryptographic hash function H as in the case of the
hashing condition and a pair of values (w, z) ∈ {0, 1}d, condition C is met if and only if
the fulfill transaction Tf contains a pair of values (x, y) ∈ {0, 1}∗ such that H(x) = w
and H(y) = z.

• 2-of-2 Escrow condition: This condition is built on top of the signing condition described
above. In particular, a user puts in escrow a certain amount of Bitcoins, and two signa-
tures S1 and S2 are required to be verified in order to redeem the Bitcoins, one under a
public key PK1 and the other on a second public key PK2.

Remark also that Bitcoin transactions can be time-locked : for example, in the offer transac-
tion To Alice can specify a time window, tw, before which the condition C must be satisfied. If
the time window tw expires without a corresponding fulfill transaction Tf being registered on
the Blockchain, the Bitcoins put in escrow for transaction To can be reclaimed by Alice. In the
Bitcoin network, time windows can be specified in number of blocks added to the Blockchain,
since each new block is appended approximately every 10 minutes.

3 Related Work

We now give a broad overview of the literature concerning the anonymization of transactions
over the Bitcoin network. Starting from TumbleBit, which is the main reference for our mod-
ified protocol and which will be described in detail in the next section, we then cover the
other main approaches to anonymization, namely micropayment channels, mixers, anonymous
cryptocurrencies, and fair exchange protocols.

TumbleBit. The TumbleBit protocol, originally proposed in [14], assumes that there are a
payer Alice (A), a payee Bob (B) and a Tumbler (T ). Alice wants to pay 1 Bitcoin to Bob but
she does not want to send her payment directly on the Blockchain; instead, she uses a Tumbler
to get anonymity. The way the whole procedure works is basically the following: the Tumbler

4



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

issues a transaction of 1 Bitcoin to Bob, and the transaction is conditioned to the solution of a
puzzle p. Bob and the Tumbler interact to create a puzzle p, which is modified by Bob into a
puzzle p′ and then sent to Alice. Alice receives p′ and issues a transaction of 1 Bitcoin to the
Tumbler which is conditioned to the solution of the puzzle p′. The Tumbler receives 1 Bitcoin
by giving to Alice the solution s′ of p′. Alice then sends s′ to Bob, who derives from it a solution
s of p. Now Bob also gets 1 Bitcoin and the payment is finalized.

Payment Channels. Other approaches to the same anonymity problem can be found in
micropayment channels: the most famous solution is the one known as the Lighting Network,
proposed by Poon et al. in [24] and recently implemented by Blockstream; another example is
Duplex Micropayment channels, proposed in [8] by Decker et al. This systems consists in an
initial on-blockchain pairwise escrow which is then updated offline via paths of intermediaries.
It is similar in spirit to what TumbleBit does, but there is a main difference, which relies in
the fact that intermediaries in micropayment channels can link payments, while the tumbler in
TumbleBit cannot.

In [15] Heilman et al. proposed a way to ensure anonymity in micropayment channel net-
works; nevertheless, that work is not compatible with Bitcoin. Moreover, an interaction between
payer, payee and tumbler is required every time for each off-chain payment, allowing a malicious
tumbler to correlate payer and payee by correlating the timing of interactions.

Anonymous Cryptocurrencies. In order to overcome Bitcoin anonymity issues, different
privacy preserving cryptocurrencies have been recently introduced: two interesting examples
are Monero, which makes use of stealth addresses and group signatures, and Zcash, which
employs shielded transactions to preserve users’ anonymity via ZK-Snarks. Moreover, on top
of Zcash we have an off-chain unlinkable payment channel called Bolt, proposed by Green and
Miers [12].

Prior Work on Bitcoin Tumblers. Other examples of Bitcoin compatible tumblers are
Mixcoin [5] and the subsequent Blindcoin [29], where a trusted third party is employed in order
to mix Bitcoin addresses. In both of them, coin theft can be detected but not avoided, and in
Mixcoin a malicious mixer has the power to break users’ anonymity as well.

Apart from those, other known mixers are CoinSwap [18] and Coinparty [32]: the former
allows two users to exchange bitcoins using an intermediary, which can link payer and payee but
is prevented from stealing coins through fair exchange. The latter provides a secure solution if
and only if at least 2/3 of the users are honest.

Other solutions for single transactions are provided by CoinShuffle [27] and CoinShuf-
fle++ [28], both built on top of CoinJoin [17]. Beside performing a mix in a single transaction,
leading to scalability problems, these systems has been shown to be vulnerable to denial of
service attacks, meaning that it is possible for a malicious user to join the protocol and then
abort the protocol for the whole set of involved users.

Fair Exchange Protocols over the Blockchain. A similar problem is the so called Zero
Knowledge Contingent Payment over the Blockchain. Here a payer commits to pay a fixed
amount (let’s say 1 Bitcoin) to a payee, if and only if the payee provides the evaluation of any
function f over which the two parties agreed at the beginning of the protocol. This kind of
protocols can be seen as a fair exchange which uses the Bitcoin Blockchain as a trusted third
party. Intuitively, the payee evaluates the function f and encrypts the result using a key k.
The key is then hashed as h = H(k). The payee receives a ciphertext c, an element h and
a zero-knowledge proof that ensures the output of the function is encoded in c using k, and
that h is the hash of k via H. At this point the payer issues a transaction offering 1 Bitcoin
under the condition of presenting an hash preimage of h. Once the payee publishes a preimage

5



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

k, he directly redeems the transaction while the payer is now able to decrypt the ciphertext
containing the output of f over inputs of her choice. A first attempt to implement this solution
was due to Maxwell [19], and was then broken and expanded by Campanelli et al. [7]. A similar
result was obtained by Basanik et al. [4]. Recently, Dziembowski et al. [9] proposed a new
interesting solution which does not use expensive cryptographic tools such as zero-knowledge
proofs.

4 TumbleBit Protocol

Using the Bitcoin primitives described in Section 2, we now give a more detailed description of
the TumbleBit protocol proposed in [14]. The protocol involves three actors: a payer Alice A, a
payee Bob B, and a Tumbler T . Alice wants to send Bob 1 Bitcoin, without anyone being able
to trace back this transaction to the public keys of A and B. Normally, Alice could simply issue
a payment from her public address to Bob’s public address, but this event would be registered
on the Bitcoin Blockchain, which is public, and thus anyone could easily link payer and payee,
by using for instance the techniques described in [16, 26]. Hence, both Alice and Bob need to
interact with the Tumbler in order to anonymize the transaction.

As a preliminary remark, in what follows we assume that each payment consists of 1 Bitcoin.
This is a necessary condition in order to ensure anonymity: as a matter of fact, if the transactions
processed by the Tumbler were of different amounts, anyone could link together the public
keys of payers and payees by simply looking on the Blockchain the incoming and outcoming
transactions posted by the Tumbler.

At a glance, the TumbleBit protocol can be divided in three phases, namely:

1. Escrow phase: in this phase, the payment channels between A and T and between T and
B are set up. Moreover, both A and T put 1 Bitcoin in escrow.

2. Payment phase: in this phase, A and B interact with T to solve a cryptographic puzzle.
In particular, the interaction between T and B is used to generate the puzzle, while the
interaction between A and T is needed in order to solve the puzzle.

3. Cash-out phase: in the third phase, when the puzzle has been solved through the interac-
tion of the three parties, all payment channels are closed. The Tumbler redeems 1 Bitcoin
from Alice, while Bob redeems 1 Bitcoin from the Tumbler.

In particular, observe that only the escrow and cash-out phases require transactions to be
registered on the Bitcoin Blockchain. Contrarily, all the steps in the intermediate Payment
phase are performed off-chain. As described in [14], this feature provides a good scalability for
the TumbleBit protocol, that can be used for fast off-chain payments.

Additionally, using a trick similar to the one enabling time-locked transactions mentioned
in Section 2, the beginning and the end of each phase can be marked by a fixed amount of new
blocks appended on the Blockchain, which have constant frequency. Hence, each of the three
players knows exactly when each phase begins and when ends.

In what follows, we discuss each phase of the protocol, describing the interactions between
Alice, Bob and the Tumbler node.

4.1 Escrow Phase

The protocol is initiated when the payer Alice A wants to send 1 Bitcoin to the payee Bob B.
The escrow phase is composed of three steps:

6



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

(1) In the first step, the payee B asks the Tumbler T to open a payment channel. To do
so, the tumbler T posts on the Blockchain a 2-of-2 escrow transaction TT ,B which escrows 1
Bitcoin, where the condition is the following:

Escrow condition CT ,B: Bob B can claim 1 Bitcoin by providing the two signatures ST and
SB, which verify under the public keys PKT and PKB respectively of T and B.

Notice in particular that the transaction THR,S
is time-locked to a time window tw2, after which

the tumbler T can claim back its Bitcoin.
(2) On the other hand, in the second step Alice A opens a payment channel to T and escrows

1 Bitcoin by registering another 2-of-2 escrow transaction TA,T on the Blockchain, where the
condition to be fulfilled is as follows:

Escrow condition CA,T : 1 Bitcoin can be claimed by T by presenting two signatures SA
and ST which verify respectively under the public key PKA of A and under the public
key PKT of T .

Similarly to the transaction TT ,B described above, transaction TA,T is time-locked to a time
window tw1 < tw2, after which Alice can claim back her Bitcoin if the escrow condition has not
been fulfilled.

(3) In the third step of the escrow phase, the Tumbler and Bob engage in a puzzle-promise
protocol, after which B receives from T a pair of values (c, z), where c is the encryption of the
Tumbler’s signature ST :

c = Encε(ST ) . (1)

In particular, Enc is a symmetric encryption algorithm (for example, AES), whose encryption
key ε is randomly chosen by T . On the other hand, z is the RSA encryption of the symmetric
key ε under T ’s public key PKT = (e,N):

z = RSA(ε, e,N) = εe mod N . (2)

The puzzle-promise protocol is used to ensure that the Tumbler cannot act dishonestly by
sending Bob a value c which does not correspond to the encryption of its signature ST . For
the details of this protocol, which is based on the cut-and-choose technique, we refer the reader
to [14].

4.2 Payment Phase

After the setup of the payment channels is done, Alice and Bob can proceed to the payment
phase, which is composed of the following steps:

(1) Bob samples a random element α ∈ Z∗N , and uses it to re-randomize the puzzle z received
from T , by computing

z′ = α · z (3)

This step is also called blinding. Next, Bob sends z′ to Alice.
(2) After receiving z′ from Bob, Alice and the Tumbler engage in a puzzle-solving protocol,

whose detailed description can be found [14]. Essentially, the goal of A in this step is to obtain
from T the solution of the puzzle z′ to send back to B. On the other hand, T wants A to sign
the fulfill transaction associated to TA,T , in order to redeem her Bitcoin escrowed in the first
phase. Similarly to the puzzle-promise protocol mentioned in the third step of Section 4.1, the

7



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

puzzle-solving protocol ensures that the solution obtained by Alice from the Tumbler is indeed
the solution ε′ of the blinded puzzle sent by Bob, that is,

ε′ = RSA−1(z′, d,N) = z′d mod N , (4)

where d is the private key of T . Further, the puzzle-solving protocol guarantees that the
Tumbler receives Alice’s signature SA by providing the correct solution of the puzzle z′.

(3) Finally, once the puzzle-solving protocol is completed, Alice sends back the solution of
the blinded puzzle ε′ to Bob, who can unblind it by computing

ε =
ε′

α
. (5)

Additionally, in order to be sure that Alice sent a correct solution, Bob checks the obtained
value ε by verifying that εe = z mod N .

4.3 Cash-out Phase

The cash-out phase, which closes all payment channels opened in the escrow phase, unfolds
through the following steps:

(1) B decrypts the value c given to him by T , thus obtaining its signature ST :

ST = Enc−1ε (c) . (6)

Consequently, Bob is able to satisfy the escrow condition of the 2-of-2 escrow transaction
TT ,B, since he now possesses both his signature and the Tumbler’s. Hence, Bob posts on
the Blockchain a fulfill transaction Tf(T ,B), and retrieves the Bitcoin escrowed by the Tumbler.

(2) On the other hand, after the puzzle-solving protocol in the second step of the payment
phase the Tumbler successfully received Alice’s signature SA. Hence, T posts a fulfill transaction
Tf(A,T ) on the blockchain, and redeem Alice’s Bitcoin.

5 Modification of the Protocol

Suppose now the following scenario: after Bob successfully received the solution of the blinded
puzzle z′ from Alice, he wishes to anonymously forward to Charlie C the Bitcoin escrowed by
the Tumbler, but without interacting further with it. This functionality cannot be achieved in
the original TumbleBit protocol: as described in step (1) of the escrow phase, the Tumbler posts
a 2-of-2 escrow transaction on the Blockchain, which requires both the Tumbler’s and Bob’s
signatures to be fulfilled. The problem stems from the fact that this transaction binds the
recipient to provide a signature that verifies under Bob’s public key. Hence, Bob and Charlie
should engage with the Tumbler in another round of the TumbleBit protocol.

To address the above problem, we now describe our modification to the TumbleBit protocol.
Specifically, the modified part concerns the first step of the escrow phase as follows:

(1) New escrow step: As in Section 4.1, this step is initiated when the payee B asks
the Tumbler T to open a payment channel. However, this time B samples a random string

r
$← {0, 1}∗ with uniform probability, computes the hash value R = SHA256(r), and finally

sends R to T . The tumbler T , on the other side, samples a value s
$← {0, 1}∗, computes

S = SHA256(s) and posts on the Blockchain an offer transaction THR,S
which escrows 1 Bitcoin,

where the condition is the following:

8



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

Escrow condition CHR,S
: 1 Bitcoin can be claimed by any recipient who provides SHA256

preimages of both R and S, that is, two values x, y ∈ {0, 1}∗ such that SHA256(x) = R
and SHA256(y) = S.

After this step, the protocol proceeds as in the original version, by changing the relevant
steps where the elements of the offer transaction THR,S

are involved. In particular, in the third
step of the escrow phase the output of the puzzle-promise protocol is the pair (c, z) where c is
the hash value S computed by the Tumbler, while z is an RSA encryption of its preimage s:

c = S = SHA256(s) (7)

z = RSA(s, e,N) = se mod N , (8)

where (e,N) is again the Tumbler’s public key. The payment phase unfolds exactly as in the
original version of the protocol: Bob blinds the RSA puzzle z by multiplying it with a random
value α ∈ Z∗n and sends it to Alice, and the puzzle-solving protocol between Alice and the
Tumbler proceeds in the same way. Once Bob gets back the solution from Alice, he unblinds it
by dividing it by α. At this point, Bob has obtained the preimage s of S under SHA256, and
he can fulfill the offer transaction posted by the Tumbler on the Blockchain, since he possesses
both his preimage r and the Tumbler’s preimage s.

However, notice in particular that, in the redeem script of transaction THR,S
, the Tumbler

does not need to bind the recipient providing the preimages to a specific address. Hence, any
user who is able to give the SHA256 preimages of R and S can claim 1 Bitcoin from T , not
necessarily B. If we assume that Bob wants to forward 1 Bitcoin to Charlie C, he can simply
send C the pair (r, s), and Charlie can successively redeem T ’s Bitcoin by posting the relevant
fulfill transaction on the Blockchain.

Remark that the anonymity properties of the original TumbleBit protocol are preserved, that
is, the Tumbler is not able to link the sequence of payments between Alice, Bob and Charlie.
In fact, the first payment between Alice and Bob is protected by the anonymity properties of
the original TumbleBit protocol, since the only modification that we introduced (i.e. the use of
a hashing condition instead of 2-of-2 escrow) does not impact the RSA blinding and the puzzle-
promise and puzzle-solving protocols, which are the crucial elements of TumbleBit anonymity.
On the other hand, the anonymity of the payment between Bob and Charlie follows from the
fact that, since the pair (r, s) is transmitted off-chain, there is no trace on any interaction
between the two users on the blockchain.

6 Conclusions

In this paper, we introduced a modification of the TumbleBit protocol to enable an additional
anonymous transfer of a Bitcoin to a third user, without involving the Tumbler. In particular,
this property is achieved by employing a P2SH transaction in the first escrow step: instead
of using the original 2-of-2 multisignature transaction, the Tumbler posts on the Blockchain
a P2SH transaction whose escrow condition requires providing the preimages of two SHA256
values, respectively computed by the Tumbler itself and by Bob. Since this condition does not
bind the recipient of the transaction to a specific address, Bob can forward the pair of preimages
to a third user Charlie, who can in turn redeem the Bitcoin by registering the corresponding
fulfill transaction on the blockchain. Since the preimages are forwarded off-chain, the anonymity
properties of the original TumbleBit protocol are also preserved on this additional payment,
that is, the Tumbler is not able to link Bob and Charlie together.

9



Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

Nevertheless, we remark that this modified protocol cannot be securely used without relying
on strong hypotheses, which are usually not satisfied in permissionless blockchains, such as
in the Bitcoin case. Indeed, if the receiver of a transaction is not specified, any malicious
miner can take the pair of preimages (r, s) from Charlie’s transaction and include it in a new
transaction where the receiver’s address is its own one. This problem is known in the literature
as mauling [3]. So, in order to make this protocol work securely, one should assume that
miners are not willing to do any mauling. Although this is a rather restrictive assumption for
a permissionless setting, it is much more reasonable in permissioned blockchains, since in this
case the validators nodes are all known and can be trusted to a sufficiently high degree.

Thus, we believe that this modified TumbleBit protocol can find interesting applications to
enable anonymous payments in permissioned blockchains. As mentioned in the Introduction,
one possible scenario is that of interbank payment systems, where different banks (or fintech
companies) wants to anonymously exchange financial value. The use of anonymous payments
in this setting is motivated by the fact that each bank or fintech company, usually, wishes
to keep its transactions private, notwithstanding the fact that in a permissioned blockchain a
certain degree of trust is usually assumed. Moreover, an additional advantage with respect to
the availability of the system is that our modified protocol does not require any interaction
with the Tumbler in the second payment between Bob and Charlie: hence, if the Tumbler node
is not always online to provide its anonymization service, the anonymous transfer of the token
between Bob and Charlie can still be performed.

As a closing remark, observe that the original TumbleBit protocol has been designed to be
compatible with the Bitcoin network, and in particular with its Script language for specifying
transactions. This raises the question of how to implement our modified protocol in a permis-
sioned setting, since the scripting languages used in frameworks such as Hyperledger Fabric [2]
are rather different than Script. We propose two possible approaches to address this problem.
First, a straightforward solution would be to adopt a permissioned blockchain framework such
as MultiChain [13], whose scripting languages are built on top of Bitcoin Script, and are thus
compatible with it. On the other hand, an interesting alternative to consider would be to adapt
our modified protocol to other scripting languages that are able to replicate the properties of
Bitcoin transactions. Hyperledger could constitute an interesting candidate for developing this
idea, since its scripting language is Turing-complete, and can thus be used in principle to sim-
ulate transactions written in Script. We plan to investigate this issue as a future direction of
research.

References

[1] G. Andresen. Bip-0016: Pay to script hash, 2014. https://github.com/bitcoin/bips/blob/

master/bip-0016.mediawiki.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Fer-
ris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh,
K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger
fabric: A distributed operating system for permissioned blockchains. CoRR, abs/1801.10228, 2018.

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. On the malleability of bitcoin
transactions. In Financial Cryptography and Data Security - FC 2015 International Workshops,
BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30, 2015, Revised Selected
Papers, pages 1–18, 2015.

[4] W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge contingent payments
in cryptocurrencies without scripts. In European Symposium on Research in Computer Security,
pages 261–280. Springer, 2016.

10

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki


Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

[5] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten. Mixcoin: Anonymity
for bitcoin with accountable mixes. In International Conference on Financial Cryptography and
Data Security, pages 486–504. Springer, 2014.

[6] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: An introduction. R3 CEV, August, 2016.

[7] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. Zero-knowledge contingent payments
revisited: Attacks and payments for services. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 229–243. ACM, 2017.

[8] C. Decker and R. Wattenhofer. A fast and scalable payment network with bitcoin duplex micro-
payment channels. In Symposium on Self-Stabilizing Systems, pages 3–18. Springer, 2015.

[9] S. Dziembowski, L. Eckey, and S. Faust. Fairswap: How to fairly exchange digital goods. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 967–984, New York, NY, USA, 2018. ACM.

[10] I. Eyal. Blockchain technology: Transforming libertarian cryptocurrency dreams to finance and
banking realities. IEEE Computer, 50(9):38–49, 2017.

[11] Grams. Helixlight: Helix made simple. https://grams7enufi7jmdl.onion.to/helix/light.,
2016.

[12] M. Green and I. Miers. Bolt: Anonymous payment channels for decentralized currencies. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 473–489. ACM, 2017.

[13] G. Greenspan. Multichain private blockchainwhite paper. URl: http://www. multichain.
com/download/MultiChain-White-Paper. pdf, 2015.

[14] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg. Tumblebit: An untrusted
bitcoin-compatible anonymous payment hub. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017,
2017.

[15] E. Heilman, F. Baldimtsi, and S. Goldberg. Blindly signed contracts: Anonymous on-blockchain
and off-blockchain bitcoin transactions. In International Conference on Financial Cryptography
and Data Security, pages 43–60. Springer, 2016.

[16] S. M. M. P. G. Jordan, K. L. D. McCoy, and G. M. V. S. Savage. A fistful of bitcoins: Characterizing
payments among men with no names. 2013.

[17] Maxwell. Coinjoin: Bitcoin privacy for the real world. https://bitcointalk.org/index.php?

topic=279249.0, 2013.

[18] Maxwell. Coinswap: transaction graph disjoint trustless trading. https://bitcointalk.org/

index.php?topic=321228.0, 2013.

[19] Maxwell. The first successful zero-knowledge contingent payment. https://bitcoincore.org/

en/2016/02/26/zero-knowledge-contingent-payments-announcement/, 2016.

[20] M. Möser and R. Böhme. Join me on a market for anonymity.

[21] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

[22] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency
Technologies - A Comprehensive Introduction. Princeton University Press, 2016.

[23] N. I. of Standards and Technology. Specifications for the secure hash standard,
2002. https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/

documents/fips180-2.pdf.

[24] J. Poon and T. Dryja. The bitcoin lightning network.

[25] C. Research. Sec 2: Recommended elliptic curve domain parameters, 2010. http://www.secg.

org/sec2-v2.pdf.

[26] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In International
Conference on Financial Cryptography and Data Security, pages 6–24. Springer, 2013.

[27] T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle: Practical decentralized coin mixing

11

https://grams7enufi7jmdl.onion.to/helix/light.
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf


Anonymous Payments in Permissioned Blockchains C. Ferretti, A. Leporati, L. Mariot, L. Nizzardo

for bitcoin. In European Symposium on Research in Computer Security, pages 345–364. Springer,
2014.

[28] T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle++, a fast peer-to-peer coin mixing
protocol. https://bitcointalk.org/index.php?topic=1497271, 2016.

[29] L. Valenta and B. Rowan. Blindcoin: Blinded, accountable mixes for bitcoin. In International
Conference on Financial Cryptography and Data Security, pages 112–126. Springer, 2015.

[30] Wikipedia. Bitcoin fog. https://en.wikipedia.org/wiki/Bitcoin_Fog, 2016.

[31] K. Wüst and A. Gervais. Do you need a blockchain? IACR Cryptology ePrint Archive, 2017:375,
2017.

[32] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle. Coinparty: Secure multi-
party mixing of bitcoins. In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, pages 75–86. ACM, 2015.

12

https://bitcointalk.org/index.php?topic=1497271
https://en.wikipedia.org/wiki/Bitcoin_Fog

	Introduction
	Background on Bitcoin Transactions
	Related Work
	TumbleBit Protocol
	Escrow Phase
	Payment Phase
	Cash-out Phase

	Modification of the Protocol
	Conclusions

