
Privacy-Preserving Character Language Modelling

Patricia Thaine, Gerald Penn
Department of Computer Science, University of Toronto

{pthaine, gpenn}@cs.toronto.edu

Abstract

Some of the most sensitive information we generate is either
written or spoken using natural language. Privacy-preserving
methods for natural language processing are therefore cru-
cial, especially considering the ever-growing number of data
breaches. However, there has been little work in this area up
until now. In fact, no privacy-preserving methods have been
proposed for many of the most basic NLP tasks.
We propose a method for calculating character bigram and
trigram probabilities over sensitive data using homomorphic
encryption. Where determining an encrypted character’s
probability using a plaintext bigram model has a runtime of
1945.29 ms per character, an encrypted bigram model takes
us 88549.1 ms, a plaintext trigram model takes 3868.65 ms,
and an encrypted trigram model takes 102766 ms.

Introduction
Character-level language models are used in a variety of
tasks, such as character prediction for facilitating text mes-
saging. Despite the sensitive nature of the input data, there
has been very little work done on privacy-preserving charac-
ter language models. One example of such work is Apple’s
use of a version of differential privacy called randomized
response to improve their emoji QuickType predictions1.
Briefly, what users truly type is sent to Apple with a cer-
tain probability p and fake input is sent with a probability
1− p. While this technique can be used for efficiently train-
ing a privacy-preserving emoji prediction system, it is easy
to see that on its own it would not preserve the privacy of
natural language input while preserving its utility.

We propose a privacy-preserving character-level n-gram
language model, the inputs to which are entirely accurate
and entirely private. We use Homomorphic Encryption (HE)
for this purpose. HE has so far been used for a small
number of natural language processing and information re-
trieval tasks. Some of these include spam filtering (Pathak,
Sharifi, and Raj 2011), hidden-Markov-model-based spoken
keyword spotting (Pathak et al. 2011), speaker recognition
(Pathak and Raj 2013), n-gram-based similar document de-
tection (Jiang and Samanthula 2011), language identifica-

1https://machinelearning.apple.com/
docs/learning-with-privacy-at-scale/
appledifferentialprivacysystem.pdf

tion (Monet and Clier 2016), keyword search, and bag-of-
words frequency counting (Grinman 2016).

Homomorphic Encryption
Homomorphic encryption schemes allow for computations
to be performed on encrypted data without needing to de-
crypt it.

For this work, we use the Brakerski-Fan-Vercauteren
(BFV) Ring-Learning-With-Errors-based fully homomor-
phic encryption scheme (Brakerski 2012)(Fan and Ver-
cauteren 2012), with the encryption and homomorphic mul-
tiplication improvements presented in (Halevi, Polyakov,
and Shoup 2018). This scheme is implemented in the PAL-
ISADE Lattice Cryptography Library2. However, the al-
gorithm we propose can be implemented using any homo-
morphic encryption scheme that allows for addition and
component-wise multiplication in the encrypted domain.

Notation, Scheme Overview, and Chosen
Parameters
We will be using the same notation as (Brakerski 2012)
and (Fan and Vercauteren 2012), but as we provide only a
brief overview of the homomorphic encryption scheme, the
specific optimizations introduced in (Fan and Vercauteren
2012),(Halevi, Polyakov, and Shoup 2018) will not be dis-
cussed. Let R = Z[x]/(f(x)) be an integer ring, where
f(x) ∈ Z[x] is a monic irreducible polynomial of degree d.
Bold lowercase letters denote elements ofR and their coeffi-
cients will be denoted by indices (e.g., a =

∑d−1
i=0 ai ·xi. Zq ,

where q > 1, q ∈ Z, denotes the set of integers (−q/2.q/2].
q is referred to as the ciphertext modulus. An integer n’s
i-th bit is denoted n[i], from i = 0. The secret key is
sk = (1, s), where s ← χ. The public key is called
pk = ([−(a · s + e]q,a), where a← Rq , e← χ.
• Encrypt(pk,m): message m ∈ Rt, p0 = pk[0], p1 =
pk[1], u← R2, e1, e2 ← χ:

ct =
(
[p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q

)
• Decrypt(sk, ct): s = sk, c0 = ct[0], c1 = ct[1].[⌊t · [c0 + c1 · s]q

q

⌉]
t

2https://git.njit.edu/palisade/PALISADE



• Add(ct1,ct2): ([ct1[0]+ct2[0]]q, [ct1[1]+ct2[1]]q)

• Add(ct1,pt2): ([ct1[0]+pt2[0]]q, [ct1[1]+pt2[1]]q)

• Mul(ct1,ct2): For this paper, we use component-
wise multiplication, a simplified description of which is:
([ct1[0] · ct2[0]]q, [ct1[1] · ct2[1]]q). The algorithmic
details for obtaining this result can be found in (Fan and
Vercauteren 2012).

• Mul(ct1,pt2): Like with the Add function, it is pos-
sible to multiply a ciphertext with plaintext, resulting in:
([ct1[0] · pt2[0]]q, [ct1[1] · pt2[1]]q).

Using homomorphic encryption, we can perform linear and
(depending on the encryption scheme) polynomial opera-
tions on encrypted data (multiplication, addition, or both).
We can neither divide a ciphertext, nor exponentiate using
an encrypted exponent. We can keep track separately of a
numerator and a corresponding denominator. For clarity, we
shall refer to the encrypted version of a value ∗ as E(∗) and
× to represent Mul.

Optimization: Single Instruction Multiple Data
Single Instruction Multiple Data (SIMD) is explained in
(Smart and Vercauteren 2014). Using the Chinese Remain-
der Theorem, an operation between two SIMD-encoded lists
of encrypted numbers can be performed by the same opera-
tions between two regularly-encoded encrypted numbers.

Encoding Variables
The very first step in converting an algorithm to an HE-
friendly form is to make the data amenable to HE analy-
sis. This includes transforming floating point numbers into
approximations, such as by computing an approximate ra-
tional representation for them, clearing them by multiplying
them by a pre-specified power of 10, and then rounding to
the nearest integer (Graepel, Lauter, and Naehrig 2012).

We follow the method suggested in (Aslett, Esperança,
and Holmes 2015): choose the number of decimal places
to be retained based on a desired level of accuracy φ, then
multiply the data by 10φ and round to the nearest integer.
Since we are dealing with probabilities, we do not lose much
information when converting, say, 99.6% to 99.

Privacy-Preserving Bigram and Trigram
Models

We assume that a user has some sensitive data requiring
character-level predictions to be made and that a server has
a character-level language model that they do not want to
share. We train a bigram model and a trigram model us-
ing plaintext from part of the Enron email dataset, which
we pre-process to only contain k = 27 types (space and 26
lowercase letters). A user’s emails are then converted into
binary vectors of dimension k.

Bigram Probabilities
For the bigram model, we convert characters into one-hot
vectors (e.g., the vector for ‘a’ has a 1 at index 0). Along
with the one-hot vector, k ordered vectors of size k are sent.

Each of these vectors are zero-vectors, except for a vector
of ones which is at the letter’s ‘designated index’. Here’s a
simple example for a language containing k = 3 character
types. Assume we want to convert letter ‘a’; the server is
sent two matrices which represent the letter ‘a’ denoted by
Ma1 and Ma2:

Ma1 = E([1 0 0]),Ma2 = E

([
[1 1 1]
[0 0 0]
[0 0 0]

])

Say ‘a’ is followed by ‘b’, then the server receives:

Mb1 = E([0 1 0]), Mb2 = E

([
[0 0 0]
[1 1 1]
[0 0 0]

])

The user wants to know how likely is it for ‘b’ to follow
‘a’. The server is able to calculate this like so:

[
[p11 p12 p13]
[p21 p22 p23]
[p31 p32 p33]

]
× E

([
[1 1 1]
[0 0 0]
[0 0 0]

])

Resulting in:

I = E

([
[p11 p12 p13]
[0 0 0]
[0 0 0]

])

We then take the inner products of each row of I with
Ma1 and add them all together. The result, E(p12), is sent
back to the user, who is able to decrypt it.

Trigram Probabilities

To use the trigram model, we again convert characters into
one-hot vectors. Along with them, however, we must send
a bit more information. Say we have a trigram probability
matrix whose columns are sorted as follows:



c1c1
c1c2
c1c3
c2c1
c2c2
c2c3
c3c1
c3c2
c3c3


If we want to access the row containing the probabilities

of cxcy , we can find its index with the equation xt+y, where
t is the number of character types. Let us use ‘a’ as an ex-
ample again, with t = 3. The user must again send along
Ma1 = E([1 0 0]), as well as:



Ma2 = E

(


[1 1 1]
[0 0 0]
[0 0 0]
[1 1 1]
[0 0 0]
[0 0 0]
[1 1 1]
[0 0 0]
[0 0 0]


)
,Ma3 = E

(


[1 1 1]
[1 1 1]
[1 1 1]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]


)

If ‘b’ follows ‘a’, the server is then sent Mb1 =
E([0 1 0]) and:

Mb2 = E

(


[0 0 0]
[1 1 1]
[0 0 0]
[0 0 0]
[1 1 1]
[0 0 0]
[0 0 0]
[1 1 1]
[0 0 0]


)
,Mb3 = E

(


[0 0 0]
[0 0 0]
[0 0 0]
[1 1 1]
[1 1 1]
[1 1 1]
[0 0 0]
[0 0 0]
[0 0 0]


)

The probability of ‘aba’, given a trigram probability ma-
trix Ptrigram can be calculated as follows:

I = Ptrigram × (Ma3 ×Mb3)

Next, the server take the inner products of each row of I
with Ma1 and adds them all together. The result, E(p121),
is sent back to the user, who is able to decrypt it.

Security
The BGV scheme has semantic security (Albrecht et al.
2018), which means that “whatever an eavesdropper can
compute about the cleartext given the ciphertext, he can also
compute without the ciphertext” (Shafi and Micali 1984).
For our first few experiments, we chose parameters that give
over a 128-bit security level the values presented in (Al-
brecht et al. 2018). This means that it would take over 2128
computations to crack the decryption key.

We set the BFV scheme’s parameters as follows, to guar-
antee 128-bit security:

• Plaintext Modulus (t) = 65537,
• σ = 3.2,
• Root Hermite Factor = 1.0081,
• m = 16384,
• Ciphertext Modulus (q) = 153249540390512585124987
3756002082622499024400469688321

To run 256-bit security experiments we set m = 32768.

Experiments
The following experiments were run on an Intel Core i-7-
8650U CPU @ 1.90GHz and a 16GB RAM.

Plaintext Model, Encrypted Input It takes us 1945.29
ms to output the probability of one encrypted character
given the preceding character (also encrypted) and a plain-
text character bigram model. It takes us 88549.1 ms to out-
put the probability of one encrypted character given its two
preceding characters (both encrypted) and a plaintext char-
acter trigram model. These results are based on the parame-
ters listed in Section .

Encrypted Model, Encrypted Input It takes us 3868.65
ms to output the probability of one encrypted character
given the preceding character (also encrypted) and an
encrypted character bigram model. It takes us 102766 ms to
output the probability of one encrypted character given its
two preceding characters (both encrypted) and an encrypted
character trigram model. These results are also based on the
parameters listed in Section .

Additional runtime comparisons are provided in Figure 1
and Figure 2. While the runtime of encrypted models might
limit the practicality of their deployment, plaintext models
running on encrypted data are practical for deployment, es-
pecially when considering predictions parallelizability and
the speed ups that better RAM could lead to.

Conclusion and Future Work
We described a method for calculating character-level bi-
gram and trigram probabilities given encrypted data and per-
form runtime experiments across various security levels to
test the scalability of our algorithms. Our next steps will be
to adapt this method to word-level language modeling, as
well as to create a protocol for training n-gram models on
encrypted data.



Figure 1: Runtime comparisons of bigram and trigram predictions for character languages models with 27 to 31 characters
across three security levels and between encrypted and plaintext character language models.

Figure 2: Runtime comparisons of 256-bit security of bigram and trigram predictions for character languages models with 27
to 31 characters.



References
Albrecht, M.; Chase, M.; Chen, H.; Ding, J.; Goldwasser, S.;
Gorbunov, S.; Hoffstein, J.; Lauter, K.; Lokam, S.; Miccian-
cio, D.; Moody, D.; Morrison, T.; Sahai, A.; and Vaikun-
tanathan, V. 2018. Homomorphic encryption security stan-
dard. Technical report, HomomorphicEncryption.org, Cam-
bridge MA.
Aslett, L. J.; Esperança, P. M.; and Holmes, C. C. 2015. En-
crypted statistical machine learning: new privacy preserving
methods. arXiv preprint arXiv:1508.06845.
Brakerski, Z. 2012. Fully homomorphic encryption without
modulus switching from classical GapSVP. In Advances in
cryptology–crypto 2012. Springer. 868–886.
Fan, J., and Vercauteren, F. 2012. Somewhat Practical Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive
2012:144.
Graepel, T.; Lauter, K.; and Naehrig, M. 2012. Ml confiden-
tial: Machine learning on encrypted data. In International
Conference on Information Security and Cryptology, 1–21.
Springer.
Grinman, A. J. 2016. Natural language processing on en-
crypted patient data. Ph.D. Dissertation, Massachusetts In-
stitute of Technology.
Halevi, S.; Polyakov, Y.; and Shoup, V. 2018. An improved
rns variant of the bfv homomorphic encryption scheme.
IACR Cryptology ePrint Archive 2018:117.
Jiang, W., and Samanthula, B. K. 2011. N-gram based se-
cure similar document detection. In IFIP Annual Conference
on Data and Applications Security and Privacy, 239–246.
Springer.
Monet, N., and Clier, J. 2016. Privacy-preserving text lan-
guage identification using homomorphic encryption. US
Patent 9,288,039.
Pathak, M. A., and Raj, B. 2013. Privacy-preserving speaker
verification and identification using gaussian mixture mod-
els. IEEE Transactions on Audio, Speech, and Language
Processing 21(2):397–406.
Pathak, M. A.; Rane, S.; Sun, W.; and Raj, B. 2011. Pri-
vacy preserving probabilistic inference with hidden markov
models. In ICASSP, 5868–5871.
Pathak, M. A.; Sharifi, M.; and Raj, B. 2011. Privacy pre-
serving spam filtering. arXiv preprint arXiv:1102.4021.
Shafi, G., and Micali, S. 1984. Probabilistic encryption.
Journal of computer and system sciences 28(2):270–299.
Smart, N. P., and Vercauteren, F. 2014. Fully homomor-
phic simd operations. Designs, codes and cryptography
71(1):57–81.


