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ABSTRACT 

As the average lifespan increases, the care of diseases 

related to lifestyle and age, such as chronic and 

neurodegenerative ones, becomes costlier and less 

accessible, highlighting the need for self-management using 

technology. This paper proposes a pervasive system for 

autonomous healthy ageing, which integrates two layers of 

intelligence via semantic interpretation: multi-modal sensor 

fusion from smart devices, wearables and multimedia, and 

personalized spoken feedback based on context-sensing and 

user input. Aiming for a practical, acceptable system, the 

proposed architecture considers aspects of integration, 

security, privacy and cost. The currently implemented 

components include activity recognition and problem 

detection, complemented by end-user applications and 

personalized spoken feedback. The proof-of-concept 

implementation is evaluated both in a lab setting, for the 

more complex personalized feedback component, and in 

four real home environments, presenting efficient activity 

recognition, and improvement in several 

neuropsychological areas, such as mood, physical 

functional and cognitive condition of elders. 
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INTRODUCTION 

The increase of the average lifespan across the world has 

been accompanied by an unprecedented upsurge in the 

occurrence of dementia, with high socio-economic costs, 

reaching 818 billion US dollars worldwide, in 2015
1
. 

Nevertheless, its prevalence is increasing as the number of 

people aged 65 and older with Alzheimer's disease may 

nearly triple by 2050, from 46.8 million to 131 million 

people around the world, the majority of which, living in an 

institution [1]. Dementia, as well as several other ailments 

such as depression, cardiovascular diseases, obesity and bad 

habits (like smoking), require consistent lifestyle changes, 

usually through interventions driven by experts. However, 

as the number of people in need of care together with the 

high costs as well as the inability in several regions for such 

high quality services prohibit in-person treatment. 

                                                           

1
 Dementia Statistics by Alzheimer’s Disease Internationl - 

https://www.alz.co.uk/research/statistics 

However, assistive technologies promise to alleviate those 

barriers by providing low cost self-management or at least 

remote and efficient clinical care. In detail, several such 

technologies, employing Internet of Things (IoT) on the 

rise, are used to subjectively and intelligently enhance 

clinical diagnosis and decision making e.g. by efficiently 

sensing and estimating cognitive status and disease 

progression faster than standard neuropsychological tests 

[2]. Furthermore, assistive technology, also met as Ambient 

Assisted Living (AAL), is expected to play a critical role in 

improving quality of life, both on cognitive and physical 

level, by providing tailored interventions, advice and 

support, without the need of costly in-person care [3].  

Still, current systems present many drawbacks, namely 

many of them target a single purpose (e.g. pharmacological 

treatment) or aspect (e.g. sleep quality or exercise). Other 

systems are still based on end-user interviews, leading to 

generic interventions. Even though remote monitoring of 

patients is a promising “patient-centered” management 

approach that provides specific and reliable data, enabling 

the clinicians to monitor daily function and provide 

adaptive and personalized interventions, these systems must 

provide a multi-modal view of several aspects combined 

and be complemented with self-management functionality 

to reduce the effort of clinicians. 

Towards this direction, we propose a holistic approach for 

context-aware monitoring and personalized home care, 

together with intuitive end-user interfaces to autonomously 

prolong independent living. To begin with, the system 

integrates a wide range of sensor modalities and high-level 

analytics to support accurate monitoring of all daily life 

aspects including physical activity, sleep and activities of 

daily living (ADLs). After all gathered knowledge is 

represented in a universal format, semantic interpretation, 

via a hybrid reasoning scheme, is used for complex activity 

recognition from atomic events, emotional and well-being 

status and highlighting clinical problems.  

The high-level meaningful information is presented in 

applications tailored to clinicians, but most importantly 

end-users themselves. They are also to be exploited further 

so as to automatically provide support and suggest 

interventions, combined with spoken user input as context. 

The proposed system is intended for real-life and wide-

spread usage, hence, security and privacy aspects, cost, 

equipment, acceptance, integration and interoperability 
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aspects are also discussed. A proof-of-concept has been 

deployed and evaluated either in home settings focused in 

dementia, showing effective performance for activity 

recognition and long-term improved in several domains. 

The system builds upon lessons learned from previous 

work: smart home, wearable, image and audio sensing 

integrated in an existing service-oriented middleware, 

together with semantic models for activity recognition [4]. 

The novelty of this paper is their further integration of 

sensed qualities as context, with an additional layer of 

intelligent spoken feedback, enabling autonomy and 

previously impossible self-management, in a platform that 

accounts for security, usability and cost aspects. 

The following sections present: related work, overall 

aspects and requirements, the proposed architecture, 

sensing and analysis, the personalized spoken feedback 

method, the end-user interface, proof-of-concept evaluation, 

conclusions and future work. 

RELATED WORK 

Pervasive technology solutions have already been employed 

in several ambient environments, either homes or clinics, 

but most of them focus on a single domain to monitor, 

using only a single or a few devices. Such applications 

include wandering behavior prevention with geolocation 

devices, monitoring physical activity, sleep, medication and 

performance in daily chores [3] [2]. 

In order to assess cognitive state, activity modelling and 

recognition appears to be a critical task, common amongst 

existing assistive technology. OWL has been widely used 

for modelling human activity semantics, reducing complex 

activity definitions to the intersection of their constituent 

parts. In most cases, activity recognition involves the 

segmentation of data into snapshots of atomic events, fed to 

the ontology reasoner for classification. Time windows [5] 

and slices provide background knowledge about the order 

or duration [6] of activities. In this paradigm, ontologies are 

used to model domain information, whereas rules, widely 

embraced to compensate for OWL’s expressive limitations, 

aggregate activities, describing the conditions that drive the 

derivation of complex activities e.g. temporal relations. 

Focusing on clinical care through sensing, the work in [7] 

has deployed infrared motion sensors in clinics to monitor 

sleep disturbances, limited, though, to a single sensor. 

Similarly, the work in [8] presents a sensor network 

deployment in nursing homes to continuously monitor vital 

signs of patients. Other systems employ environmental 

sensors to observe and assess activities [9] or security 

monitoring with actuators to control doors [10]. 

Nevertheless, it so far lacks the ability to fuse more sensor 

modalities such as sleep and ambient sensing, with limited 

interoperability. On the other hand, the proposed system 

offers a unified view of many life aspects, including sleep 

and activities, to automatically assess disturbances and their 

causes, to support end-users and clinicians. 

Ontologies have been extensively used in natural language 

interfaces and information extraction [11][12], offering 

vocabularies and reasoning services to fuse contextual 

information [13] and solve disambiguation problems [14]. 

However, the ability to provide personalized responses 

requires not only language understanding, but also coupling 

profile and clinical knowledge. In our work, this coupling 

for personalized responses is realized through a 

combination of ontology reasoning and SPARQL. 

THE PROPOSED SYSTEM 

The scope of the system is to assemble a secure, compact 

solution, deployable for a wide audience and enabling self-

management for healthy ageing, utterly reducing effort and 

cost of clinical dependence and early hospitalization. To do 

so, the system must not only employ reliable sensing, but 

also adaptive personalized and human-intuitive interaction, 

while clinical oversight and visits are becoming rarer. The 

proposed system addresses these requirements by 

integrating a set of best practices, the latest technological 

standards as well as valuable lessons learned from past 

research. The overall concept is shown on Figure 1. In 

general, the system incorporates two layers of intelligence: 

holistic multi-modal sensing interpretation and personalized 

spoken feedback. At the sensing layer, sensor and 

multimedia analysis are semantically combined to provide 

higher-level meaningful qualities. These constitute the user 

status after interpretation, namely physical, emotional, 

cognitive, medical and social state (e.g. via monitoring 

heart rate, stress, word utterance and medication). The 

second layer of intelligence capitalizes this information as 

context, which combined with spoken user input, can lead 

to further personalized feedback. On the other hand, 

clinicians are constrained to only providing the 

recommended set of interventions to the agent, perform 

seldom clinical visits, elicit end-user and clinical 

requirements and evaluating the system. 

Moving from concept to implementation, the proposed 

system follows a multidisciplinary approach to integrate 

and bring into effect clinical expert knowledge in an AAL 

system. The system employs a synergy of the latest 

advances in sensor technologies, fusion and mining, 

knowledge representation and personalized feedback. The 

detailed architecture is shown on Figure 2. A sensing 

submodule integrates several heterogeneous devices and 

protocols in order to satisfy the variety of modalities 

mandated by the requirements. The modalities are retrieved 

by various lifestyle sensors and wearables. However, the 

sensing submodule also integrates more complex data 

format retrieval in the form of image and audio together 

with the corresponding specialized processing techniques. 

After an early fusion and preprocessing takes place, 

information is unanimously stored in the Knowledge Base 

(KB) where it is interpreted and fused into higher-level 

meaningful information such as physiological, medical, 

cognitive, emotional and social aspects. Together with 
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expert knowledge apart from showing the progress to end-

users and clinicians, the system employs personalized 

feedback to provide advice and support for end-user self-

management. 

To maintain compatibility with global IoT solutions, the 

proposed system is built as a service-oriented middleware 

which can provide adapters to integrate with open IoT 

platforms. This process helps provide service discovery, 

matching and composition both internally to the system but 

also externally. The system can benefit from existing 

solutions for the lifecycle that open platforms provide and 

disseminate its own services to their wider ecosystems of 

solution providers. Some of the most popular IoT platforms 

to provide adapters for, are FIWARE, universAAL and the 

emerging and most relevant, ACTIVAGE
2
. 

Regarding the privacy, the proposed techniques for an AAL 

system extend beyond simple approaches, such as the 

removal or masking of the direct identifiers (i.e. names, 

identifications IDs, etc.), to mature technologies such as k-

anonymity and methods such as differential privacy, 

syntactic anonymity, homomorphic encryption, secure 

search encryption and secure multiparty computation.  

Regarding security, the proposed system employs standard 

enterprise protocols for secure authentication (OAuth) and 

transmission/retrieval (HTTP/SSL) from end-user sites to 

the cloud. Beyond most existing commercial cloud services, 

AAL systems should not only encrypt transmissions (to 

repel man-in-the-middle attacks) but also encrypt stored 

data and the passwords to decrypt them in the client side. 

This approach, namely Zero Knowledge cloud storage, is 

considered to be the most current and trustworthy method 

as the beholder (service provider) himself is unable to view 

(and further exploit) sensitive information. Depending on 

the installation, commercial cloud infrastructures can 

                                                           

2
 https://www.fiware.org, http://universaal.sintef9013.com, 

http://www.activageproject.eu 

provide Zero Knowledge, but it can also be implemented 

easily in owned cloud infrastructure. 

In the proposed architecture, the clinical process is 

continuously supported in two modes: the validation and 

the operation mode. During the validation mode, clinicians 

can transcode their expert knowledge for interventions into 

the system while they also perform clinical visits to the end-

users for complimentary assessment and interventions. The 

system continuously supports them. End-user and clinician 

requirements periodically reform the system according to 

validation results. On the other hand, in the operational 

mode, interventions are more or less pre-decided, clinical 

visits are rare and the system is not reformed until critical 

updates, to allow smooth deployment and operation. 

Since this proposed architecture is multi-layered and 

diverse to be thoroughly presented here, this paper focuses 

on the key components for personalized feedback. The 

following sections present an overview of sensing 

modalities and analysis, fusion and personalized feedback, 

which are then evaluated in a proof-of-concept 

implementation. 

SENSOR DATA RETRIEVAL AND ANALYSIS 

The sensing submodule includes two streams for data 

retrieval and processing, sensors and multimedia, as well as 

the modules for early fusion, i.e. preprocessing and 

transformation. After all information is unanimously stored 

in the knowledge base, it can be further interpreted and 

displayed to end-user or clinician interfaces. Further details 

for each of these modules is given below. 

IoT Lifestyle and Wearable Sensing 

The system currently integrates a wide selection of 

proprietary, low-cost, ambient or wearable devices, 

originally intended for lifestyle monitoring, repurposed to a 

medical context. This variety satisfies both the required 

modalities and the user needs according to context, always 

finding a balance between comfortability and functionality. 

In detail, Ambient depth cameras
3
 are collecting both image 

and depth data. The Plug sensors
4
 are attached to electronic 

devices, e.g. to cooking appliances, to collect power 

consumption data. Tags
5
 are attached to objects of interest, 

e.g. a drug-box or a watering can, capturing motion events 

and Presence sensors are modified Tags that detect people’s 

presence in a room using IR motion. A selection of 

wearable Wristwatches
6
 according to needs may measure 

physical activity levels in terms of steps, heart rate and 

                                                           

3
 Xtion Pro 

(http://www.asus.com/Multimedia/Xtion_PRO/) 

4
 Plugwise sensors (https://www.plugwise.nl/) 

5
 Wireless Sensor Tag System (http://wirelesstag.net/) 

6
 Jawbone UP24, FitBit Charge HR, Microsoft Band, == 

and Empatica E4 

 

Figure 1. Overall system concept, sensing, interpretation, 

intelligent coaching and end-user interaction. 
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EDA, while a pressure-based Sleep sensors
7
 are placed 

underneath the mattress to record sleep duration, phases and 

interruptions. 

Each device is integrated by using dedicated modules that 

wrap their respective API, retrieve data and process them 

accordingly to generate atomic events from sensor 

observations e.g. through aggregation. In the case of image 

data, computer vision techniques are employed to extract 

information about humans performing activities, such as 

opening the fridge, holding a cup or drinking [15]. Standard 

microphones are used to retrieve audio. 

Fusion, Activity Recognition and Problem Detection 

To obtain a more comprehensive image of an individual’s 

condition, semantic fusion is used to transform atomic 

sensor events to complex ones, such as daily activities, and 

identify problematic situations. For this purpose the system 

employs a hybrid combination of OWL 2 reasoning and 

SPARQL. 

Regarding activity recognition, a simple pattern models the 

context of complex activities. Each activity context is 

described through class equivalence axioms that link them 

with lower-level observations of existing domain models 

(which can be found in [4]). The instantiation of this pattern 

is used by the underlying reasoner to classify context 

instances, generated during the execution of the protocol, as 

complex activities. The instantiation involves linking ADLs 

with class equivalence axioms. For example, given that the 

activity PrepareTea involves the observations KettleOn, 

CupMoved, KettleMoved, TeaBagMoved and KettleOff, its 

semantics are defined as: 

                                                           

7
 Withings Aura and Beddit 

 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑇𝑒𝑎 ≡ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐾𝑒𝑡𝑡𝑙𝑒𝑂𝑛
⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐶𝑢𝑝𝑀𝑜𝑣𝑒𝑑
⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐾𝑒𝑡𝑡𝑙𝑒𝑀𝑜𝑣𝑒𝑑
⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑇𝑒𝑎𝐵𝑎𝑔𝑀𝑜𝑣𝑒𝑑
⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐾𝑒𝑡𝑡𝑙𝑒𝑂𝑓𝑓 

According to clinical experts involved in the development 

so far, highlighting problematic situations next to the entire 

set of monitored activities and metrics would further 

facilitate and accelerate clinical assessment. This is 

addressed by a set of predefined rules (expressed in 

SPARQL) with numerical thresholds that clinicians can 

adjust and personalize to each of the individuals in their 

care. Furthermore, each analysis is invoked for a period of 

time allowing different thresholds for different intervals e.g. 

before and after a clinical intervention. Problematic 

situations supported so far regard night sleep (short 

duration, many interruptions, too long to fall asleep), 

physical activity (low daily activity totals), missed activities 

(e.g. skipping daily lunch) and reoccurring problems 

(problems for consecutive days). The following example 

illustrates a rule for a short sleep duration problem: 

CONSTRUCT { 
?new a :SleepDurationProblem; 

  :duration ?D; :date ?date. 
} 
WHERE { 
  ?activity a :Sleep; :startTime ?st;  
    :endTime ?et. 
  BIND(:duration(?st, ?et) as ?D) 
  { 
    SELECT ?_d ?ActivityType 
    WHERE { 
      ?p a :SleepDurationPattern; 
        :hasDescription [ 
          :definesActivityType[ 
            :classifiesActivity :Sleep; 
            :hasDurationDescription [ 
              time:seconds ?_d]]].  
     } 
  } 
  FILTER(?D > _d) 
  BIND (extract_date(?startTime) as ?date) 

} 

PERSONALISED SPOKEN FEEDBACK 

Empowering and motivating people in need of guidance 

and care due to age-related conditions is essential in order 

to preserve elderly’s ability to remain active and 

independent, with the highest quality of life. This second 

layer of intelligence in the system shows how monitored 

qualities can be exploited for personalized assistance, 

suggestions and recommendations, using again ontologies 

and rules. This closed loop between the elderly and the 

system is realized through a natural language interface. 

Users are able to ask questions about their daily activities 

and habits, getting feedback and suggestions about health-

related problems and situations in return. The underlying 

processes entailed are: 

 

Figure 2. System architecture, end-user and clinician 

evaluation process. 
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1. Automated Speech recognition: In order to support the 

transformation of spoken language into text, we use a 

state-of-the-art ASR system
8
 that employs statistical 

speech models for both acoustic and language modeling, 

specifically trained for basic and healthcare domains. 

2. Language analysis: The language analysis consists in 

itself of four stages: a) surface-syntactic parsing, b) deep-

syntactic parsing, c) frame-semantics parsing, and d) 

projection to ontological representations [16]. The output 

is a set of FrameNet-based structures projected to a 

DOLCE+DnS UltraLite
9
 compliant representation.  

3. Question topic understanding: This tasks is responsible 

for bringing conversational awareness into the system, 

recognizing the topic of the question based on the 

language analysis results and on a topic OWL 2 ontology. 

4. Question interpretation and reasoning: Each concrete 

topic of the topic ontology is associated with a rule 

template that couples profile and clinical knowledge to 

derive the context of the response to a given question. 

5. Language generation: The verbal communication 

capitalizes on the ontological representations returned 

from question interpretation, following the inverse 

cascade of processing stages described in language 

analysis. 

In this paper, the focus is given on topic understanding, 

interpretation and reasoning (points 3 and 4). The rest of 

this section describes the ontologies used to capture topics, 

clinical knowledge and how knowledge derived from 

sensor monitoring can be combined with rules to provide 

personalized feedback and suggestions.  

Topic Understanding 

An important aspect is the ability to recognize the context 

of the question, so as to trigger the appropriate rule 

template and meaningfully extract and combine knowledge 

to respond to the user’s inquiry. The topic ontology was 

designed collaboratively with the clinical experts that 

suggested both the needed topics and the underlying spoken 

language semantics that characterize each of them. The 

modelling follows a hierarchical decomposition of abstract 
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 http://www.vocapia.com/speech-to-text.html 

9
 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 

topics into concrete ones, defining necessary and sufficient 

OWL 2 restrictions for class membership. Examples of 

such restrictions that capture domain knowledge and 

formulate the verbal vocabulary the system can understand 

in the form of a Description Logic theory model [17] are 

shown below: 

− 𝑃𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐 ≡ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. (𝑃𝑎𝑖𝑛 ⊔ 𝐻𝑢𝑟𝑡) 

− 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒𝑇𝑜𝑝𝑖𝑐 ≡ 𝑃𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐻𝑒𝑎𝑑  

− 𝐵𝑎𝑐𝑘𝑃𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐 ≡ 𝑃𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐵𝑎𝑐𝑘  

− 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑜𝑝𝑖𝑐 ≡ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦  
− 𝑆𝑙𝑒𝑒𝑝𝑇𝑜𝑝𝑖𝑐 ≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑜𝑝𝑖𝑐 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑆𝑙𝑒𝑒𝑝 

− 𝑁𝑖𝑔ℎ𝑡𝑆𝑙𝑒𝑒𝑝𝑇𝑜𝑝𝑖𝑐 ≡ 𝑆𝑙𝑒𝑒𝑝𝑇𝑜𝑝𝑖𝑐 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑁𝑖𝑔ℎ𝑡  

− 𝑆𝑡𝑟𝑒𝑠𝑠𝑇𝑜𝑝𝑖𝑐 ≡ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝑆𝑡𝑟𝑒𝑠𝑠 

− 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐 ≡ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊓ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

− 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐
≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑜𝑝𝑖𝑐 ⊓ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐 

The root of the hierarchy is the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 class that allows 

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 property assertions to be defined for associating 

language analysis results. More specifically, the context of 

each question is represented as an instance of the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 

concept that is associated though multiple 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 

assertions with language analysis frame entities (verbal 

domain model). For example, a context instance (i.e. user 

utterance) containing the domain elements 𝑁𝑖𝑔ℎ𝑡, 𝑆𝑙𝑒𝑒𝑝 

and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is automatically classified by the ontology 

reasoned in the topic 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐. As 

described in the next section, such multiple classifications 

act as semantic annotations of utterances and are used to 

extract relevant information from the KB through rules.  

Reasoning and Feedback 

Like in domain models and spoken vocabulary, clinical 

experts were involved to define the logic behind coupling 

templates with user information. A context-aware 

knowledge extraction module using rule templated was 

developed to retrieve information. Intuitively, a rule 

template acts as a conceptual link between question topics, 

user profiling information and clinical logic (when needed). 

Topic detection triggers the execution of a rule base that 

defines the logic to extract, process and return information 

relevant to user’s inquiry. The association of topics with 

templates is done in an abstract manner, exploiting the 

subsumption ontological hierarchy. Figure 3 graphically 

illustrates the concept behind rule templates. 

One simple example of template-based reasoning is the 

ability to answer questions about the duration of certain 

 

Figure 3 Conceptual dependencies among user profile, topics and clinical guidelines 
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activities. Such functionality is useful both for care-

recipients and care-givers that have the ability to get 

activity logging information with a natural way.  In this 

context, the classification of utterances in the 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐 class is used to trigger the 

corresponding rule base, without needing to couple clinical 

logic. This simple case can be handled by two template 

SPARQL rules (SPIN rule
10

). More specifically, Rule 1 is 

executed on top of the RDF graph with the activity logs to 

return the duration of an activity. 

#Rule 1 
CONSTRUCT { 
  [] a :Duration; :value ?d . 
} 
WHERE { 
  [] a :Variable; :name “ACTIVITY_TYPE”; 
    :value ?$ACTIVITY_TYPE . 
  [] a :Variable; :name “DATE”; :value ?$DATE. 
  ?activity a ?$ACTIVITY_TYPE; :start ?start ; 
    :end ?end . 
  FILTER (:match(xsd:date(?start) == ?$DATE))) 
  BIND (:duration(?start, ?end) as ?d) 

} 

The variables starting with ‘$’ denote template variables 

that are instantiated at runtime, based on the context 

captured in the topic. The custom SPARQL function 

: 𝑚𝑎𝑡𝑐ℎ tests the equality of a date value (? 𝑠𝑡𝑎𝑟𝑡) against 

another symbolic date value (e.g. Yesterday). The 

: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 function computes the duration given two date 

time values.  

Assuming that the user asked the question: “What was the 

duration of the prepare breakfast activity yesterday?”, the 

following context instance is generated (in Turtle format): 

:ctx1 a :Context ; 
  :contains [a :Duration]; 
  :contains [a :PrepareBreakfast]; 
    :contains [a :Yesterday] . 

 

where 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡 and 𝑌𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦 are 

domain concepts detected through language analysis. 

According to the domain model described earlier, 𝑐𝑡𝑥1 is 

automatically classified in the 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐 

class, which triggers the second rule of the rule base (Rule 

2) to assert triples for the two variables used in Rule 1. 

#Rule 2 
CONSTRUCT { 
  [] a :Variable; :name “ACTIVITY_TYPE”; 
    :value ?activityType . 
  [] a :Variable; :name “DATE”; :value ?period . 
} 
WHERE { 
  ?ad a :ActivityDurationTopic ; 
    :contains [a ?activityType] . 
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  ?activityType rdf:subClassOf :Activity . 
  FILTER (?activityType != :Activity) 
  ?ad :contains [rdf:type ?period] . 
  ?period  rdf:subClassOf :Period . 
  FILTER (?period != :Period)  

} 

By inserting the two 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 instances, the graph pattern 

in Rule 1 is now matched and a 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 triple is returned 

and sent to the language generation. It is worth mentioning 

that the query for extracting the variables for Rule 1 

requires the presence of a 𝑃𝑒𝑟𝑖𝑜𝑑 concept, denoting the 

date of the activity (in this case : 𝑌𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦). So, a 

question of the form: “What was the duration of the prepare 

breakfast” does not return any result, since the system 

misses information about the date when the activity should 

have taken place.  

Example of Spoken Feedback Based on Monitoring 

One of the use cases, inspired by the KRISTINA project
11

, 

involves the interaction of users with the system in order to 

acquire feedback about problems that may have. For 

example, the use may ask the system: “Why does my head 

hurt?”. This is a question that requires the coupling of 

clinical knowledge, in order to give as feedback potential 

causes of the headache, based on the user profile. For 

example, clinicians suggested that the sleep quality of the 

previous night should be checked (based on the results 

provided by the sleep sensor of the framework), together 

with the number of coffees the user had the last 24 hours. 

Both are implemented in terms of SPARQL rules that 

search the user activity monitoring graph to detect relevant 

patterns.  

It is important to highlight that the detection of a question 

topic (e.g. 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒𝑇𝑜𝑝𝑖𝑐 based on language analysis 

results 𝐻𝑢𝑟𝑡 and 𝐻𝑒𝑎𝑑) triggers a rule base that usually 

contains more than one rule. Intuitively, each topic is 

associated with a small rule-based application that tries to 

match graph patterns in the activity log of the user. As an 

example, we present the rule for checking the sleep quality 

of the previous night. If the value computed by the sleep 

sensors is lower than a threshold, then this fact is marked as 

a potential cause and returned as feedback to the user.  

CONSTRUCT { 
  [] a :Feedback; :value :NightSleep. 
} 
WHERE { 
  ?activity a :NightSleep; :start ?s ; 
    :quality ?q . 
  FILTER (?q < 0.4) 
  FILTER (:match(xsd:date(?start)==:Yesterday))) 

} 

If sleep quality is less than 0.4, the rule asserts a 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

instance in the RDF graph that is collected by another rule 
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of the rule base to compile an RDF response graph, which 

is finally forwarded to language generation.  

END-USER INTERFACE 

Besides the personalized spoken feedback the users also 

have access to a tablet application with a Graphical User 

Interface (GUI), tailored to provide comprehensive, 

intuitive monitoring of their daily life aspects and feedback. 

In detail it provides a restricted, simplified view of the most 

important measurements so as to avoid overwhelming the 

users or even stressing them out. The displayed interval 

spans across three days of information regarding Physical 

Activity (daily steps and burned calories), Sleep, Usage of 

Appliances and Medication. Besides user status and trends, 

the application also provides feedback with regards to 

problems detected such as sleep problems. It also provides 

educational material, such as recipes or step-by-step 

instructions to perform routine tasks, and the ability to 

exchange messages between end-users and clinicians. 

Figure 5 shows an example view with a digested view of 

three-day trends of sleep aspects and a warning for many 

sleep interruptions. Overall, the application is designed to 

help patients feel confident and secure with the system they 

are using, but also their relatives and carers as well as to 

encourage social interaction between them. End-user and 

carer feedback for the application through questionnaires 

was so far positive. 

PROOF-OF-CONCEPT EVALUATION 

Due to its very high complexity and the limited scope of 

this paper, evaluation results are presented only for the most 

representative of components. Real-world pilot installations 

were used to test sensor data retrieval, analysis and 

interpretation, from which we present here the most 

sophisticated result, namely activity recognition. The other 

key aspect of this paper, spoken feedback, is a rather 

complicated component to evaluate as it also requires prior 

accurate information detection. In this cycle, the knowledge 

from pilots was used to test the component by experts 

instead of pilot users to avoid confusing them with an early 

prototype building the prototype. Finally, clinical aspects 

are also presented for the pilot installations. 

Pilot Installations 

The system was evaluated in four home installations, in the 

residences of individuals living alone (for clinical aspects 

please refer to clinical evaluation below), and maintained 

for four months. Two additional installations are still 

sustained for a one-year total duration study. Sensors and 

relevant home areas or devices of the installation were 

selected after a visit from the clinician to the participants 

and follow the placement guidelines of Table 1. The 

majority of deployed sensors covered the areas of kitchen, 

bathroom and bedroom, since these rooms are strongly 

linked with most activities.  

Figure 5 shows a real-world installation, an image 

processing instance, collection of sensor events and 

aggregated information on an end-user tablet application 

(although the installation is real, a professional actor is 

depicted here to preserve the privacy of actual participants). 

These pilots were used so far to evaluate sensor data 

processing and interpretation performance such as activity 

recognition, stress detection, sleep problem detection and 

long-term clinical evaluation, some of which are presented 

below. 

Activity Recognition Performance Evaluation 

High-level activity recognition via ontology-based fusion 

has been evaluated from the four real-world pilot 

installations. Ground truth was obtained via annotation, 

based on images from ambient cameras. The metrics here 

are Recall (or True Positive Rate, TPR) and Precision 

(Positive Predicted Value. PPV), corresponding to activities 

recognized with respect those actually performed. Clinical 

experts suggested five activities, which are shown on. Table 

2 shows the activities together with pertinent context 

dependency models. 

The evaluation dataset spans over 31 days, in July 2015. As 

observed on Table 3, the more atomic and continuous an 

activity is, the more accurate the detection. In practice, 

BathroomVisit, the activity most accurately detected, is 

never interleaved to do something else. On the contrary, 

cooking is a long-lasting activity interrupted by instances of 

other events (e.g. watching TV) and influenced by 

uncertainty and the openness of the environment. WatchTV 

and PrepareTea are fairly short in duration, causing less 

uncertainty and interleaved events in-between, yielding 

decent precision and recall rates.  

Personalized Spoken Feedback Evaluation 

 

Figure 4. The end-user tablet application interface. 
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After evaluating the accuracy of sensor recordings and 

high-level activity recognition, the personalized spoken 

feedback component was separately examined, as it is not 

yet part of the pilots. Instead, internal IT and clinical staff 

was invited to test the current implementation of the 

component. The assessment was performed in accordance 

with Good Clinical Practice (GCP) following the 

procedure: (i) Informed consent was given for recording 

voice and filling a questionnaire, after a briefing of how 

data will be used internally. (ii) The participants conducted 

a guided conversation with the system. (iii) They filled in 

the questionnaire with assistance of personnel. The process 

took about one hour per participant and the questionnaires 

revealed the following critical aspects:  

Speech recognition and language analysis: Topic 

detection depends solely on the speech and language 

analysis output, which is used by the reasoner to classify 

utterance contexts in the topic hierarchy. The current 

implementation is not able to handle missing information 

and uncertainty. Therefore, the absence of a domain 

descriptor from the input, e.g. a missing 𝐻𝑢𝑟𝑡, preventing 

the detection of the correct topic (e.g. 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒) to trigger 

the corresponding rule base.  

Level of detail of the topic hierarchy: The rules for 

collecting and returning feedback are based on abstract 

dependencies. For example, it is assumed that for an 

utterance with 𝐻𝑢𝑟𝑡 and 𝐻𝑒𝑎𝑑 the system should always 

return possible causes of headache. However, the same 

concepts are detected when the user just says: “My head 

hurts”, for which recommendation on how to stop the pain 

would be more relevant than possible causes. Currently, the 

system is not able to distinguish such cases, since the topic 

hierarchy defines very abstract dependences between topics 

and concepts, while language analysis does not provide the 

type of utterance (e.g. statement, question, etc.). 

Improvement of Clinical Condition 

Six individuals living in six separate homes participated: 

five female (four Amnestic MCI, one mild dementia – AD) 

and one male (mild dementia – AD).  Besides regular 

approximately weekly clinical visits, the system supported 

clinical objective insights as well as the participants and 

their family. Significant improvement was found in post-

pilot clinical assessment in multiple domains, utterly 

bringing about positive change in mood and cognitive state, 

measured objectively via neuropsychological tests. In 

detail, the first participant has overcome insomnia 

(p=0.001) and neglecting daily chores (p=0.000), the 

second has shown improvement in sleep (p=0.000) and 

lingering in the bath (p=0.03), while the other two have 

been benefited with respect to sleep interruptions (p<0.02), 

lack of sleep (p<0.08) and medication. Physical exercise 

increased for participant three (p=0.0) while TV watching 

reduced (p=0.03) and personal hygiene improved for 

participant four (p-0.001). While this information was 

derived from statistical processing of system knowledge, 

neuropsychological assessment post pilot showed 

statistically significant improvement (pair sample t-test) in 

scales: Rivermead Behavioral Memory Test (p=0.03), 

MMSE (p=004), Hamilton depression scale (p=0.01), 

MoCA (p=0.004) and Rey Auditory Verbal Learning Test 

(p=0.04). Two participants converted from aMCI to SCI, 

with no pathological depression or anxiety symptoms, and 

one with moderate dementia switched to mild. For the last 

participant, state was unchanged but symptoms related to 

Parkinson’s were highlighted, showing the multi-domain 

coverage of the system. Detailed clinical aspects are 

available in [18].  

CONCLUSION AND FUTURE WORK 

This work has showcased a proposed system for self-

managing healthy ageing, based on multi-modal sensor data 

analysis and personalized spoken feedback. The proposed 

architecture has considered not only the required 

functionality, but also interoperability, acceptability, cost, 

security and privacy aspects. Evaluation was carried out 

through four real-world pilots, assessing activity 

recognition effectiveness and clinical condition 

improvement, while the more complex spoken feedback 

was evaluated by experts. 

To reach its full potential the system has yet to breach many 

barriers, especially regarding feedback. Further language 

 

Figure 5. Real-world installation, data collection and end-

user feedback application. 

 

Sensor Placement area or object 

Camera Kitchen, Living room, Hall 

Plugs TV, Iron, Vacuum, Cooking device, 

Boiler, Kettle, Bathroom lights Tags TV remote, Iron, Fridge door, Drug 

cabinet, Drug box, Tea bag, Cup Presence Kitchen, Bathroom, Living room 

Wristwatch Worn on the wrist 

Sleep 

sensor 

Under the mattress  

Table 1. Sensors in home installation. 

Activity 

Concept 

Context dependency set 

PrepareDrugBox DrugBoxMoved, DrugCabinetMoved, 

KitchenPresence Cooking TurnCookerOn, KitchenPresence 

PrepareTea TurnKettleOn, TeaBagMoved, 

CupMoved, KitchenPresence, 

TurnKettleOff 
WatchTV TurnTvOn, RemoteControlMoved, 

LivingRoomPresence BathroomVisit BathroomPresence, TurnBathrLightsOn 

Table 2. Context dependency models for the evaluation. 

Activity TPV PPV Activity 

PrepareDrugBox 0.86 0.89 PrepareDrugBox 

Cooking 0.61 0.68 Cooking 

PrepareTea 0.81 0.86 PrepareTea 

WatchTV 0.87 0.80 WatchTV 

BathroomVisit 0.91 0.94 BathroomVisit 

Table 3. Precision and recall for activity recognition. 
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semantics and handling uncertainty can provide for more 

use cases of feedback, as shown in evaluation. Additional 

pervasive and human intuitive modalities can be added such 

as an expressive compassionate avatar in hand with emotion 

sensing. Finally, decision making and acting on the 

environment, e.g. setting home lighting, teleconferencing 

with friends and step-by-step guidance, can have much 

greater positive impact in people’s health. 
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