
Towards Performance and Cost Simulation in

Function as a Service

Johannes Manner

Distributed Systems Group, University of Bamberg, Germany

johannes.manner@uni-bamberg.de

Abstract. Function as a Service (FaaS) promises a more cost-efficient

deployment and operation of cloud functions compared to related cloud

technologies, like Platform as a Service (PaaS) and Container as a Service

(CaaS). Scaling, cold starts, function configurations, dependent services,

network latency etc. influence the two conflicting goals cost and perfor-

mance. Since so many factors have impact on these two dimensions, users

need a tool to simulate the function in an early development stage to solve

these conflicting goals. Therefore, a simulation framework is proposed in

this paper.

Keywords: Serverless Computing, Function as a Service, FaaS, Benchmarking,

Load Pattern, Cold Start, Pricing, Simulation Framework

1 Introduction

Function as a Service (FaaS) [3] is a new, event-driven computing model in

the cloud, where single functions are executed in containers on a per request

basis. It promises a faster, easier and more cost-efficient development, deployment

and operation due to the abstraction of operational tasks by the FaaS provider.

Scaling to zero as one of the game changers avoids running instances of cloud

functions unnecessarily. Also the most granular pay-per-use model in the overall

cloud stack leads to a serious cost reduction for suited use cases. Therefore, it

is not surprising that early cost studies [1, 12] compared this new paradigm

with established ones, like monolithic architectures or microservices deployed on

virtual machines and container infrastructure.

The position paper is structured as follows. Sect. 2 puts the work in relation to

already conducted studies and approaches, which are important for a simulation

framework for FaaS. Based on these insights and the lack of a reproducible and

structured approach, Sect. 3 describes the main objectives of the dissertation

plan and concludes with a short discussion.

2 Related Work

One of the first cost comparisons between monolithic, microservice and cloud

function architecture was done by Villamizar et al. [12]. They state that cloud

S. Kolb, C. Sturm (Eds.): 11th ZEUS Workshop, ZEUS 2019, Bayreuth, Germany, 14-15
February 2019, published at http://ceur-ws.org/Vol-2339

http://ceur-ws.org/Vol-2339


functions saved more than 70% cost compared to the other implementations in

their use case scenario. Another case study [1] reduced cost up to 95%. But, there

are also cases, where cloud functions are more costly than traditional Virtual

Machine (VM) based solutions. An example use case is a large distributed data

processing application by Lee et al. [6], which is ten times more expensive.

The overall price is calculated by multiplying the execution time and the

price for the function configuration. Performance, i.e. execution time, of a cloud

function directly influences the price calculation. Due to this billing model,

there exist a lot of publications, which focus on performance. McGrath and

Brenner [11] implemented a performance-oriented FaaS platform on top of a

cloud provider to gain control over the infrastructure and improve the throughput

and scaling property. Lloyd et al. [8] identified a performance variation of

1500% w.r.t. the cold and warm infrastructure components of a FaaS platform.

They also assessed the throughput by concurrent access of cloud functions

on different FaaS platforms, especially the commercial ones, like Amazon Web

Services (AWS) Lambda, Google Cloud Functions, Azure Functions and IBM

OpenWhisk. A similar multi-provider study proposed a CPU-intensive bench-

mark [9] to compare the different FaaS offerings and support customers to select

the right platform for their needs.

Pricing and performance is "difficult to decipher", as Back and Andrikopoz-
los [2] stated. They also implemented a first minimal wrapper to harmonize the

different function handler interfaces of the major FaaS platforms. Applications

with bursty workloads are in focus of their work since these applications could

especially profit from the characteristics of FaaS.

3 Simulation Framework

Since the conducted research reveals a mixed picture so far, there is a need to

combine all these directions together in a structured way. By now, the related

work investigates aspects in isolation and preconditions for benchmarks and

other experiments are often not clear to readers. Besides the abstraction of

operational tasks in FaaS, cost and performance are important considerations

when deciding to build or migrate an application which includes cloud function

building blocks. To shed light on the cost and performance perspective of FaaS,

this paper proposes a simulation framework.

This framework is of conceptual nature to assess single cloud functions. The

overall idea is to simulate a single cloud function in isolation under various circum-

stances in an early development phase. Chaining or orchestration of functions is

out of scope. Influential factors, like the cold start, are investigated by conducting

benchmarks [10] on the different FaaS platforms. Results of these experiments

are aggregated to mean values and their deviations to cover the best, worst and

average case. These values serve as an input for the simulation framework and

enable local testing of a cloud function on a developers machine. It also shows

the variation in price and performance w.r.t. the function characteristics, e.g.

CPU-bound functions or IO-bound functions.

44 Johannes Manner



Therefore, the following research objectives are of particular interest. They are

preparatory work to get a solid foundation for the overall goal of the dissertation.

Load Patterns - Benchmarking applications is a problematic field as Hup-
pler [4] noted. Repeatability, verifiability and economical considerations are

some of his requirements for a good benchmark. Since FaaS introduces a

completely different scaling notion than related paradigms, such as PaaS or

CaaS, the requirements for a suited FaaS benchmark are different. There is a

lack of standardized load patterns for the cloud and especially for the event-

triggered execution of cloud functions. The idea is to extract standardized

load patterns via a literature study or real world use cases, group them and

define template patterns. The catalog contains a few generic, parameterized

load patterns, such as linear or bursty workloads, and could also serve as

a reference for other benchmarks in the cloud area. Based on such a load

pattern catalog, experiments are controllable and comparable.
Each function is executed in a lightweight container environment. If the

load pattern leads to a lot of up and downscaling, the execution time is

directly influenced due to the cold start overhead and communication setup

to dependent services. To understand the impact of these application load

patterns on cloud function price and performance compared to IaaS, PaaS or

CaaS, their characteristics [2] need deeper investigation and the proposed

load pattern research is the first step towards this understanding.
Cold Start - Cold starts are an inherent problem of every virtualization tech-

nology. Discussed in the previous aspect, the scaling property of FaaS results

in a lot of cold starts. Based on our previous work [10] and results conducted

similarly [5], there is a cold start overhead present ranging between 300ms

up to seconds for a single function. This execution time overhead has a direct

performance and cost impact.
Pricing - Pay-per-use billing model leads to a simple pricing for cloud function at

a first glance. Only execution time, memory setting and number of invocations

are necessary. But a single cloud function is rarely an application in the sense

of serving business value to the customer. To get FaaS in production, a lot of

additional services are mandatory, like databases, API gateways etc. Cost

models like the CostHat model [7] could be adapted from the microservice to

the nanoservice scope and include such mandatory services.
Portability - Portability is another important aspect. Only when portability

is ensured, a simulation is useful to test, if the function shows a better

performance on another platform. Therefore, the transformation effort and

the estimated savings have to be considered w.r.t. cost or performance.

Wrapper utilities [2] are a first step to enable portable functions and allow a

comparison between custom functionality. Since cloud functions profit from

rich provider ecosystems and are tightly integrated with other services, like

databases, messaging systems etc., the main problem of portability are the

custom interfaces of these services.

A simulation framework for cloud functions to solve conflicting goals between

cost and performance is only realizable, if the items of the previous section are

Towards Performance and Cost Simulation in Function as a Service 45



assessed in detail. The presented research objectives are a starting point and

cover, to the best of the author’s understanding, the most important objectives

relevant to the proposed framework. This leads to the conclusion, that the author

is aware, that there might be missing dimensions and aspects, which will be also

considered when they arise. Similar to the problem of dev-prod parity in software

engineering, a proof of concept is necessary. This validation step is at first a

simulation, second conducting experiments and third, compare the simulated

values to the metered ones in a real life experiment (sim-prod parity).

Typically, a function with fewer resources allocated is slower, but cheaper and

vice versa. The catalog of load patterns, the configurations of cloud functions,

the cold start values for different languages, providers and other dimensions and

the price structure are the input besides the cloud function code for simulating

the cost. Additional meta data are needed in form of a model, which depicts

the interaction with other services in the provider’s ecosystem. A small-sized

benchmark is the processing step of our simulation framework. The simulation is

reproducible since the parameters are constant and only the local execution on

a client’s machine could influence the outcome slightly. A report serves as the

output, where the user can see the best configuration and provider for his use

case dependent on his leading dimension.

References

1. Adzic, G., Chatley, R.: Serverless Computing: Economic and Architectural Impact. In:

Proc. ESEC/FSE (2017)

2. Back, T., Andrikopoulos, V.: Using a Microbenchmark to Compare Function as a

Service Solutions. In: Service-Oriented and Cloud Computing. Springer International

Publishing (2018)

3. van Eyk, E., et al.: The SPEC Cloud Group’s Research Vision on FaaS and Serverless

Architectures. In: Proc. WoSC (2017)

4. Huppler, K.: The art of building a good benchmark. In: Performance Evaluation and

Benchmarking (2009)

5. Jackson, D., Clynch, G.: An Investigation of the Impact of Language Runtime on the

Performance and Cost of Serverless Functions. In: Proc. WoSC (2018)

6. Lee, H., Satyam, K., Fox, G.: Evaluation of Production Serverless Computing

Environments. In: Proc. CLOUD (2018)

7. Leitner, P., Cito, J., Stöckli, E.: Modelling and Managing Deployment Costs of

Microservice-Based Cloud Applications. In: Proc. UCC (2016)

8. Lloyd, W., et al.: Serverless Computing: An Investigation of Factors Influencing

Microservice Performance. In: Proc. IC2E (2018)

9. Malawski, M., et al.: Benchmarking Heterogeneous Cloud Functions. In: Euro-Par

2017: Parallel Processing Workshops (2018)

10. Manner, J., et al.: Cold Start Influencing Factors in Function as a Service. In: Proc.

WoSC (2018)

11. McGrath, G., Brenner, P.R.: Serverless Computing: Design, Implementation, and

Performance. In: Proc. ICDCSW (2017)

12. Villamizar, M., et al.: Infrastructure Cost Comparison of Running Web Applications

in the Cloud Using AWS Lambda and Monolithic and Microservice Architectures. In:

Proc. CCGrid (2016)

46 Johannes Manner


