A Cross-Layer Approach to Performance Monitoring
of Web Services

Nicolas Repp, Rainer Berbner, Oliver Heckmann, and Raih8tetz

Technische Universitat Darmstadt
Multimedia Communications Lab (KOM)
Merckstrasse 25, 64283 Darmstadt, Germany
repp@om t u- dar st adt . de

Abstract. An increasing amount of applications are currently builtiNeb Ser-
vice compositions based on the TCP/IP+HTTP protocol statkase of any
deviations from desired runtime-behavior, problematido\8ervices have to be
substituted and their execution plans have to be updateatdingly. One chal-
lenge is to detect deviations as early as possible alloviingly adaption of exe-
cution plans. We advocate a cross-layer approach to deddgbdrformance and
service interruptions much earlier than by waiting for ti@opagation through
the full protocol stack.

This position paper describes an approach to gain detakdime information
about Web Service behavior and performance based on alesy@ssanalysis of
the TCP/IP+HTTP protocols. In this paper we focus espsgcail TCP. The re-
sults are used to make decisions supporting service smteatid replanning in
service-oriented computing scenarios. Furthermore, riearchitectural compo-
nents are proposed implementing the functionality needeidhwcan be used in
different web-based scenarios.

1 Introduction

Almost every Internet user has encountered problems whitgyservices in the Inter-
net, e.g., browsing the World-Wide Web or using Email. Lominfinite response times
due to congestion or connection outage, non-resolvablesJ&Lsimple file-not-found
errors are some of the most common ones. Human users tendlexiée in case of
any service "misbehavior”. Users wait and check back latesven select a different
service if the originally requested service is not avagabi contrast, computer systems
as service consumers are not as flexible. Appropriate gtestéo handle those runtime
events have to be implemented during design time of the ctenpystem.

Services are the key building block of service-oriented gotimg. A service is a
self-describing encapsulation of business functiondlitith varying granularity) ac-
cording to [1]. Following the service-oriented computingradigm, applications can
be assembled out of several independent, distributed arselip-coupled services [2].
Those services can be provided even by third parties. Onerdyatimplement services
from a technical perspective is the use of Web Services. Welics are based on dif-
ferent XML-based languages for data exchange and intedaseription, e.g., SOAP
and the Web Service Description Language (WSDL). For thesprart of data and the

Processes
Discovery, Aggregation, Choreography, ...

WS*
REST
XML-RPC

BWaYoS ‘aLa “TNX
BWAYIS ‘aLa “TNX

Aunoag

XML, DTD, Schema

juswabeuel

Hypertext Transfer Protocol

Internet Protocol

‘ Transmission Control Protocol ‘

Fig. 1. Modified W3C Web Services Architecture Stack [3]

Web Service invocation mainly the Transmission Controt&gol (TCP) / Internet Pro-
tocol (IP) suite (e.g., RFC 793, [4], or [5]) as well as the ldystpxt Transfer Protocol
(HTTP - e.g., RFC 2616 or [6]) are used. Figure 1 shows the W28 Bérvices Archi-
tecture Stack enhanced by alternative Web Service techresland the communication
protocols used. It will be the basis for our further considiens.

In order to build applications from different existing Welkr@ices the following
generic phases are needed [7]: First, suitable Web Servaesto be selected accord-
ing to the functional and non-functional requirements & #pplication. Second, the
selected Web Services have to be composed to an executioaeeto, a composition
can be described, e.g., on basis of the Business Procesatiexecanguage (BPEL)
[8]. In the next step the execution plan can be processedn@thie execution phase
it is possible that parts of the composition do not act as eeuewith regard to the
non-functional requirements. Reasons for misbehavior elb \Bervices are manyfold,
e.g., server errors while processing a request, networgesiion or network outages.
Therefore, it is necessary to select alternative Web Seswand to replan the Web Ser-
vice execution [9]. Replanning is always a trade-off betwiee costs of creating new
plans to fulfill the overall non-functional requirementsdathe costs of breaking the
requirements [10]. Timely action is required to reduce takag in the execution of an
application due to replanning and substitution of Web S®wi Hence, we propose a
proactive approach initiating countermeasures as soohess ts evidence that a de-
viation might occur in the near future with a certain proliabip. To start replanning
before the deviation happens allows replanning to be choig in parallel to the ser-
vice execution itself. The results of replanning have to iseatded with probability
1 — p as the alternative plans are not needed.

Furthermore, current approaches often lack detailed imétion about the status
of a Web Service due to the information hiding implementedhia layer model of

the TCP/IP+HTTP protocol stack underlying Web Services. this, we advocate a
cross-layer approach to detect bad performance and sem@reuptions. Cross-layer
analysis allows decisions based on deeper knowledge ofithent situation as well as
decisions made much earlier than by waiting for informafoopagating through the
full protocol stack.

The rest of this position paper is structured as follows hia mext section we de-
scribe Quality-of-Service (QoS) and its meaning for Webvi®ess. We especially fo-
cus on performance as a part of Web Service QoS. Afterwands;elation between
TCP/IP+HTTP and Web Service performance is discussed. ©asdayer approach to
performance monitoring an performance anomaly detectide®b Services is intro-
duced thereafter. The paper closes with a conclusion andtéooé on future work.

2 Quality-of-Service and Performance of Web Services

In this section we discuss QoS with regard to Web ServicedNetdService composi-
tions with a focus on Web Service performance.

2.1 Quality-of-Service with regard to Web Services

Similar to QoS requirements in traditional networks, thisra need to describe and
manage QoS of Web Services and Web Service compositiongr&in QoS defines
non-functional requirements on services independent frentayer they are related to.
QoS can be divided into measurable and non-measurable pm@mThe most com-
mon measurable parameters are performance-relatedtheaughput, response time,
and latency. Additionally, parameters like availabilgyror-rate, as well as various non-
measurable parameters like reputation and security areqafrtance for Web Services
[10] [11]. The meaning of QoS requirements can differ betwservice providers and
service requesters in a service-oriented computing emviemt [11]. From a service
providers’ perspective, providing enough capacity wite tfuality needed to fulfill
Service Level Agreements (SLA) with different customera isore issue. Service re-
questers are more focused on managing bundles of Web Sefuice different ven-
dors in order to implement their business needs. Therefoamagement of QoS re-
quirements is done on aggregations of Web Services, to erlexgend on single Web
Services.

There is a variety of other definitions of Web Service QoS. Aenextensive ap-
proach identifies the following requirements [12]: perfamue, reliability, scalability,
capacity, robustness, exception handling, accuracygiityeaccessibility, availability,
interoperability, security, and network-related QoS iegments. Especially the last re-
quirement is of further interest. As many requirements ob\8ervice QoS are directly
related to the underlying network and its QoS, implemeaotetiof network QoS mech-
anisms, e.g., Differentiated Services (DiffServ) or thes®ece Reservation Protocol
(RSVP), are also covered by the definition as well.

2.2 Performance of Web Services

Performance of Web Services is not a singular concept. Rathensists of several
concepts which themselves are connected to different esednid parameters. Again,
there are several definitions of Web Service performancewiWaise the definition
provided by the Web Services Architecture Working Grouphaf W3C as a founda-
tion for our own defintion. According to the W3C, performarnsealefined in terms
of throughput, reponse time, latency, execution time, aadsaction time [12]. Both
execution time and latency are sub-concepts of the W3Csitilafiof response time.
Transaction time describes the time needed to process ale®n@nsaction, i.e., an
interaction consisting of several requests and resporedeading together.

For this paper, we define performance in terms of throughpdtrasponse time.
Response time is the time needed to process a query, fronngethe request until
receiving the response [13]. Response time can be furtkietedi into task processing
time, network processing time, i.e., time consumed whéeersing the protocol stacks
of source, destination, and intermediate systems, as se#ét@vork transport time itself.
In case of an error during the processing of a request or @ansspthe response time
measures the time from a request to the natification of am.ékfdefine response time
as follows:

tresponse (’U}S) = ttask (U}S) + tstack (’U}S) + ttransport (’U}S)

A large fraction of a web service’s response time is deteechioy the processing time
for requests and their respective messages in both intésiresystems and end-points.
For the measurement of the response time, the encapsuddtitata into XML mes-
sages and vice versa, compression and decompression cdislatell as encryption and
decryption of messages also have to be taken into accounihdfonore, time for con-
nection setup, for the negotiation of the connections patara as well as the amount
of time used for authentication are part of the response gisnsell.

Throughput, measured in connections, requests or packetepond, describes the
capability of a Web Service provider to process concurregl \®ervice requests. De-
pending on the layer, different types of connections cambdasis for measurements,
e.g. TCP connections, HTTP connections, or even SOAP ttteres. We define the
throughput of a Web Services as:

_ #requests(ws)
- time

throughput(ws)
Additionally, we have to define the concept of "performanoeraaly” we will use
later on. Performance anomalies describe deviations fhenpérformance expected in
a given situation. Performance anomalies do not have to beptions or even errors,
e.g., a response time which exceeds the value defined in a Shla6 a performance
anomaly with regard to business requirements. Furthernparformance better than
expectations is also an anomaly.

3 A Cross-layer Approach to Performance Monitoring and
Anomaly Detection

In this section we describe an approach for performance tovdmg and performance
anomaly detection based on packet capturing and the appficaf simple heuristics.
Therefore, we analyze IP, TCP, and HTTP data. The analys$©#P is not in scope
of this paper, as we want to stay independent of a certain Welic® technology. Our
approach can be applied to various alternative Web Sere@tablogies as well, e.g.,
XML-Remote Procedure Call (XML-RPC) or Representatiortat&Transfer (REST).
Nevertheless, in our examples we use SOAP as it is the mosnoonWeb Service
technology in use.

3.1 Protocol Parameters for Performance Monitoring

Consider the simple Web Service invocation of a single Welvi€e as depicted in
Figure 2. A service requester generates a SOAP request ndd ge message using
HTTP to the service provider for further processing. Thesags has to pass several in-
termediate systems on its way between the interactionp@nts. The SOAP response
message is again transported using HTTP.

Service Service
Requester Provider
= =

SOAP request -

»

<
9

SOAP response

Fig. 2. Simple Web Service interaction

During data transfer several problems can occur, whichalétan impact on Web
Service execution. Beginning with the network layer, we rfeme routing problems,
e.g., hosts which are not reachable, congestion in Intemgers as well as traffic
bursts. Additionally, on transport layer there are alsapbél pitfalls like the retrans-
mission of packets due to packet loss or connection setugems generating delays.
Finally, there are also some potential problems on appdicddyer with regard to Web
Services for example in form of resources, which are notiexgr not accessable for
HTTP or problems in processing of SOAP messages due to inetengr non-valid
XML data.

Although, many of the above problems are solved in modertopobstack imple-
mentations, we can use the knowledge about them to defineunegasnt points for
performance monitoring. Depending on the problems in sabfferent protocol pa-
rameters have to be used. Table 1 gives an overview of measuatgoints on different

protocol layers. We will use the transport layer parametsrein example to derive
metrics and heuristics for performance anomaly detectidhe following section.

|Protoco|Measuring Point / Parameter |

IP ICMP messages
Size of advertising window
Roundtrip time (RTT)
TCP |Sequence numbers in use
Flags used in packets
Information about timers
HTTP |Header information
Table 1. Measuring points per protocol layer

3.2 Metrics and Heuristics for Performance Anomaly Detecibn

As noted in Section 2.1 we can differentiate between theireouents of service re-
questers and service providers. To visualize our conceptaill/ focus on the service
requester’s perspective in this position paper. Beforécheeuristics are proposed we
present metrics based on the parameters presented in Tatdech will be the founda-

tion of our heuristics. We propose several metrics basedaoampeters of the transport
layer protocol:

— M1 - Average throughput in bytes per second (BPS).
— M2 - Throughput based on a moving average over window with sizeconds in
BPS.

— M3 - Throughput based on exponential smoothing (first degréh)avvarying in
BPS.

— M4 - Roundtrip time based on a moving average over window wittrssegments
in seconds per segment.

— M5 - Number of gaps in sequence numbers based on a moving aveegeindow
with sizen seconds in number of gaps per second.

The aggregation of single metrics in combination with thagesof appropriate
thresholds allows us to build heuristics in order to detacinaalies with performance
impact. The following two simple heuristics show the ideavhto design heuristics
based on the metrics discussed. Both were derived from iexpetations in our Web
Service test environment.

— H1Rgequester: M1 (0r M2, M3) in aggregation wittM4, i.e., throughput combined
with RTT.

— H2pequester: M4 in aggregation withvi5, i.e., RTT combined with the amount of
gaps in TCP sequence numbers.

Singular metrics are in some cases not sufficient for robosiitoring, e.g.M5 without
any information about RTT does not offer useful information

In addition to those transport layer based heuristicsh&rrparameters from other
protocol layers and the respective metrics can be combmedder to create different
cross-layer heuristics. Nevertheless, it is importarttitietrics and the related heuristics
have to be calculated in an efficient way in order to keep aufdit processing times of
our approach low.

3.3 Exemplary Evaluation of Our Approach

To show the feasibility of our approach we set up an experiniére test environment
consists of a 1.4 GHz Centrino with 1.256 GByte RAM runningiddws XP as ser-
vice requester and a 1.42 GHz G4 with 1 GByte RAM running Mac)XO& service
provider. Apache Tomcat 5.5.17 is used as an applicatimesdBoth systems use Java
1.5 and Axis 1.4 as SOAP implementation. They are connegtd®® MBit/s ethernet.
For packet capturing windump v3.9.3 is used.

First, we measure the response time of a Web Service in duenggonment. As
payload we use SOAP messages of variable size. Table 2 shewestlts of measuring
20 individual runs both with and without network outage fqrayload of 20 MByte, a
test scenario, which was already implemented in our test@mwent. Similar results
can be observed with a payload of 150 KB. Network outages quelly distributed

[tresponse(ws) [ms]minimum/maximuniaverage |
w/o outage 8,743 9,604 8,891

w/ outage 601,204 (605,831 {604,186
Table 2. SOAP response times

in the interval [0;maX(-csponse(ws) W/0 outage)]. A network outage is modelled as a
permanent 100% packet loss, i.e., without a restart of th@ection. Other scenarios,
e.g., varying or temporary packet loss, are not in focusisfpibsition paper. As Table
2 shows, the response time of our Web Service varies betw@ese8onds (without
outage) and 10.07 minutes (with outage) for a 20 MByte pal/loa

|rtt [ms] [minimum/maximun]average |
|H1Requester|o-22 |O41 |031 |
Table 3. Roundtrip times

In a next step, we applf 1 requester ON OUr Sample with network outages. Espe-
cially the roundtrip time extracted from TCP packets can $eduas trend estimate for
the overall response time in our scenario. Table 3 showsviiage roundtrip times of
all 20 runs. Using a moving average of the roundtrip timessuesd as a benchmark

for the roundtrip time of the packet in transfer, a warninghe replanning system can
be sent, e.g., if the estimated time (or a multiple) is exedadice or more in a row.
Unfortunately, throughput was not as good as the RTT as dodtat for performance
anomalies in the given scenario.

3.4 lIdentification of Required Architectural Components

In order to implement our ideas several architectural camepts are needed. The key
building blocks are depicted in Figure 3.

Interface
v t
(Re-)Planning Component

A
"3 L

v

azsjoweled

Orchestration Engine
1 *

EX
5
=
)

‘ Hypertext Transfer Protocol ‘

19661y

4

Transmission Control Protocol ‘

1019918
JOHUOA

A
y 3

Internet Protocol

Fig. 3. Proposed architectural components

The upper part of Figure 3 describes existing generic compisrused for planning
and executing of Web Service compositions. Titerface allows deployment of work-
flows and configuration, th@ke-)Planning Component generates and adapts execution
plans, which are thereafter executed byGnchestration Engine. We propose the use
of our Web Service Quality-of-Service Architectural Exd¢ean (WSQoSX) as imple-
mentation means for the functionality needed. WSQoSX dirsapports planning and
replanning of compositions [7] [10].

The lower part of the figure describes the two core componeintsir approach
in addition to the protocol stack. This enhanced architattolueprint is named Web
Service - Service Monitoring Extension (WS-SMX). TRionitor specifies a compo-
nent capable of eavesdropping of the network traffic betwsssmice requester and
provider. It also implements pre-filtering of the data pagdly reducing it to the pro-
tocol data of interest. Its data is passed etector component, which is responsible

for the data analysis and therefore the performance anodedction. TheDetector
component will implement the heuristics discussed in $ec8i.2. TheOrchestration
Engineinitializes theDetector, which itself prepares thilonitor. The Detector analy-
ses the data received by thtnitor and triggers théRe-)Planning Component in case
of any critical findings. Additionally, th®etector component can be configured using
thelnterface. Both Monitor andDetector are implemented in a first version in our test
environment based on Java 1.5 in combination with libpcapéaket capturing.

4 Related Work

As our approach is based on research of various domaingitttisss gives an overview
of related work in those domains. Gschwind et al. [14] désckivebMon, a perfor-
mance analysis system with focus on Web transactionstargsdctions between a Web
browser and a Web server. Monitoring is done on basis of HWe#b Services as re-
mote method invocations as well as a further processingeofahults of the analysis
are not in scope of their paper. Similar mechanisms as the pmoposed by us are im-
plemented in the commercial software package VitalSuiteument, which is used for
capacity planning and QoS management in large networkalStitte can also analyze
different protocol layers simultaneously. In contrasthie system we propose, Vital-
Suite’s focus is on reporting for end-users instead of aatechmanagement. A more
detailed view on performance management of Web Services@sisbed by Schmi-
etendorf et al. [15]. The Web Services Trust Center (WSTOna Web Services to be
registered at and measured by an independent third parBLidmanagement. WSTC
enables the monitoring of performance and availability @/$ervices, but not under
real-time requirements.

The management of Web Service compositions, their orciitéstras well as their
optimization and planning is emphasized in various pagmag)y mentioned in the
introduction. Of further interest in that domain is the WednSce Manager (WSM)
introduced by Casati et al. [16] focusing on the businesspemtive of Web Service
management, e.g., detecting and measuring SLA violations.

Fundamental work in the area of packet capturing, its jestiion and optimization
was carried out e.g., by Feldmann [17] and Mao et al. [18]hBat not focus on poten-
tial areas of application for packet capturing but on mezment itself. Feldmann uses
cross-layer capturing and analysis of TCP and HTTP for Ml performance studies.
Mao et al. describe both drawbacks and advantages of paafar@analysis of Web ap-
plications based on packet capturing mechanisms. Furtirerra reliable and efficient
approach for monitoring in distributed systems based gpadiching is discussed.

The idea of anomaly detection to predict certain criticalaions is already used,
e.g., inthe area of network security, especially in netwitkision detection. Mainiko-
poulos et al. describe the use of statistical methods aptdieetwork usage traces for
anomaly detection, e.g., an attack on a networked systeinAh®ther area of appli-
cation is discussed by Yuan et al. [20]. They propose a sy&termutomated problem
diagnosis in applications based on system event tracesorhalation of current traces
and patterns of well known problems allows an automatic tileation of problem

sources and prediction of possible system errors. Furthiernthe authors use statisti-
cal learning and classifying methods to dynamically adagtienprove their system.

5 Conclusion and Future Work

In this position paper we show that it can be beneficial to n$erination gathered
on different protocol layers for decision support. We présa approach and several
architectural components, which use hidden, low layerrieth information for proac-
tive replanning of Web Service compositions. As this is atpospaper there are still
some open issues we are researching. We are currentlygteséiohine learning algo-
rithms for anomaly detection. Furthermore, we are workingeahancements of ex-
isting optimization models for Web Service compositionstpport replanning [10].
Additionally, we will test our approach from a service regige’s perspective in real
world scenarios, using Web Services available to the publg:, from Amazon or via
Xmethods.

Using our approach for proactive replanning is not limite 6OAP Web Services.
As we are collecting our data on lower layers, the type of Webvie can be ex-
changed, e.g., REST and XML-RPC based Web Services canatsiported. But we
are not even limited to Web Services as an area of applicafio&approach can be of
benefit, e.g., to enhance Web browsers to detect networkgmahin a faster way.

Acknowledgments

This work is supported in part by E-Finance Lab e.V., Frartidin Main.

References

1. Papazoglou, M.P.: Service-oriented computing: Cors;ebiaracteristics and directions. In:
Proceedings of the Fourth International Conference on \Wkfsrhation Systems Engineer-
ing (WISEQ3). (December 2003) 3-12

2. Bichler, M., Lin, K.J.: Service-oriented computing. IEEEomputer39(3) (March 2006)
99-101

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., ChampianFktris, C., Orchard, D.: Web
services architecture (2004. http://www.w3.0rg/TR/wshd accessed: 2006/07/02)

4. Stevens, W.R.: TCP/IP illustrated (vol. 1): the protscofddison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1994)

5. Tanenbaum, A.S.: Computer Networks, Fourth Editionnte Hall, Indianapolis, Indiana,
USA (August 2002)

6. Mogul, J.C.: Clarifying the fundamentals of http. In: WW®2: Proceedings of the 11th
international conference on World Wide Web. (May 2002) Z5—3

7. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortier Steinmetz, R.: An approach
for the management of service-oriented architecture (baagd application systems. In:
Proceedings of the Workshop Enterprise Modelling and mfdfon Systems Architectures
(EMISA 2005). (October 2005) 208-221

8. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawara&ha,The next step in web services.
Commun. ACM46(10) (2003) 29-34

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: Qaware replanning of compos-
ite web services. In: Proceedings of the IEEE Internati@ahference on Web Services
(ICWS'05). (July 2005) 121-129

Berbner, R., Spahn, M., Repp, N., Heckmann, O., SteinrRet An approach for replanning
of web service workflows. In: Proceedings of the 12th AmeriCanference on Information
Systems (AMCIS’06). (August 2006)

Menascg, D.A.: Qos issues in web services. |IEEE Int&omputing6(6) (2002) 72-75
Lee, K.C., Jeon, J.H., Lee, W.S., Jeong, S.H., Park,:SQ#s for web services: Require-
ments and possible approaches (2003. http://www.w3c/kr-&ffice/TR/2003/ws-qos/, ac-
cessed: 2006/07/03)

Jain, R.: The art of computer systems performance daalgshniques for experimental
design, measurement, simulation, and modeling. John \&il&pns, Inc., New York, NY,
USA (1991)

Gschwind, T., Eshghi, K., Garg, P.K., Wurster, K.: Welom& performance profiler for web
transactions. In: Proc. of the 4th IEEE Int'| Workshop on Adeed Issues of E-Commerce
and Web-Based Information Systems - WECWIS 2002. (June)200R-176
Schmietendorf, A., Dumke, R., Stojanov, S.: Perforreaaspects in web service-based
integration solutions. In: Proc. of the 21st UK Performaritmgineering Workshop -
UKPEW2005. (July 2005) 137-152

Casati, F., Shan, E., Dayal, U., Shan, M.C.: Busineisst®md management of web services.
Commun. ACM46(10) (2003) 55-60

Feldmann, A.: BIt: Bi-layer tracing of http and tcp/ip.of@put. Networks33(1-6) (2000)
321-335

Mao, Y., Chen, K., Wang, D., Zheng, W.: Cluster-basednenmonitoring system of web
traffic. In: WIDM '01: Proceedings of the 3rd internationabikshop on Web information
and data management. (November 2001) 47-53

Manikopoulos, C., Papavassiliou, S.: Network intrasimd fault detection: a statistical
anomaly approach. IEEE Communications MagaZi®@ 0) (October 2002) 76-82

Yuan, C., Lao, N., Wen, J.R., Li, J., Zhang, Z., Wang, Y.Ma, W.Y.: Automated known
problem diagnosis with event traces. In: Proceedings ocd&ys2006. (April 2006) 375-388

