
A Cross-Layer Approach to Performance Monitoring
of Web Services

Nicolas Repp, Rainer Berbner, Oliver Heckmann, and Ralf Steinmetz

Technische Universität Darmstadt
Multimedia Communications Lab (KOM)

Merckstrasse 25, 64283 Darmstadt, Germany
repp@kom.tu-darmstadt.de

Abstract. An increasing amount of applications are currently built asWeb Ser-
vice compositions based on the TCP/IP+HTTP protocol stack.In case of any
deviations from desired runtime-behavior, problematic Web Services have to be
substituted and their execution plans have to be updated accordingly. One chal-
lenge is to detect deviations as early as possible allowing timely adaption of exe-
cution plans. We advocate a cross-layer approach to detect bad performance and
service interruptions much earlier than by waiting for their propagation through
the full protocol stack.
This position paper describes an approach to gain detailed real-time information
about Web Service behavior and performance based on a cross-layer analysis of
the TCP/IP+HTTP protocols. In this paper we focus especially on TCP. The re-
sults are used to make decisions supporting service selection and replanning in
service-oriented computing scenarios. Furthermore, generic architectural compo-
nents are proposed implementing the functionality needed which can be used in
different web-based scenarios.

1 Introduction

Almost every Internet user has encountered problems while using services in the Inter-
net, e.g., browsing the World-Wide Web or using Email. Long to infinite response times
due to congestion or connection outage, non-resolvable URLs, or simple file-not-found
errors are some of the most common ones. Human users tend to beflexible in case of
any service ”misbehavior”. Users wait and check back later or even select a different
service if the originally requested service is not available. In contrast, computer systems
as service consumers are not as flexible. Appropriate strategies to handle those runtime
events have to be implemented during design time of the computer system.

Services are the key building block of service-oriented computing. A service is a
self-describing encapsulation of business functionality(with varying granularity) ac-
cording to [1]. Following the service-oriented computing paradigm, applications can
be assembled out of several independent, distributed and loosely-coupled services [2].
Those services can be provided even by third parties. One option to implement services
from a technical perspective is the use of Web Services. Web Services are based on dif-
ferent XML-based languages for data exchange and interfacedescription, e.g., SOAP
and the Web Service Description Language (WSDL). For the transport of data and the



Hypertext Transfer Protocol

Transmission Control Protocol

Internet Protocol

WS*
REST

XML-RPC
...

...

Processes
Discovery, Aggregation, Choreography, ...

X
M

L
, D

T
D

, S
c
h
e
m

a

XML, DTD, Schema
X

M
L
, D

T
D

, S
c
h
e
m

aS
e

c
u

rity

M
a

n
a

g
e

m
e

n
t

Fig. 1. Modified W3C Web Services Architecture Stack [3]

Web Service invocation mainly the Transmission Control Protocol (TCP) / Internet Pro-
tocol (IP) suite (e.g., RFC 793, [4], or [5]) as well as the Hypertext Transfer Protocol
(HTTP - e.g., RFC 2616 or [6]) are used. Figure 1 shows the W3C Web Services Archi-
tecture Stack enhanced by alternative Web Service technologies and the communication
protocols used. It will be the basis for our further considerations.

In order to build applications from different existing Web Services the following
generic phases are needed [7]: First, suitable Web Serviceshave to be selected accord-
ing to the functional and non-functional requirements of the application. Second, the
selected Web Services have to be composed to an execution plan. Hereto, a composition
can be described, e.g., on basis of the Business Process Execution Language (BPEL)
[8]. In the next step the execution plan can be processed. During the execution phase
it is possible that parts of the composition do not act as expected with regard to the
non-functional requirements. Reasons for misbehavior of Web Services are manyfold,
e.g., server errors while processing a request, network congestion or network outages.
Therefore, it is necessary to select alternative Web Services and to replan the Web Ser-
vice execution [9]. Replanning is always a trade-off between the costs of creating new
plans to fulfill the overall non-functional requirements and the costs of breaking the
requirements [10]. Timely action is required to reduce the delay in the execution of an
application due to replanning and substitution of Web Services. Hence, we propose a
proactive approach initiating countermeasures as soon as there is evidence that a de-
viation might occur in the near future with a certain probability p. To start replanning
before the deviation happens allows replanning to be carried out in parallel to the ser-
vice execution itself. The results of replanning have to be discarded with probability
1 − p as the alternative plans are not needed.

Furthermore, current approaches often lack detailed information about the status
of a Web Service due to the information hiding implemented inthe layer model of



the TCP/IP+HTTP protocol stack underlying Web Services. For this, we advocate a
cross-layer approach to detect bad performance and serviceinterruptions. Cross-layer
analysis allows decisions based on deeper knowledge of the current situation as well as
decisions made much earlier than by waiting for informationpropagating through the
full protocol stack.

The rest of this position paper is structured as follows. In the next section we de-
scribe Quality-of-Service (QoS) and its meaning for Web Services. We especially fo-
cus on performance as a part of Web Service QoS. Afterwards, the relation between
TCP/IP+HTTP and Web Service performance is discussed. Our cross-layer approach to
performance monitoring an performance anomaly detection of Web Services is intro-
duced thereafter. The paper closes with a conclusion and an outlook on future work.

2 Quality-of-Service and Performance of Web Services

In this section we discuss QoS with regard to Web Services andWeb Service composi-
tions with a focus on Web Service performance.

2.1 Quality-of-Service with regard to Web Services

Similar to QoS requirements in traditional networks, thereis a need to describe and
manage QoS of Web Services and Web Service compositions. Generally, QoS defines
non-functional requirements on services independent fromthe layer they are related to.
QoS can be divided into measurable and non-measurable parameters. The most com-
mon measurable parameters are performance-related, e.g.,throughput, response time,
and latency. Additionally, parameters like availability,error-rate, as well as various non-
measurable parameters like reputation and security are of importance for Web Services
[10] [11]. The meaning of QoS requirements can differ between service providers and
service requesters in a service-oriented computing environment [11]. From a service
providers’ perspective, providing enough capacity with the quality needed to fulfill
Service Level Agreements (SLA) with different customers isa core issue. Service re-
questers are more focused on managing bundles of Web Services from different ven-
dors in order to implement their business needs. Therefore,management of QoS re-
quirements is done on aggregations of Web Services, to a lesser extend on single Web
Services.

There is a variety of other definitions of Web Service QoS. A more extensive ap-
proach identifies the following requirements [12]: performance, reliability, scalability,
capacity, robustness, exception handling, accuracy, integrity, accessibility, availability,
interoperability, security, and network-related QoS requirements. Especially the last re-
quirement is of further interest. As many requirements of Web Service QoS are directly
related to the underlying network and its QoS, implementations of network QoS mech-
anisms, e.g., Differentiated Services (DiffServ) or the Resource Reservation Protocol
(RSVP), are also covered by the definition as well.



2.2 Performance of Web Services

Performance of Web Services is not a singular concept. Rather, it consists of several
concepts which themselves are connected to different metrics and parameters. Again,
there are several definitions of Web Service performance. Wewill use the definition
provided by the Web Services Architecture Working Group of the W3C as a founda-
tion for our own defintion. According to the W3C, performanceis defined in terms
of throughput, reponse time, latency, execution time, and transaction time [12]. Both
execution time and latency are sub-concepts of the W3Cs definition of response time.
Transaction time describes the time needed to process a complete transaction, i.e., an
interaction consisting of several requests and responses belonging together.

For this paper, we define performance in terms of throughput and response time.
Response time is the time needed to process a query, from sending the request until
receiving the response [13]. Response time can be further divided into task processing
time, network processing time, i.e., time consumed while traversing the protocol stacks
of source, destination, and intermediate systems, as well as network transport time itself.
In case of an error during the processing of a request or a response, the response time
measures the time from a request to the notification of an error. We define response time
as follows:

tresponse(ws) = ttask(ws) + tstack(ws) + ttransport(ws)

A large fraction of a web service’s response time is determined by the processing time
for requests and their respective messages in both intermediate systems and end-points.
For the measurement of the response time, the encapsulationof data into XML mes-
sages and vice versa, compression and decompression of data, as well as encryption and
decryption of messages also have to be taken into account. Furthermore, time for con-
nection setup, for the negotiation of the connections parameters as well as the amount
of time used for authentication are part of the response timeas well.

Throughput, measured in connections, requests or packets per second, describes the
capability of a Web Service provider to process concurrent Web Service requests. De-
pending on the layer, different types of connections can be the basis for measurements,
e.g. TCP connections, HTTP connections, or even SOAP interactions. We define the
throughput of a Web Services as:

throughput(ws) = #requests(ws)
time

Additionally, we have to define the concept of ”performance anomaly” we will use
later on. Performance anomalies describe deviations from the performance expected in
a given situation. Performance anomalies do not have to be exceptions or even errors,
e.g., a response time which exceeds the value defined in a SLA is also a performance
anomaly with regard to business requirements. Furthermore, performance better than
expectations is also an anomaly.



3 A Cross-layer Approach to Performance Monitoring and
Anomaly Detection

In this section we describe an approach for performance monitoring and performance
anomaly detection based on packet capturing and the application of simple heuristics.
Therefore, we analyze IP, TCP, and HTTP data. The analysis ofSOAP is not in scope
of this paper, as we want to stay independent of a certain Web Service technology. Our
approach can be applied to various alternative Web Service technologies as well, e.g.,
XML-Remote Procedure Call (XML-RPC) or Representational State Transfer (REST).
Nevertheless, in our examples we use SOAP as it is the most common Web Service
technology in use.

3.1 Protocol Parameters for Performance Monitoring

Consider the simple Web Service invocation of a single Web Service as depicted in
Figure 2. A service requester generates a SOAP request and sends the message using
HTTP to the service provider for further processing. The message has to pass several in-
termediate systems on its way between the interaction’s endpoints. The SOAP response
message is again transported using HTTP.

SOAP request

SOAP response

Service
Requester

Service
Provider

e.g., Internet

Fig. 2. Simple Web Service interaction

During data transfer several problems can occur, which all have an impact on Web
Service execution. Beginning with the network layer, we mayface routing problems,
e.g., hosts which are not reachable, congestion in Internetrouters as well as traffic
bursts. Additionally, on transport layer there are also potential pitfalls like the retrans-
mission of packets due to packet loss or connection setup problems generating delays.
Finally, there are also some potential problems on application layer with regard to Web
Services for example in form of resources, which are not existing or not accessable for
HTTP or problems in processing of SOAP messages due to incomplete or non-valid
XML data.

Although, many of the above problems are solved in modern protocol stack imple-
mentations, we can use the knowledge about them to define measurement points for
performance monitoring. Depending on the problems in scopedifferent protocol pa-
rameters have to be used. Table 1 gives an overview of measurement points on different



protocol layers. We will use the transport layer parametersas an example to derive
metrics and heuristics for performance anomaly detection in the following section.

ProtocolMeasuring Point / Parameter

IP ICMP messages

TCP

Size of advertising window
Roundtrip time (RTT)
Sequence numbers in use
Flags used in packets
Information about timers

HTTP Header information
Table 1.Measuring points per protocol layer

3.2 Metrics and Heuristics for Performance Anomaly Detection

As noted in Section 2.1 we can differentiate between the requirements of service re-
questers and service providers. To visualize our concepts we will focus on the service
requester’s perspective in this position paper. Before basic heuristics are proposed we
present metrics based on the parameters presented in Table 1, which will be the founda-
tion of our heuristics. We propose several metrics based on parameters of the transport
layer protocol:

– M1 - Average throughput in bytes per second (BPS).
– M2 - Throughput based on a moving average over window with sizen seconds in

BPS.
– M3 - Throughput based on exponential smoothing (first degree) with α varying in

BPS.
– M4 - Roundtrip time based on a moving average over window with sizen segments

in seconds per segment.
– M5 - Number of gaps in sequence numbers based on a moving averageover window

with sizen seconds in number of gaps per second.

The aggregation of single metrics in combination with the usage of appropriate
thresholds allows us to build heuristics in order to detect anomalies with performance
impact. The following two simple heuristics show the idea how to design heuristics
based on the metrics discussed. Both were derived from experimentations in our Web
Service test environment.

– H1Requester : M1 (or M2, M3) in aggregation withM4, i.e., throughput combined
with RTT.

– H2Requester : M4 in aggregation withM5, i.e., RTT combined with the amount of
gaps in TCP sequence numbers.



Singular metrics are in some cases not sufficient for robust monitoring, e.g.,M5 without
any information about RTT does not offer useful information.

In addition to those transport layer based heuristics, further parameters from other
protocol layers and the respective metrics can be combined in order to create different
cross-layer heuristics. Nevertheless, it is important that metrics and the related heuristics
have to be calculated in an efficient way in order to keep additional processing times of
our approach low.

3.3 Exemplary Evaluation of Our Approach

To show the feasibility of our approach we set up an experiment. The test environment
consists of a 1.4 GHz Centrino with 1.256 GByte RAM running Windows XP as ser-
vice requester and a 1.42 GHz G4 with 1 GByte RAM running Mac OSX as service
provider. Apache Tomcat 5.5.17 is used as an application server. Both systems use Java
1.5 and Axis 1.4 as SOAP implementation. They are connected by 100 MBit/s ethernet.
For packet capturing windump v3.9.3 is used.

First, we measure the response time of a Web Service in our test environment. As
payload we use SOAP messages of variable size. Table 2 shows the results of measuring
20 individual runs both with and without network outage for apayload of 20 MByte, a
test scenario, which was already implemented in our test environment. Similar results
can be observed with a payload of 150 KB. Network outages are equally distributed

tresponse(ws) [ms] minimum maximumaverage

w/o outage 8,743 9,604 8,891
w/ outage 601,204 605,831 604,186

Table 2.SOAP response times

in the interval [0;max(tresponse(ws) w/o outage)]. A network outage is modelled as a
permanent 100% packet loss, i.e., without a restart of the connection. Other scenarios,
e.g., varying or temporary packet loss, are not in focus of this position paper. As Table
2 shows, the response time of our Web Service varies between 8.9 seconds (without
outage) and 10.07 minutes (with outage) for a 20 MByte payload.

rtt [ms] minimum maximumaverage

H1Requester 0.22 0.41 0.31
Table 3.Roundtrip times

In a next step, we applyH1Requester on our sample with network outages. Espe-
cially the roundtrip time extracted from TCP packets can be used as trend estimate for
the overall response time in our scenario. Table 3 shows the average roundtrip times of
all 20 runs. Using a moving average of the roundtrip times measured as a benchmark



for the roundtrip time of the packet in transfer, a warning tothe replanning system can
be sent, e.g., if the estimated time (or a multiple) is exceeded twice or more in a row.
Unfortunately, throughput was not as good as the RTT as an indicator for performance
anomalies in the given scenario.

3.4 Identification of Required Architectural Components

In order to implement our ideas several architectural components are needed. The key
building blocks are depicted in Figure 3.

...

Orchestration Engine

M
o
n
ito

r

Internet Protocol

Hypertext Transfer Protocol

D
e
te

c
to

r

(Re-)Planning Component

Interface

Transmission Control Protocol

e.g., Internet

WS1 WS2 WSn

p
a
ra

m
e
te

riz
e

trig
g
e
r

in
itia

liz
e

Fig. 3.Proposed architectural components

The upper part of Figure 3 describes existing generic components used for planning
and executing of Web Service compositions. TheInterface allows deployment of work-
flows and configuration, the(Re-)Planning Component generates and adapts execution
plans, which are thereafter executed by anOrchestration Engine. We propose the use
of our Web Service Quality-of-Service Architectural Extension (WSQoSX) as imple-
mentation means for the functionality needed. WSQoSX already supports planning and
replanning of compositions [7] [10].

The lower part of the figure describes the two core componentsof our approach
in addition to the protocol stack. This enhanced architectural blueprint is named Web
Service - Service Monitoring Extension (WS-SMX). TheMonitor specifies a compo-
nent capable of eavesdropping of the network traffic betweenservice requester and
provider. It also implements pre-filtering of the data passing by reducing it to the pro-
tocol data of interest. Its data is passed to aDetector component, which is responsible



for the data analysis and therefore the performance anomalydetection. TheDetector
component will implement the heuristics discussed in Section 3.2. TheOrchestration
Engine initializes theDetector, which itself prepares theMonitor. TheDetector analy-
ses the data received by theMonitor and triggers the(Re-)Planning Component in case
of any critical findings. Additionally, theDetector component can be configured using
theInterface. BothMonitor andDetector are implemented in a first version in our test
environment based on Java 1.5 in combination with libpcap for packet capturing.

4 Related Work

As our approach is based on research of various domains this section gives an overview
of related work in those domains. Gschwind et al. [14] describe WebMon, a perfor-
mance analysis system with focus on Web transactions, i.e. transactions between a Web
browser and a Web server. Monitoring is done on basis of HTTP.Web Services as re-
mote method invocations as well as a further processing of the results of the analysis
are not in scope of their paper. Similar mechanisms as the ones proposed by us are im-
plemented in the commercial software package VitalSuite byLucent, which is used for
capacity planning and QoS management in large networks. VitalSuite can also analyze
different protocol layers simultaneously. In contrast to the system we propose, Vital-
Suite’s focus is on reporting for end-users instead of automated management. A more
detailed view on performance management of Web Services is discussed by Schmi-
etendorf et al. [15]. The Web Services Trust Center (WSTC) allows Web Services to be
registered at and measured by an independent third party forSLA management. WSTC
enables the monitoring of performance and availability of Web Services, but not under
real-time requirements.

The management of Web Service compositions, their orchestration as well as their
optimization and planning is emphasized in various papers,partly mentioned in the
introduction. Of further interest in that domain is the Web Service Manager (WSM)
introduced by Casati et al. [16] focusing on the business perspective of Web Service
management, e.g., detecting and measuring SLA violations.

Fundamental work in the area of packet capturing, its justification and optimization
was carried out e.g., by Feldmann [17] and Mao et al. [18]. Both do not focus on poten-
tial areas of application for packet capturing but on measurement itself. Feldmann uses
cross-layer capturing and analysis of TCP and HTTP for laterWeb performance studies.
Mao et al. describe both drawbacks and advantages of performance analysis of Web ap-
plications based on packet capturing mechanisms. Furthermore, a reliable and efficient
approach for monitoring in distributed systems based on dispatching is discussed.

The idea of anomaly detection to predict certain critical situations is already used,
e.g., in the area of network security, especially in networkintrusion detection. Mainiko-
poulos et al. describe the use of statistical methods applied to network usage traces for
anomaly detection, e.g., an attack on a networked system [19]. Another area of appli-
cation is discussed by Yuan et al. [20]. They propose a systemfor automated problem
diagnosis in applications based on system event traces. Thecorrelation of current traces
and patterns of well known problems allows an automatic identification of problem



sources and prediction of possible system errors. Furthermore, the authors use statisti-
cal learning and classifying methods to dynamically adapt and improve their system.

5 Conclusion and Future Work

In this position paper we show that it can be beneficial to use information gathered
on different protocol layers for decision support. We present an approach and several
architectural components, which use hidden, low layer technical information for proac-
tive replanning of Web Service compositions. As this is a position paper there are still
some open issues we are researching. We are currently testing machine learning algo-
rithms for anomaly detection. Furthermore, we are working on enhancements of ex-
isting optimization models for Web Service compositions tosupport replanning [10].
Additionally, we will test our approach from a service requester’s perspective in real
world scenarios, using Web Services available to the public, e.g., from Amazon or via
Xmethods.

Using our approach for proactive replanning is not limited to SOAP Web Services.
As we are collecting our data on lower layers, the type of Web Service can be ex-
changed, e.g., REST and XML-RPC based Web Services can also be supported. But we
are not even limited to Web Services as an area of application. The approach can be of
benefit, e.g., to enhance Web browsers to detect network problems in a faster way.

Acknowledgments

This work is supported in part by E-Finance Lab e.V., Frankfurt am Main.

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and directions. In:
Proceedings of the Fourth International Conference on Web Information Systems Engineer-
ing (WISE03). (December 2003) 3–12

2. Bichler, M., Lin, K.J.: Service-oriented computing. IEEE Computer39(3) (March 2006)
99–101

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web
services architecture (2004. http://www.w3.org/TR/ws-arch/, accessed: 2006/07/02)

4. Stevens, W.R.: TCP/IP illustrated (vol. 1): the protocols. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1994)

5. Tanenbaum, A.S.: Computer Networks, Fourth Edition. Prentice Hall, Indianapolis, Indiana,
USA (August 2002)

6. Mogul, J.C.: Clarifying the fundamentals of http. In: WWW’02: Proceedings of the 11th
international conference on World Wide Web. (May 2002) 25–36

7. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R.: An approach
for the management of service-oriented architecture (soa)based application systems. In:
Proceedings of the Workshop Enterprise Modelling and Information Systems Architectures
(EMISA 2005). (October 2005) 208–221

8. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana,S.: The next step in web services.
Commun. ACM46(10) (2003) 29–34



9. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: Qos-aware replanning of compos-
ite web services. In: Proceedings of the IEEE InternationalConference on Web Services
(ICWS’05). (July 2005) 121–129

10. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: An approach for replanning
of web service workflows. In: Proceedings of the 12th Americas Conference on Information
Systems (AMCIS’06). (August 2006)

11. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing6(6) (2002) 72–75
12. Lee, K.C., Jeon, J.H., Lee, W.S., Jeong, S.H., Park, S.W.: Qos for web services: Require-

ments and possible approaches (2003. http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, ac-
cessed: 2006/07/03)

13. Jain, R.: The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. John Wiley& Sons, Inc., New York, NY,
USA (1991)

14. Gschwind, T., Eshghi, K., Garg, P.K., Wurster, K.: Webmon: A performance profiler for web
transactions. In: Proc. of the 4th IEEE Int’l Workshop on Advanced Issues of E-Commerce
and Web-Based Information Systems - WECWIS 2002. (June 2002) 171–176

15. Schmietendorf, A., Dumke, R., Stojanov, S.: Performance aspects in web service-based
integration solutions. In: Proc. of the 21st UK PerformanceEngineering Workshop -
UKPEW2005. (July 2005) 137–152

16. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of web services.
Commun. ACM46(10) (2003) 55–60

17. Feldmann, A.: Blt: Bi-layer tracing of http and tcp/ip. Comput. Networks33(1-6) (2000)
321–335

18. Mao, Y., Chen, K., Wang, D., Zheng, W.: Cluster-based online monitoring system of web
traffic. In: WIDM ’01: Proceedings of the 3rd international workshop on Web information
and data management. (November 2001) 47–53

19. Manikopoulos, C., Papavassiliou, S.: Network intrusion and fault detection: a statistical
anomaly approach. IEEE Communications Magazine40(10) (October 2002) 76–82

20. Yuan, C., Lao, N., Wen, J.R., Li, J., Zhang, Z., Wang, Y.M., Ma, W.Y.: Automated known
problem diagnosis with event traces. In: Proceedings of EuroSys2006. (April 2006) 375–388


