
Model Centric Approach of Web Services Composition

Ricardo Quintero, Victoria Torres, Vicente Pelechado

Department of Information Systems and Computation
Technical University of Valencia
Cami de Vera s/n E-46022, Spain

{iscrquinter,vtorres,pele}@dsic.upv.es

Abstract. The development of composite Web Services is being specified in a
more declarative way than imperative programming. In this context, conceptual
modeling has been the most accepted solution. Conceptual modeling of Web
services has been done using behavioral models (like activity diagrams) consi-
dering mainly the dynamic view. We believe that, besides the dynamic aspects,
the models should capture structural requirements between web service opera-
tions. In this way, behavioral models could be complemented with a structural
model. In this paper we introduce a Web service composition modeling solu-
tion, following the MDA approach, considering both –structural and dynamic
properties- enriched with semantic constraints in order to automatically genera-
te composite Web services implemented in BPEL.

1 Introduction

Current e-business processes have, as an important requirement, the integration (the
composition) of diverse application functionalities. The main strategy that has been
followed by the industry is the use of Web Services to export the functionality and the
use of programming languages to define service composition [11]. Because the majo-
rity of them were not designed with this goal in mind, they do not have abstractions
for this objective, so usually the composition definitions are cumbersome.

In contrast, conceptual modeling offers abstractions and models in order to define
this composition at a high level of abstraction [12,13,14]. The main focus of these
approaches is on dynamic concerns (as in UML Activity diagrams) forgetting the
structural concerns.

Although there are some model-driven solutions that generate in a semi-automatic
way Web services and WS-BPEL [15], the problem with these modeling approaches
is some lack of semantics that makes difficult to capture the composition require-
ments in a precise way. This drawback does make unfeasible to build modeling tools
that validate models and generate complete and fully operative implementations.

We consider that structural and dynamic models are needed in order to capture these
issues, especially static and dynamic binding properties between the Web services
that are being composed (the main focus of this work). Moreover it could be used as a
way to export the functionality of the application: by means of methodological guide-
lines it is possible to detect functional groups from the business layer (specified by a

structural model) and export them as a set of Web services. These Web services could
be consumed by other applications to enable collaboration with other third parties.

In this work we introduce, as a main contribution, two models (the Service Model
and the Dynamic Model for Service Composition) which allow us specifying the
structural and dynamic requirements of Web services compositions by using aggrega-
tion/association relationships with a precise semantics, defined in the context of a
multidimensional framework [3]. In order to obtain the equivalent software artifacts
of these models we follow a Model driven approach where the application of a set of
transformation rules generates the corresponding WS-BPEL specification. This solu-
tion extends our Web engineering method Object-Oriented Web Solutions (OOWS)
[1] in order to capture the collaborative requirements that are necessary to produce (in
an automatic way) complete collaborative Web applications.

The remainder of the paper is structured as follows: section 2 explains our proposal
to conceptual modeling of Services; section 3 shows the introduced models from the
point of view of their structural properties; section 4 explains the dynamic properties
and the transformation of the models to a specific Web service composition technolo-
gy (in this case we choose WS-BPEL [4], although it can be another –like BPML [5]);
section 5 explains our code generation strategy and finally, section 6 presents conclu-
sions and further work.

2 Conceptual Modeling of Services

The Model Driven Architecture (MDA) [2] is a new development strategy in which
models are the first order actors within the software development process. MDA has
several stages in which specific models are defined: the platform independent models
(PIM), that describe the system with high-level constructs hiding the necessary tech-
nological details of the specific platform; and the platform specific models (PSM)
which on the contrary, describe the system in terms of a specific technological plat-
form. Besides these models, MDA proposes a strategy that has to be applied in order
to transform these models into code.

Following the MDA strategy we define two PIM models to capture the
requirements of Web services compositions: a Service Model (hereafter SM) and a
Dynamic Model for Service Composition (hereafter DMSC). As vertical arrows show
in Figure 1 each of these models is mapped into a PSM model, the horizontal ones re-
present the existing relationships between them (both, at PIM and PSM level). The
constructs of the PIMs and PSMs (its metamodels) are defined using the Meta-Object
Facility (MOF) language.

The SM captures the structural requirements of both, own and external Web
services of the application including their ports and operations. This PIM model can
be then transformed into several PSMs such as .NET [3] or J2EE [4].

The behavior of the Web services composition is defined by the DMSC. Although
traditionally the approach followed has been to compose the new Web services by
specifying only the orchestration of the Web service components, we believe that the
structural requirements captured in the SM are also needed to have a complete
specification in order to enable the automatic code generation.

Service
Model
PIM

Dynamic Model for
Service Composition

PIM

PSM
(.NET/J2EE)

PSM
(WS-BPEL)

Structural concerns Behavioural concerns

Fig. 1. MDA strategy to service composition modeling

2.1 Service Modeling

The structural requirements of produced and consumed functionality of an application
are captured in the SM. Figure 2 shows the SM metamodel foundation. The included
metaclasses are the basic constructs needed to model Web services, similar to other
works [6,7,8].

The produced functionality is captured in the set of produced Web services from
our application (called Own-services, see Figure 2). The consumed functionality is
captured in the set of consumed Web services of our application (called External-
services). Each service has one or more access points (Port) where each one has one
or more of the following operations: (1) one-way (One-way-op), an asynchronous
operation invoked by a client without response; (2) notification (Notification-op), an
asynchronous operation invoked by the service without response; (3) request-
response (Req-resp-op), a synchronous operation invoked by the client with response
from the service and (4) solicite-response (Sol-resp-op), a synchronous operation
invoked by the service with response from the client. The input and output parameters
(Parameter) are one of the two specialized types from the data type (Data-type):
simple (Simple-DT) or complex (Complex-DT).

Services (own/external) Operations

Data types

Ports

Fig. 2. The foundation SM metamodel

Figure 3 shows an instance (an extract) of the SM of Amazon.com (AWS). The
operation shown (asinSearchRequest) allows the user to query information about a
Product (ProductInfo) from its isbn (AsinRequest).

<service name=”AmazonSearchService”>

<operation name=”AsinSearchRequest”>
…
</operation>

<xsd:complexType name=”AsinRequest”>
<xsd:complexType name=”ProductInfo”>
<xsd:element name=”Details” type=”typens:DetailsArray” />
<xsd:element name=”OurPrice” type=”xsd:string” minOccurs=”0”/>

<service name=”AmazonSearchService”>

<operation name=”AsinSearchRequest”>
…
</operation>

<xsd:complexType name=”AsinRequest”>
<xsd:complexType name=”ProductInfo”>
<xsd:element name=”Details” type=”typens:DetailsArray” />
<xsd:element name=”OurPrice” type=”xsd:string” minOccurs=”0”/>

Fig. 3. SM for Amazon.com (AWS)

From the point of view of the application that produces it, services can be built in one
of the following ways: (1) Own-services, with two possibilities: (a) those whose
operations are views of the pre-existing operations in the logic layer of our application
(at conceptual level they may be specified in the structural model) and (b) those
whose operations are built from the composition of the operations from other own or
external Services; and (2) External-services obtained from other applications that
publish and produce them.

3 Structural Concerns

Services whose operations are built from the composition of own or external services
are implemented by orchestrating their operations. This is a way of building new
functionality (the new own-service) by reusing functionality through composition
(from the pre-existing own or external services). From this perspective, service
composition could be specified by aggregation relationships of the services
components. Adding this new structural modelling, some tasks will be more easy to
do (as we are going to show) than with the traditional dynamic approach, such as the
dynamic Web service selection or the automatic and complete code generation
contributing to facilitate the maintenance of the composite Service.

In order to have a precise definition of the relationships, its semantics needs to be
defined. Some works have been addressed this problem in the context of object
oriented conceptual modeling ([9,10]). In this work we follow the multidimensional
framework proposed in [3] to characterize aggregation relationships between Web
services. The use of this multidimensional framework allows us to capture the
structural properties of the composition which are explained in the following
subsections.

3.1. Service Aggregation

The structural properties of the composition are captured in the SM. These properties
characterize and define the semantics of the relationships between the Web services
being aggregated (its binding).

In the aggregation relationship, the service defined is called the composite Service
(an Own-service) and the own or external services that are being aggregated are called
the component Services.

3.2. Properties Specification

The properties are explained with respect the MOF metamodel in Figure 4.

Composite service

Component service

Aggregation

Composite service

Component service

Aggregation

Fig. 4. Service aggregation MOF metamodel

a. Temporal Behaviour
− Definition: specifies if the composite Service has (or does not have) permanent

binding with the component Service during its lifetime.
− Defined over: aggregation end (component Service).
− Nomenclature: CTSaggregation-end

− Values: Static|Dynamic
• Static: the component Service is bound to the composite service during its life.
• Dynamic: the component Service is dynamically selected from data values

(called process variables [11]) obtained during the execution of the composition
logic, usually from a UDDI registry.

− Semantic constraint: expressed in OCL[9]
context Ag-end-component
inv temporal-value:
CTS=’Static’ or CTS=’Dynamic’

b. Multiplicity
− Definition: specifies the minimum and maximum number of component services

(of the same type) connected with the composite service.
− Defined over: aggregation end (component Service).
− Nomenclature: Minaggregation-end, Maxaggregation-end
− Values: nonnegative integers.
− Semantic constraint:

context Ag-end-component
inv multiplicity-value:

max-multiplicity >=0 and
min-multiplicity >=0 and
min-multiplicity <= max-multiplicity

3.3 Additional Semantic Constraints

One advantage of this multidimensional framework is the additional knowledge
implied, which can be used to build better modeling tools with model checking
features that assist the modeller in the correct construction of SMs. Some examples of
the additional knowledge are as follows (expressed in OCL):
1. Every aggregation includes as a component Service an Own or External service

(different from the composite Service):
 context Ag-end-component
 inv at-least-one-component-service:
 os-component->size()>0 xor es-component-size()> 0

2. The Static value from the Temporal Behaviour property implies that the maximum
and minimum values from the multiplicity property are 1 (see Figure 5):
 context Ag-end-component
 inv static-multiplicity:
 CTS=’Static’ implies
 (multiplicity-Max=1 and multiplicity-Min=1)

3. The Dynamic value from the Temporal Behaviour property implies that the
maximum multiplicity values should be greater than 1. The composite Service
could be binding with 2 or more possible component Services, each one
dynamically selected, as we are going to show.
 context Ag-end-component
 inv dynamic-multiplicity:
 CTS=’Dynamic’ implies
 multiplicity-Max>1

3.4. Service Aggregation Examples

Figure 5 shows an example of service aggregation to an e-business application that
uses the Amazon Web service and B&N Web service. The composite service
BestStoreService uses both Web services to get the best store and book price.

The aggregation relationship is defined Static because the composite service
should have permanent binding with the component services. So they are specified
using static Temporal Behaviour and multiplicity value equal to 1.

Component ServicesComposite Service

Temporal behaviour property

Fig. 5. SM using static aggregation

Figure 6 shows another example. In this case, the composite service (SService) is
for a supplier application with the following process: to request the price of a product,
the composite service offers the operation (getPriceInStock). This operation first
checks the stock in the local warehouse using an own service (LWService). If the
product is not in stock then it is checked in one of a couple of central warehouses
using only one of the services EWService1 or EWService2 (specializations of the
abstract service EWService, see Figure 7). So the binding between the composite
service (SService) and the own service (LWService) is Static and to the EWService is
Dynamic. In order to resolve to which concrete EWService is going to communicate
the SService a condition is defined in the SM of the dynamic Web service.

Temporal behaviour property

Composite Service Component Services
Fig. 6. SM using static and dynamic aggregation

Figure 7 shows the SM for the dynamic EWService. When a set of Web services
(in this case EWService1 and EWService2) are going to be managed dynamically,
first they are imported to the SM from a UDDI registry. Then, a façade class
(FEWService), with an operation getXService, is generated into the model in order to
delegate it the responsibility of dynamic Web service selection. This operation
includes the condition necessary to select the concrete Web service in the dynamic
model. This condition can be established in the SM or the DMSC. In the first case,
the condition is based on the different model elements of the application. Because the
condition is not defined as part of the DMSC definition, the reuse and flexibility in
this model is improved (by example, if a new central Warehouse is added then only a
EWService3 is added to the SM, the DMSC is not changed and the dynamic selection
responsibility continues in the SM). In the second case, the modeler defines the
condition based on process variables from the DMSC and this condition is passed as
parameter to the getXService in the SM in order to select de Web service. An example
of this mechanism is presented in subsection 4.3.

UDDI

Importing external-services
from UDDI registry using query

conditions

context FEWService::getEWService(condition):Service
body: if condition

then EWService1
else EWService2

endif

OCL query operation with the
condition to select dynamically the
WareHouse service (in the DMSC)

A façade class to select
dynamically the Web service in

the DMSC

Fig. 7. Importing Web services to the SM to be used in a dynamic way

4 Behavioral Concerns

The logic of the composed Web services is captured in the DMSC. This model is
defined as an UML activity diagram whose actions define the invocation of some of
the component services operations. Each of those operations is defined as one of the
types listed in Table 1 which correspond to the possible Web services operation types.
(see Figure 2).

Table 1. DMSC operations types and stereotypes

Operation type Stereotype
One-way <<one-way>>

Request-response <<request-response>>
Notify <<notify>>

Solicite-response <<solicite-response>>

To manage the data of the process two more actions are defined: variable declaration
(stereotyped with the keyword <<variable>>) and variable assignment (stereotyped
with the keyword <<assign>>).

In the case of dynamic selection of Web services, we define a special data type
Service. An action to select dynamically the service (stereotyped with the keyword
<<select-service>>) is also defined.

DMSC could be mapped to WS-BPEL (or another language such as BPML). In the
following subsections the WS-BPEL mappings are introduced. An example is
presented next to show the use of the DMSC and its mapping to WS-BPEL for an e-
commerce service (BestStoreService).

4.1 The BestStoreService Case Study

Once the structural concerns of the BestStoreService (see Figure 5) have been defined,
the composition logic of each operation needs to be specified by a DMSC. Figure 8
shows the composition logic of the getBestStore operation. Its DMSC is included in
an action getBestStore (stereotyped with the keyword <<operation>>). The action has
an input-pin, with the input parameter of the operation (isbn), and an output-pin
(BestStore) with the return value.

Fig. 8. DMSC of the getBestStore operation

The translation of the operation to WS-BPEL needs the structural knowledge captured
in the SM (Figure 5) and the composition logic captured in the DMSC (see Figure 8):

• Process definition: corresponding to the main XML element of the WS-BPEL

process. This is obtained from the action name of the operation (see Figure 9).

<process name=”getBestStore”...>
...
</process>

Fig. 9. Mapping the WS-BPEL process name

• Partner links identification: the partner links corresponds to: (1) the client, who
invokes the WS-BPEL process and (2) the Web services invoked by the BPEL
process. In the first case, the client name of the process is specified with the
following syntax: <service-name>-clientLT. The service-name is taken from the
name of the composite service in the SM. The role corresponds to the service-
name too and the portType is corresponding from the port name in the SM. For
simplicity reasons the Port class is not shown in the SM (see Figure 10). Each one
of the component services are the Web Services collaborators. Its name has the fo-
llowing syntax: <service-name>-clientLT

<partnerLinkType
name=”BestStoreService-clientLT”...>
<role name=”BestStoreService”>

<portType name=”BestStoreServicePort”>
</role>
</partnerLinkType>

Fig. 10. The client as a partner link

Figure 11 shows and example for Amazon as collaborator
<partnerLinkType
name=”AmazonSearchService-clientLT”...>

<role name=”AmazonSearchService”>
<portType name=”AmazonSearchServicePort”>
</role>
</partnerLinkType>

Fig. 11. Amazon Web Service as collaborator

• Operation logic: is defined in terms of WS-BPEL:
<process name=...>
<partnerLinks></partnerLinks>
<variables></variables>
<sequence></sequence>
</process>

Fig. 12. Basic operation logic for the composite operation in WS-BPEL

• Client partnerLink definition: from the client definition as collaborator (see
Figure 10) is possible to obtain its partnerLink in the SM:

<partnerLinks>
<partnerLink name=”client” partnerLinkType name=”BestStoreService-clientLT”
myRole=”BestStoreService”
partnerRole=”BestStoreServiceClient” />
</partnerLinks>

Fig. 13. Client partnerLink definition

• Definition of the other partnerLinks: from the component services and its
partnerLinks is possible to obtain the partnerLink of the other collaborators:

<partnerLink name=”AmazonSearchService”
partnerLinkType=”AmazonSearchServiceLT”
partnerRoler=”AmazonSearchService” />

Fig. 14. Amazon collaborator partnerLink definition

• Variable definition: for each message sent to the collaborators corresponding to
an operation invocation is necessary to define at least one variable (request for the
invocation) if none value is returned; in other case, it is necessary to define two

variables (additionally a response for the return value). This can be obtained from
the operation definition in the SM and its use in the DMSC (see Figure 15):

<variable
name=”AmazonSearchService-getOurPriceRequest”
messageType=”AmazonSearchService-getOurPriceRequest” />
<variable
name=”AmazonSearchService-getOurPriceResponse”
messageType=”xsd:float” />

Fig. 15. Variable definitions for operation invocation

Declared variables in DMSC actions can be mapped to variable elements in the
process (see Figure 16).

<variable name=”PA”messageType=”xsd:float” />

Fig. 16. Variable definition

In operations with response, it is necessary to define two variables: one for the
request and one for the response. The SM is used for this mapping.

<variable
name=”getBestStoreRequest”
messageType=”getBestStoreRequestMessage” />
<variable
name=”getBestStoreResponse”
messageType=”xsd:string” />

Fig. 17. Variable definition for a request and response operation

• Main body process: which starts with the message reception from the client:

<receive partnerLink=”client”
operation=”getBestStore” variable=”getBestStoreRequest”createInstance=”yes”/>

Fig. 18. Initial message from the client

Each action of the DMSC is mapped to a WS-BPEL activity. Figure 19 shows a
DMSC comparison and its mapping to a WS-BPEL switch. As another example,
Figure 20 shows a DMSC assignment and its mapping to a WS-BPEL assign.

<switch>
<case condition=”getVariableData(PA)<=
getVariableVariableData(PB)”>
<otherwise>
</switch>

PA>PBPA<=PB

Fig. 19. From DMSC comparison to switch WS-BPEL activity

<assign>
<copy>
<from><response>Amazon</response></from>
<to variable=”getBestStoreResponse” />
</copy>

Fig. 20. DMSC assign and assign WS-BPEL

4.2 Web Service Dynamic Selection

The dynamic selection of Web services is specified in the DMSC with two special
actions: (1) a variable declaration action to define a variable of the data type Service
(see Figure 2). This variable will be set using the select-service action. And a (2)
select-service action: in which the getXService operation, defined in the façade of the
dynamic service in the SM, is invoked in order to select dynamically the Web based
on a condition defined by the modeler using an OCL expression.

With respect to the example of dynamic Web service selection of central
warehouses from Figure 6, in order to implement the SService.getPriceinStock
operation (see Figure 6) and taken into account the SM for the composite Web service
(see Figure 7), the actions needed to specify the dynamic selection of web services are
shown in Figure 21. In this case the condition has been defined on a DMSC process
variable (country) which is passed as parameter to the condition in the SM.

Selecting dynamically the
Warehouse service

Defining variable of type
Service

Using the operations of the
select Web service

Fig. 21. Dynamic Web service selection in the DMSC

5. Code Generation

Figure 22 shows the three steps of the code generation to implement our proposal.
In the first step (see box 1) we define a set of model to model transformations: from
PIM models -SM and DMSC- to PSM models -Java and BPEL-. Both kinds of
models are defined using the Eclipse Modeling Framework (EMF) [16] and the
transformations are defined using the ATLAS Transformation Language (ATL) [17].

Model to Model
(PIM-PSM)

Model to Text
(PSM-Source Code)

Text to Binary
(Source Code-Binary)

(1) (2) (3)
Fig. 22. Code generation strategy

In the second step (see box 2), another set of model to text transformations are
also defined, from PSM models to source code. For each one of the models, a group
of templates are defined to enable the complete source code generation (Java and WS-

BPEL). We implement this step by using the ERb tool for templates and the Ruby
language [18].

In the third step (see box 3), the Java source code generated from the step 2, it is
compiled with a common Java compiler (as javac) and it is installed in an application
server. In the case of WS-BPEL, there is no necessity to compile; only the code is
deployed in a BPEL execution environment. The details about this code generation
strategy are given in the following subsections.

5.1. Metamodels Definition

The PIM and PSM models are defined using KM3 [19]. Once the metamodels are
specified in KM3, then they are transformed to EMF Ecore.

As an example, Figure 23 shows an excerpt of the SM. By using the
transformation from KM3 to Ecore existing in the ATL tool, they are transformed to
EMF Ecore.

package Service {
abstract class Service {

attribute name : String;
reference port[1-*] : Port;

}
class EService extends Service {
}
class OService extends Service {
}
class Port {

attribute name : String;
}

}

package PrimitiveTypes {
datatype String;

}
Fig. 23. An excerpt of the PIM-Service metamodel in KM3

We also define metamodels for the DMSC, PSM-Java (based on platform Axis
[20]) and PSM-BPEL. The models are specified in XMI 2.0 format [21].

5.2. Model to Model Transformations

The model to model transformations are defined using ATL rules. The Model to
Model strategy is shown in Figure 24. As an example, Figure 26 shows the
transformation rule from the SM (see Figure 23) to PSM-BPEL (see Figure 25) which
implements the transformation defined in Figure 10. This rule matches the Service
name in the SM and generates the Partnerlinks, role and PortType of the PSM-BPEL.

Service Model
PIM

(EMF-Ecore)

DMSC
PIM

(EMF-Ecore)

Java AXIS Model
PSM

(EMF-Ecore)

BPEL Model
PSM

(EMF-Ecore)

ATL rule Transformations

Fig. 24. Model to model strategy

The input to the rule is a SM and the output is a PSM-BPEL model. From this last
model, a model to code transformation algorithm, based on templates, are applied to
obtain the final WS-BPEL (or Java) code.

package PSM_BPEL {
class Process {

attribute name : String;
reference pls : Partnerlinks;

}
class Partnerlinks {

reference pl[1-*] : Partnerlink;
}
class Partnerlink {

attribute name : String;
reference role : Role;

}
class Role {

attribute name : String;
reference pt : PortType;

}
class PortType {

attribute name : String;
}

}
package PrimitiveTypes {

datatype String;
}

Fig. 25. An excerpt of the PSM-BPEL metamodel in KM3

module Service2BPEL
create Out : PSM_BPEL from IN: PIM_Service
rule Service2Partnerlinktype {

from
s: Service!Service

to
pl: PSM_BPEL!Partnerlink(

name <- s.name + ‘_clientLT’
)
role: PSM_BPEL!Role (

name <- s.name
)
port: PSM_BPEL!PortType (

name <- s.name + ‘port’
)

}

PIM
Source model

PSM
Target model

Fig. 26. An ATL transformation rule from PIM-Service to PSM-BPEL

5.3. Model to Code Transformations

Figure 27 shows the general Model to Code strategy. From the PSM models a final
transformation is needed. For each one of the PSM models a set of templates are
designed, depending on the source files needed to the final platforms. So we design
templates to the AXIS platform and to the WS-BPEL platform.

As an example, Figure 28 shows the template (with a format defined by the ERb
tool) for the example of the PSM-BPEL in the previous section. This template and the
XMI model generated in the previous step are inputs to the code generator and the
final WS-BPEL is obtained.

In the case of the PSM-Java AXIS Model, the code generator produce Java code
that will need a final compilation using the java compiler (javac).

Java AXIS Model
PSM

(EMF-Ecore)

BPEL Model
PSM

(EMF-Ecore)

Templates
(Java AXIS)

Templates
(BPEL)

Code Generation
(PSM+Templates)

Source code
(Java)

Source code
(BPEL)

Compiler
(Javac)

Executable code
(bytecode)

Fig. 27. From PSM models to target source code

<PartnerLinkType name=“<%= name_pl %>” >
<role name=“<%= name_service %>”>

<portType name=“<%=name_port %>”>
</role>

</PartnerLinkType>
Fig. 28. WS-BPEL template in ERb tool

6. Conclusions and Further work

In this work we have presented a solution for the conceptual modeling of Web service
compositions. The proposed models capture structural (SM) and dynamic (DMSC)
requirements of the composition. As we have shown, the captured aspects in both
models are complementary and needed to enable the complete code generation of the
composite Web service.

Moreover, with the structural model the modeler gain flexibility and reuse as we
have shown in the case of dynamic Web service selection in the DMSC. If a new Web
service is introduced, in the traditional approach changes in the dynamic model would
be needed. Because our approach follows a polymorphic strategy we only need to add
a new Service in the SM and, maybe, a change in the select condition. The DMSC
will not change. Finally, from these models a transformation to WS-BPEL
specification has been presented too.

This proposal has been proven successfully in the construction of the collaborative
aspects of the Technical University of Valencia General Library Web application
(http://www.upv.es/bib/index_i.html).

We are currently including this proposal in the CASE tool of our Web
Engineering method OOWS. With this proposal, the designer specifies the Service
view of the Web application that is being modeled.

As further work we consider exploring the reuse of Web services using
specialization relationships in the structural and dynamic models. Presentation
concerns should be another topic that we need to explore.

7. References

1. Fons J., Pelechano V., Albert M. And Pastor O. Development of Web Applications from

Web Enhanced Conceptual Schemas. Proc. of the International Conference on Conceptual
Modeling. 22nd Ed. ER’03, pp. 22-45, EEUU, 13-16 october 2003.

2. OMG. MDA. http://www.omg.org/mda
3. Albert M., Pelechano V., Fons J. Ruiz M. Pastor O. Implementing UML association,

Aggregation and Composition. A particular Interpretation based on a Multidimensional
Framework. CaiSE 2003: 143-148.

4. Andrews T. Et al. Business Process Execution Language for Web Services. Version 1.1.
http://www128.ibm.com/developerworks/library/specification/ws-bpel/

5. BPMI. Business Process Management Language. http://www.bpmi.org
6. Colombo Massimiliano, Di Nitto Elisabetta, Di Penta Maximiliano, Distante Damiano,

Zuccalà Maurilio. Speaking a Common Language: A conceptual Model for Describing
Service-Oriented Systems. ICSOC 2005: 48-60

7. Gronmo R., Slogan D., Solheim, Oldevik J. Model-driven Web Services Development.
SINTEF Telecom and Informatics. EEE’04

8. Bézivin J., Hammoudi S., Lopes D., Jouault F. Applying MDA Approach for Web Service
Platform. Atlas Group, INRIA and LINA. ESEO. TNI-Valiosys. EDOC 2004.

9. Warmer J. Kleepe A. The object constraint language second edition. Addison Wesley. 2003.
10. Kristensen B. B. Osterbye K. Roles: Conceptual abstraction theory and practical languages

issues. Theory and practice of Object Systems, 2(3): 143-160, 1996.
11. Alonso G., Casati F., Kuno H., Machiraju V. Web Services. Concepts, Architectures and

Applications. Springer 2004.
12. Object Management Group. Unified Modeling Language Specification. http://www.uml.org
13. Reisig W. And G.R. (editors). Lectures on Petri Nets I: Basic Models. Lecture Notes in

Computer Science. Springer-Verlag, 1998.
14. Milner r. Parrow J., Walker D. A calculus of mobile processes. Information and

Computation. 100(1):1-40, Sept. 1992.
15. Anzböck R., Dustdar, S. Semi-automatic generation of Web services and BPEL processes –

A Model-driven approach (Appendix), BPM 2005, 5-7 September, Nancy France. Springer
LNCS

16. Eclipse project. Eclipse Modeling Framework (EMF). http://www.eclipse.org/emf
17. Eclipse project. ATL Home page. http://www.eclipse.org/gmt/atl
18. Herrington Jack. Code generation in action. Manning Ed. 2003.
19. Joualt, F., Bézivin J.: KM3: a DSL for metamodel specification. In: Proceedings
of 8th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy (2006).
20. Apache project. Web Services – Axis. http://ws.apache.org/axis
21. OMG/XMI XML Model Interchange (XMI) 2.0. Adopted Specification. For-
mal/03-05-02, 2003.

