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Abstract 
 

Objective: To give comparative assessment 
of the basic ways of generating a checksum 
(CRC code) based on direct, table and matrix 
algorithms. Methods: Algorithms were 
compared by means of mathematical 
methods. In order to achieve the result Java 
Development Kit software version 1.8 and 
NetBeans IDE 8.2 development environment 
were used. Results: The methods of 
generating checksums by means of 
algorithms were described in detail. For each 
method under consideration, the time 
characteristics of their work were given. The 
comparison of the analyzed methods was 
conducted. Practical importance: 
Based on the results of the experiment, it was 
concluded which method was optimal for the 
generation of checksums.  
 

1 Introduction 
 

Error detection methods are intended to detect 
distortions in messages when they are transmitted 
through noisy channels. For this, the transmitter 
calculates a number, called a checksum, which is a 
function of the message, and adds it to this message. 
Receiver, using the same algorithm, calculates the 
checksum of the received message and compares it 
with the transmitted value [1].1 

CRC (Cyclic Redundancy Check) checksum is a 
value calculated from a data set using mathematical 
algorithms that provide hash-collision resistance [2]. 
Hash-collision is a checksum equality for various 
input blocks of data. Checksums are widely used to 
control the correctness of stored and transmitted 
information. 
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The CRC was invented by W. Wesley Peterson 
in 1961; the 32-bit CRC function, used in Ethernet 
and many other standards, is the work of several 
researchers and was published in 1975. 

The logical prerequisite for using this type of 
checksum is that the size of the checksum is much 
smaller than the format of the converted numbers / 
messages, therefore, the probability of distorting the 
checksum (when transmitting information through 
any channel or when it is stored on a data storage 
device) is significantly lower than the probability of 
distorting an array of information. 

CRCs are so called because the check (data 
verification) value is a redundancy (it expands the 
message without adding information) and the 
algorithm is based on cyclic codes. CRCs are 
popular because they are simple to implement in 
binary hardware, easy to analyze mathematically, 
and particularly good at detecting common errors 
caused by noise in transmission channels. Because 
the check value has a fixed length, the function that 
generates it is occasionally used as a hash function. 

The basic idea of the CRC algorithm is to present 
the message as a huge binary number, divide it by 
another fixed binary number, and use the rest of this 
division as a checksum. Having received the 
message, the recipient can perform a similar action 
and compare the balance received with the 
“checksum”.  

The simplest error-detection system, the parity 
bit, is in fact a 1-bit CRC: it uses the generator 
polynomial x + 1 (two terms), and has the name 
CRC-1. 

Cyclic redundant codes (CRC) are a subclass of 
block codes and are used in HDLC, Token Ring, 
Token 
Bus protocols, Ethernet protocol families and in 
other protocols of a link level. The popularity of 
CRC codes is due to the fact that the procedures 
encoding and decoding are fairly simple and do not 
require large computational resources. 
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The CRC algorithm is based on the properties of 
division with the remainder of binary polynomials, 
thus, the CRC value is the remainder from dividing 
the polynomial corresponding to the input data by 
some fixed generating polynomial [1]. 
The most important task of constructing CRC codes 
is the choice of the generating polynomial. There are 
many standardized and recommended by various 
organizations generating polynomials used to 
generate CRC. For example, CRC32 generating 
polynomial of IEEE 802.3 standard looks like this: 
𝑥"# + 𝑥#% + 𝑥#" + 𝑥## + 𝑥&% + 𝑥&# + 𝑥&& + 𝑥&' +

𝑥( + 𝑥) + 𝑥* + 𝑥+ + 𝑥# + 𝑥 + 	1 = 
0𝑥04𝐶11𝐷𝐵7(in	hexadecimal	form) =
	100110000010001110110110111 

(in	binary	form). 
One of the main conditions for choosing a 

polynomial is that the coefficients in the high and 
low bits were equal to one. 

The mathematical model of finding the checksum 
is presented below: 

𝑅(𝑥) = 𝑃(𝑥) · 𝑥J	mod	𝐺(𝑥), (1) 
where R(x) – polynomial which represents the value 
of CRC; P(x) – polynomial, in which coefficients 
represent input blocks of data; G(x) – generating 
polynomial; N – degree o generating polynomial (1≤ 
N ≤ 256). 
Thus, the CRC calculation is possible to implement 
on the basis of any programming language by using 
XOR (Exclusive or) and SHL ("shift to the left") 
logical operations, because they are included into 
any programming language [3, 4].  

An example of the execution of the algorithm 
for calculating the CRC remainder is shown in Fig. 
1, where the polynomial 10011 is selected as the 
generator. 

 
Figure 1: Example for CRC calculation  

 
The probability that the distortion of a 

transmitted message in several positions will be such 
that the final checksum does not change is 
determined by the formula [5–8]: 

𝑃 = &
#L

   (2) 

CRCs are specifically designed to protect 
against common types of errors on communication 
channels, where they can provide quick and 
reasonable assurance of the integrity of messages 
delivered. However, they are not suitable for 
protecting against intentional alteration of data.  

Firstly, as there is no authentication, an attacker 
can edit a message and recompute the CRC without 
the substitution being detected. When stored 
alongside the data, CRCs and cryptographic hash 
functions by themselves do not protect against 
intentional modification of data. Any application 
that requires protection against such attacks must use 
cryptographic authentication mechanisms, such as 
message authentication codes or digital signatures 
(which are commonly based on cryptographic hash 
functions). 

Secondly, unlike cryptographic hash functions, 
CRC is an easily reversible function, which makes it 
unsuitable for use in digital signatures. 

Thirdly, CRC is a linear function with a property 
that: 

𝑐𝑟𝑐(𝑥⨁𝑦⨁𝑧) = 𝑐𝑟𝑐(𝑥)⨁𝑐𝑟𝑐(𝑦)⨁𝑐𝑟𝑐(𝑧)				(3) 
 
2 Brief description of CRC counting 
algorithms 
 

The direct CRC calculation algorithm determines 
the control CRC bit by bit [9], it is described as 
follows in accordance with (1): 
1) add zeros to the original message for alignment 
(the number of zeros is determined by the degree of 
the generating polynomial)𝑃(𝑥)´	 = 	𝑃(𝑥)000…𝑁; 
2) do SHL operation of the bit sequence of the 
message P (x) ´ until the bit in the cell becomes equal 
to one or the number of bits becomes less than in the 
divider; 
3) if high bit becomes equal to one, then perform an 
XOR operation between the message and the 
generating polynomial and repeat step 2; 
4) the final residue of the sequence P (x)´ is a CRC-
residue. 

In the above description, G (x) is a polynomial, 
N is the degree of the polynomial, P (x) is the 
original message, and P (x) ´ is the augmented 
original message. 

The need to perform multiple iterations when 
generating the CRC checksum results in significant 
time costs. 

The tabular CRC calculation algorithm is used to 
accelerate the calculation of the CRC checksum. 

Acceleration is accomplished by replacing eight 
shift operations with a single search operation in the 
table, which contains 256 values. Therefore, when 
calculating the CRC checksum, a cycle is performed 
on 256 values. 

The prerequisite for the appearance of the table 
was the fact that when performing a XOR operation 
with a constant value at different shifts, there will 
always be some value, which, when applying an 

1 0 1 1 0 0 1 1 - quotient
1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 

1 0 0 1 1 
0 0 1 1 0 1 

0 0 0 0 0 
0 1 1 0 1 1 

1 0 0 1 1 
0 1 0 0 0 0 

1 0 0 1 1 
0 0 0 1 1 0 

0 0 0 0 0 
0 1 1 0 0 
0 0 0 0 0 

1 1 0 0 0 
1 0 0 1 1 

1 0 1 1 0 
1 0 0 1 1 
0 0 1 0 0 

0 1 0 0 - CRC
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XOR operation with the original content, will give 
the same result. Therefore, it is possible to build a 
table of such values, where index is the original 
content [1]. 
Table building algorithm: 
1) calculate the value in the table for each byte from 
0x00 to 0xff: 
a) perform the “right shift” operation 8 times, and if 
the low bit is equal to one, then the XOR operation 
is performed with the polynomial G; 
b) all that remains of two bytes becomes the value in 
the table. 

Calculating algorithm the CRC checksum using 
the table: 
1) each byte of the P (x) message is viewed: 
a) an XOR operation is performed on the low byte of 
the current CRC value and the current byte of the 
message — this is the index in the table; 
b) the high byte of the current CRC value shifts to 
the right by 8 and becomes low, then merged by 
XOR with the value of the table - this will be the new 
CRC value; 
2) the result is the CRC value. 

The matrix CRC calculation algorithm is used to 
calculate the checksum and is similar to the tabular 
one, except for that instead of a table, the vector 
multiplication operation (extended byte) by the 
matrix is used. 

The main advantage of the matrix algorithm over 
the tabular is the size of the memory required to store 
the table. So, for the implementation of the tabular 
algorithm, 1 Kb (256 elements of 4 bytes each) of the 
memory is required to store the table, while for the 
matrix algorithm, only 32 bytes are required (8 
elements of 4 bytes each) [10]. 
 
3 Evaluation of temporal effectiveness 

 

In order to compare the considered methods of 
generating CRC by performance under the same 
conditions, an application was written in the high-
level language Java, which allows to get statistics for 
each of the methods with the generating polynomial 
0xEDB88320 for CRC32 and 0xd800000000000000 
for CRC64.  Statistics show the dependence of their 
execution time on the size of the source line 
(message). 

The Java Development Kit version 1.8 and the 
NetBeans IDE 8.2 development environment are 
used to write the application. The experiment was 
conducted using the following hardware and 
software resources: 
1) Windows 10 operating system (64-bit); 
2) dual-core processor Intel Core i7-7600U with a 
clock frequency of 2.8 GHz; 
3) 16 GB of RAM; 
4) SSD with 512 Gb capacity. 

The application generates strings (messages) in a 
randomly specified size based on the characters: 
“A”–“Z”, “a”–“z”, “0”–“9”, and punctuation marks, 

after that a checksum is constructed for the obtained 
string using the methods described earlier. For 
example, a randomly generated string consisting of 
12 characters, looks like this: 

𝑂	ℎ	3𝑇𝑗	 + 	𝐽71𝐿. 
To determine the running time of the algorithms, 

the nanoTime () static method of the System class of 
the java.lang package was used, which returns the 
current time value.  
Thus, it is possible to calculate the running time of 
the entire application or its separate fragment (it is 
shown at the Figure 2). In considered case, were used 
the possibility of this method and the measurement 
of the operating time of a separate fragment 
(method) of the application, determined by the type 
of algorithm. 

The analysis was performed for randomly 
generated rows of the following sizes (h, in MB): 
1, 2, 4, 8, 16, 32, 64 and 128. 

To calculate the arithmetic average of the 
checksum calculation time, the following formula 
was used: 

𝑡̅ = &
_
· ∑ 𝑡a_

ab& ,  (4) 
𝑡a is the time for calculating the i checksum, P – total 
number. 
Standard deviation was calculated as follows: 

𝜎 = d&
_
· ∑ (𝑡a − 𝑡̅)_

ab& ,  (5) 

where t is the average value. 

Figure 2: Flowchart - test structure 

Set the number of repetitions N

Generate a random string of size n

Reduce the number of N repetitions by 
one

Calculate the string checksum

Start time = System.nanoTime()

Total Time = System.nanoTime () - 
Start Time

N = 0 ?
YES

NO
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Figure 3: Checksum calculation  

 
4 Results 

 

The results of calculations by formulas (4) - (5) are 
shown in the table 1 (CRC32) and table 2(CRC64). 
 

 
 
 
 

Table 1: Dependence of the working time of CRC32 calculation algorithms on the size of the string 
 

h, Mb Tabular algorithm Direct algorithm Matrix algorithm 
𝑡̅, s 𝜎, s 𝑡̅, s 𝜎, s 𝑡̅, s 𝜎, s 

1 0.0024 0.0008 0.0085 0.0019 0.0065 0.0013 
2 0.0046 0.0007 0.0165 0.0021 0.0128 0.0017 
4 0.009 0.001 0.035 0.005 0.027 0.004 
8 0.019 0.005 0.07 0.013 0.053 0.01 
16 0.036 0.004 0.130 0.016 0.101 0.012 
32 0.072 0.003 0.256 0.014 0.199 0.01 
64 0.14 0.01 0.52 0.02 0.40 0.02 
128 0.29 0.02 1.03 0.07 0.80 0.04 

 

int crc = 0xFFFFFFFF

inx < bytes.length

true

int poly = 0xEDB88320

 byte[] bytes = str.toString().getBytes()

int inx = 0

false

crc = crc ^ 0xffffffff byte b = bytes[inx]

int temp = (crc^b) & 0xff

int i = 0

i < 8

truefalse

crc = (crc >>>8) ^ temp

inx ++

temp & 1 == 1

truefalse

temp = (temp >>> 1)

i++

temp = (temp >>> 1) ^ poly
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Figure 4: Dependence of the working time of direct (red), matrix (green) and tabular (blue) CRC32 calculation 

algorithms on the size of the string 
 

Table 2: Dependence of the working time of CRC64 calculation algorithms on the size of the string 
 

h, Mb Tabular algorithm Direct algorithm 
𝑡̅, s 𝜎, s 𝑡̅, s 𝜎, s 

1 0.005 0.001 0.009 0.001 
2 0.010 0.002 0.019 0.003 
4 0.018 0.003 0.036 0.003 
8 0.034 0.004 0.070 0.003 
16 0.067 0.008 0.144 0.009 
32 0.134 0.028 0.287 0.050 
64 0.445 0.116 0.557 0.020 
128 0.576 0.082 1.173 0.143 
256 1.218 0.064 2.241 0.063 

 

 
Figure 5: Dependence of the working time of direct (red) and tabular (blue) CRC64 calculation algorithms on the 

size of the string 
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As can be seen from the results given in Tables 

1-2, the time spent on the calculation of the 
checksum CRC32 and CRC64 by the direct 
algorithm is almost the same. But, the calculation of 
CRC32 in tabular way gives a gain of 2 two times 
compared with CRC64. 

In turn, it is worth noting that in CRC64 the 
probability of not detecting an error is significantly 
lower than &

#fg
 versus  &

#hi
. 

 
5 Conclusion 

 

The article describes the direct, tabular and 
matrix algorithms for calculating the checksum 
CRC32 and CRC64(tabular and direct). A 
comparison of the operating time is made (Fig. 3, 
Fig. 4). 

As a result, it was established that the tabular 
algorithm is optimal in terms of the calculation speed 
of the checksum CRC32. Acceleration in it 
compared to the direct algorithm was achieved by 
replacing eight shift operations with a single search 
operation in the table, which contains 256 values. It 
is also important that the use of the matrix algorithm 
can be conditioned to significant memory savings 
compared to the table algorithm. 
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