
 33

On the Peculiarities of the Exchange of Data between Applications
in High-Level Languages and Matlab Functions

Alexander V. Krasnovidov
Department of Information and Computer

Systems, Emperor Alexander I St. Petersburg
State Transport University

St. Petersburg, Russia
alexkrasnovidow@mail.ru

Andrew V. Zabrodin

Department of Information and Computer
Systems, Emperor Alexander I St. Petersburg

State Transport University
St. Petersburg, Russia

zaw2003@yandex.ru

Anatoly D. Khomonenko
 Department of Information and Computer

Systems, Emperor Alexander I St. Petersburg
State Transport University

St. Petersburg, Russia
khomon@mail.ru

Alexander V. Smirnov

Laboratory of computer aided integrated
systems, St.Petersburg Institute for

Informatics and Automation of the RAS
Saint Petersburg, Russia

smir@iias.spb.su

Abstract
The possibilities of data exchange between
functions in the language of the Matlab
system with applications in high-level
languages are considered. Programs in
high-level languages appropriately to use in
conjunction with mathematical packages to
collect data, control various technological
processes, and perform other similar
actions. The instrumental means of
organizing such an exchange are
characterized. It had been shown the
feasibility of integrating applications in
high-level languages and the M-function of
the Matlab system, if necessary, to organize
input / output of large amounts of data.

Introduction

A modern approach to the design of information
systems requires maximum information
compatibility of various software applications that
work in a single information environment.1

Copyright © by the papers’ authors. Copying
permitted for private and academic purposes.
In: B. V. Sokolov, A. D. Khomonenko, A. A.
Bliudov (eds.): Selected Papers of the Workshop
Computer Science and Engineering in the
framework of the 5 th International Scientific-
Methodical Conference "Problems of Mathematical
and Natural-Scientific Training in Engineering

Currently, a large number of different data
processing systems are applied, among which one
of the most frequently used is the Matlab
system. However, this system is practically no
means of interactive interaction with users. In
addition, a program written in the Matlab language
can be run to perform only inside the own
environment. On the other hand, programs
developed in high-level C ++ or C # languages
provide users with advanced interactive
possibilities, but are lack internal means for
complex mathematical or statistical data processing.
Hence the expediency of combining the
computational capabilities of specialized data
processing systems with the interactive capabilities
of programs in high-level languages. The
integration technology of MATLAB functionality
allows Windows users to maximize the use of the
analytical tools of this software package for the
following tasks:
● solving optimization problems of any

dimension;
● obtaining reliable results of financial and

economic calculations, including on-line;
● three-dimensional visualization of

complicated geometric shapes and surfaces having
an economic meaning;
● creating business valuation algorithms that

require a large amount of computation;
● creation of intelligent project management

systems;
● modeling of economic processes of any

degree of complexity using the capabilities of
the Simulink package.

Education", St.-Petersburg, Russia, 8–9 November,
2018, published at http://ceur-ws.org

 34

The main methods of organizing such an
interaction are described in detail in various papers,
for example, in [Ada17, Smo05, Kra18] and others.
These are the following methods:

1. Program conversion, written in Matlab
language, into program in C ++. This method is
historically the first.

2. Matlab system interaction with Microsoft
Visual Studio using the NET Framework platform.
Each of these methods has its own advantages and
disadvantages. A detailed comparison of them is
given in [Ada17, Bey05]. Here it is worth noting
that independent applications use a special mode of
operation of the mcc compiler, which leads to
difficulties in passing parameters to the Matlab
function. In addition, such an application is
launched from the command line, which restricts
the dialog capabilities. In fact, the mcc compiler
generates C ++ code that is equivalent to calling the
corresponding Matlab function [Mat09].

The second method is based on the creation of
dynamic class libraries according to CLR standards
that can be used in any application, which
appropriates these standards. Versions of the
Matlab system, starting with R2010b and higher,
allow creating dynamic libraries which can be
used in programs in any programming languages
supported by the CLR runtime.

In this case, the M-functions are converted to
methods of objects whose classes are declared in
the CLR. Further these methods can be called from
programs in languages C ++ or C #. This approach
allows you to fully utilize the capabilities of the
Microsoft system Visual Studio in terms of
supporting interactive tools and flexibility in
managing the computational process. However, in
its implementation should be kept in mind the
following features of the classes declared:
● M-functions, unlike C ++ or C # methods, can

have several output variables.
● Declared classes can't encapsulate data. They

can contain only callable methods.
● Script-files can't be converted to methods and

integrated into a dynamic library.
The first of the properties listed is not

significant in cases when a call from a C ++ / C #
program applies to a method that uses only data
transmitted from the calling program, and returns
the result only to it (standalone method). The other
two properties can lead to difficulties in a various
situations, for example, in case of necessity of data
exchange between methods contained in the
dynamic library. An example of this is a Matlab
program that consists of several interrelated M-
functions, some of which perform initialization of
common variables, for example, set parameters of a
certain model, while others perform the actual
simulation.

Naturally, the various data exchange between
these functions is assumed. Inside the Matlab
programming system, such kind of exchange can be
implemented using global variables, which could be
declared in a Script-file. However, the third

mentioned property does not allow their
integration into the above dynamic libraries. Hence
the need to find other possibilities for data
exchange between interrelated M-functions within a
single task is following. One of the possible way of
solving is the organization of data exchange
between interconnected M-functions through the
calling program in C ++ or C #. The above way is
considered in this article.

1 Organization of the Data Exchange
between Matlab-Functions and
Programs in High-Level Language

It was shown above that one of the options for
organizing the exchange of data between
interrelated M-functions is calling a method written
in one of the high-level languages (C ++ or C #). In
this case, the common data is located in the address
space of the calling program and transmitted to the
called M-functions as parameters. The general
scheme of organizing such kind of interaction is
described in detail in [Ada17]. The following
peculiarities of data transmission between M-
functions and a high-level language program are
considered below.

1. Programming languages C and C # are
languages with strong data typing. All variables
must be declared before they are used. Matlab
programming system does not require preleminary
declaration of variables and their types.

2. Methods in C ++ and C # applications have
or one output parameter returned by the return
statement and its type coinciding the method type,
or without output parameter (void type). M -
functions can return multiple output variables. In
general case, the header of the M function has the
following form:

function [y1, y2,…,yn] = < function_name >

(<Input_Variable_List >).

Thus, the output variables are a vector with

elements y1, y2, ..., yn, while all of them, in turn,
can be matrices or vectors. Each element can relate
to different data types. During the execution of the
M - function, all output variables should be
assigned values. An example of such a function is
the meshgrid function, which is used in conjunction
with graphing functions for three-dimensional
surfaces. The call to this function is:

[X,Y] = meshgrid(x), where X and Y – output
vectors (the result of the function).

It follows from the above that the main point in
organizing the interaction between the M-function
by the program in the language is the agreement of
the types of data transferred and mapping of the set
of output variables of M-function to the
corresponding variables of C ++ / C # program
that has been call and vice versa. To solve this
problem, it is proposed to use the .NET MWArray

 35

class library for working with MWArray.dll arrays.
This dynamic library contains two namespaces:
● MathWorks.Matlab.NET.Arrays — classes

that provide access to Matlab arrays from any .NET
CLS compliant language;
● MathWorks.Matlab.NET.Utility — service

classes that provide general support for MWArray
classes in the Matlab MCR runtime enviroment.
The Namespace MathWorks.Matlab.NET
.Arrays contains classes for supporting data
conversion between managed types and Matlab
types. Each class has constructors, destructors, and
a set of properties and methods to access the state
of the Matlab main array. The class hierarchy of
MathWorks.Matlab.NET .Arrays is shown in
Figure 1.

MWArray is an abstract class, the root of an
array class hierarchy Matlab. It encapsulates the
internal type of Matlab mxArray and provides the
ability to access, format and manage the array;

Figure 1: Class Hierarchy MathWorks
.Matlab.NET.Arrays.MWArray

MWNumericArray is a managed
representation for Matlab arrays of numeric types.
Its Matlab-equivalent is the default array type
(vector) of double type, used by most Matlab math
functions;

MWLogicalArray is a managed representation
for Matlab boolean arrays. Like its equivalent
Matlab, MWLogicalArray contains only ones and
zeros (true / false);

MWCellArray is a managed representation for
Matlab cell arrays. Each element in a cell array is a

container that can contain a MWArray or one of its
derived types, including another MWCellArray;

MWCharArray is a managed representation
for Matlab arrays of character type. Like its
equivalent Matlab, MWCharArray supports string
creation and string manipulation;

MWIndexArray is an abstract class that serves
as the root for the MWArray indexed classes. These
classes represent the types of arrays that can be
used as input parameters for the array indexing
operator [].

MWObjectArray is a special subclass of
MWArray that encapsulates its own .NET object in
a Matlab array. This object can then be accessed or
returned by the Matlab function.

MWStructArray – managed represent-tation
for arrays of structures Matlab. Like its equivalent
in Matlab, it consists of field names and field
values.

Namespace MathWorks.MATLAB.NET.
Utility. The service classes in this namespace
provide general support for the MWArray classes in
the execution environment of the MATLAB MCR
component.

The above class hierarchy makes it easy to
convert data from the C ++ / C # format to the
Matlab format and back, without resorting to
explicit type conversion. The following are
examples of similar conversions.
● Variables of the double type do not require

any conversions.
● One-dimensional array (vector) for transfer

to M-function can be formed by the following
operators:

double [] Coeff = {1,2,3,4};//Vector in С++/С#;

MWNumericArray MTLBCoeff = Coeff; //
Vector to pass into M-function as a parameter.

● Two-dimensional array for transfer into M
- function can be formed by the following operators
(*) and (**):

double [,] a ={ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
// Matrix in C ++ / C #; (*)

MWNumericArray arr1 = a;(**) //Matrix for
transfer to M-function as a parameter.

● A string variable of type string is converted
to Matlab character format for transmission to the
M-function using the following operators:

string My_String = " This is the C # "string;
MWCharArray mw_ My_String = new

MWCharArray(My_String);

● Vector type MWArray, returned by M-

function in C ++ / C # program; converted to an
array of type double using the following operators:

MWArray[] Res = null;
// Declaring MWArray Objects

System.Object

MathWorks.MATLAB.NET.Arrays.MWArray

MathWorks.MATLAB.NET.Arrays.MWNumericArray

MathWorks.MATLAB.NET.Arrays.MWCharArray

MathWorks.MATLAB.NET.Arrays.MWIndexArray

MathWorks.MATLAB.NET.Arrays.MWObjectArray

MathWorks.MATLAB.NET.Arrays.MWStructArray

MathWorks.MATLAB.NET.Arrays.MWCellArray

MathWorks.MATLAB.NET.Arrays.MWLogicalArray

 36

MWNumericArray descriptor = null; // and
MWNumericArray

// select the first element from the MWArray
array and convert to

// numeric type MWNumericArray;
descriptor = (MWNumericArray)Res[0];
// convert the array MWNumericArray to an

array of type double;
double[,]d_descriptor=(double[,]) descriptor.

ToArray(MWArrayComponent.Real);

Thus, the MWArray classes are used to process
arrays, determine the type, and convert the data.
The following are examples of data exchange
between M-functions and C # applications.

2 Application for Filtering Experimental
Data

Let there be a sequence of numbers xn, which is a
series of equidistant measurements of a certain
quantity x (t), in which n is an integer (n = 0, 1, 2,
...), and t is considered as a continuous argument. If
the sequence yn is calculated by the formula:

 ;

then this formula defines a digital non-recursive
filter [Hem80].

It can be seen from the formula that the filter
operation is completely determined by the set of
coefficients ck.

M-function MainF takes as parameters a set of
filter coefficients and the name of the binary file
containing the data to be processed.

The returned results are vectors containing the
source vector and the vector of processing results.

function [OutMatrix] = MainF(File,Coeff)
%UNTITLED Summary of this function

goes here
% Detailed explanation goes here
% File - symbolic file name; Coeff is an

array (vector) of coefficients.
 fid2 = fopen(File,'r');
 InV = fread(fid2,'double'); % InV – source

 vector
 fclose(fid2);
 Arg = length(InV);
 OutV = Filter (T,InV); % Appeal to M -

the function that implements the filter
 % OutV – output vector

 OutMatrix = [InV OutV']; %
Formation of a vector -lines of output
variables

 plot(1:Arg,InV,1:Arg,OutV); % Plotting
 results

 M-function MainF is declared as a CLR

method of the TFilter class. It is not necessary to
declare as the M- method the Filter function, since
it is called from a function external to it [Smo05,

Bey05]. Since, during data processing, it may be
necessary to filter their various variants with
different filters, it seems appropriate to organize the
input of a file name and coefficient vectors from an
application in C ++ / C #.

Such an application should perform the
following actions:

1. Receive from the user the name of the file
being processed in symbolic form and convert it to
the format adopted in Matlab;

2. Receive from the user a vector of filter
coefficients in a symbolic (user-friendly) form and
convert them to the format adopted in Matlab;

3. Create an object of the TFilter class
containing the filtering method.

4. Call the MainF method of the TFilter class
and pass parameters (arguments) to it, which are
converted to Matlab format.

5. Get the original and processed vector
returned by M-function MainF, translating them
into the format C #; (in type MWNumericArray –
controlled representation of types of Matlab
numeric arrays.)

6. Output the received vectors to the listBox
visual element (if necessary).

Below are fragments of such an application
that perform the above actions.

 // Declaring Variables
 string File_Name; // Name of data

file in С format
 MWArray [] Res = null; //

Declaring MWArray Class Objects
 MWNumericArray Vect = null; //

and MWNumericArray for work results
 // M-functions
 double [,] OutV; // Matrix into

which the work results will be converted
 // M-functions
 string SCoeff; // C # format string for

entering filter coefficients
 double [] Coeff; // Array (vector)

to be passed to M function

 // Converting the file name from the string

 type to the Matlab character format
 MWCharArray mw_Name = new

 MWCharArray (File_Name);
--

It was shown above that one of the parameters
transmitted to the M-function is an array (vector) of
coefficients, which determines the properties of a
digital filter. Their values are entered online, so the
number of these coefficients is not known in
advance. From the point of view of the M-function
MainF, this does not matter, since all Matlab arrays
are by definition dynamic. However, in C # an
array is always a static structure, the size of which
must be determined in advance. Therefore, the
above transformations (*) and (**) cannot be used
directly. To overcome this contradiction, a dynamic
structure was created in an application in C # – a

å
¥

-¥=
-=

k
knkn xcy

 37

list, which is then converted into an array of the
required size.

--

List <double> TMP = new List <double> ();
// Template for organizing the list

// fill the list with entered coefficients
//
//
Coeff = TMP.ToArray (); // Convert the list

to an array
MWNumericArray MTLBCoeff = Coeff; //

Transform a numeric array from
// C # format to a numeric array in the format
// Matlab
TFilter Filter = new TFilter (); // Create an

object of class TFilter
 Res = Filter.MainF (1, mw_Name,

MTLBCoeff); // Call the MainF method
// select the first element from the MWArray

array and convert to
// numeric type MWNumericArray;
Vect = (MWNumericArray) Res [0];
int Size = Vect.NumberOfElements;
OutV = new double [Size / 2, Size / 2];
// Initialization of the result matrix
for (int i = 0; i <Size / 2; i ++)
{// Filling the result matrix with the
dimension (2 × Size / 2)
OutV [1, i] = Vect [i + 1] ToScalarDouble();
OutV [2, i] = Vect [i + Size / 2 + 1]
ToScalarDouble ();
// Display the results in the listBox visual

element
 listBox1.Items.Add (i.ToString () + "" +

OutV [1, i] + "" + OutV [2, i]);
 }
The ToScalarDouble () method of the

MWNumericArray class converts scalar Matlab
format values to the C # type double. Thus, in this
case, an explicit type conversion is required. The
result of the application's work is presented in
Figure 2. In the above example, the Filter (M-
function) method is encapsulated in the MainF
method, so the first is not a CLR method – the
TFilter class and there is no need to organize data
exchange between them.

Figure 2: The result of the application working

It should be noted that the use of listBox is
not the only option to visualize the results of the
application.

3 An Application for Determining the
Best access Point for Connecting a
Mobile Device to a Local Network

In [Kra16], an algorithm was considered for
determining the best access point for connecting a
mobile device to a local network, taking into
account not only the signal level at its input, but
also the bandwidth that can be allocated to the next
mobile subscriber when trying to connect it. To
solve this problem, a model for selecting such a
point was developed. The development was
performed with assistance of fuzzy logic apparatus
using visual programming in Matlab. Such a model
can be saved in a file with the .fis extension and
further could be loaded into Matlab-program
[Leo05]. After entering the initial data into the
model, the actual modeling is performed. The block
diagram of the program model is presented in
Figure 3.

Figure 3: Block diagram of the program model

Each access point is represented by a structure
containing the following data fields:
● The sequence number of the access point

(double P_Number);
● The current value of the signal level at this

point (double Signal_Level);
● Current number of subscribers connected to

this point (double Dev_Number);

 38

● The current frame transfer time out of this
point (double Baud_Rate).

During model initialization, the indicated
structures are combined into a vector, the number
of connected subscribers (Num_user), data transfer
rate (Baud_Rate) are set equal to zeros, the value of
signal / noise levels (S/N) is formed from vector of
values of signal / noise levels according to a given
distribution law. The current data transfer rate
(Baud_Rate) is calculated based in accordance of
number of subscribers. Subsequently, after each
connection at each point the current number of
subscribers is recalculated, the data transfer rate of
the point where the connection occurred is
calculated. The data of this point is changed and
overwritten. The modeling program consists of
several M-functions connected by common data
and called from a Script-file, the contents of which
are presented below.

Node = Init1 ('D: \ AVK \ MyC # \
MTLB_Integr \ Fuzzy \ MobileWiFi.fis', N);

Smple = Start_Rnd ();
Step = 1;
while (Step <N)
Res1 = ModelF (Node, Smple, Step);
Node = Res1.ND;
Step = Step + 4;
end;
Print (Res1);

M-function Init1 forms an array of structures in
accordance with Figure 3 and loads the model file;

M-function Start_Rnd generates the value of the
total bandwidth and the values of the S / N levels
according to a given distribution law;

M-function ModelF performs simulation in
accordance with the above algorithm;

M-function Print provides the output of
simulation results in the form of graphs and
displays the course of the simulation process.

All listed M-functions are connected by
common data: an array of structures shown in
Figure 3. For the above Script-file to work, the
input of following simulation parameters is
required: the name of the model file, the number of
simulation cycles, the distribution law parameters,
etc. In addition, displaying information on the
monitor, in accordance with the principles of the
Matlab environment runtime, as well as launching a
Script- file is possible only when working in this
environment. This implies the expediency of
organizing the interaction of the listed above M-
functions and an application in C ++ / C #. As in
the previous example, these functions must be CLR
class methods (in this case, TFuzzy). n fact, such an
application must implement the functionality of
considered above the Script -file . Such an
application should perform the following actions:

1. To get from the user the name of model file
in symbolic form and convert it to the format
adopted in Matlab.

2. Get from the user the number of simulation
cycles, the dimension of the array of structures in a
symbolic (user-friendly) form and convert them to
the format adopted in Matlab.

3. To create class TFuzzy as a CLR object,
containing the methods Init1, Start_Rnd, ModelF,
Print.

4. Call the above-mentioned methods of the
TFuzzy class in accordance with the simulation
algorithm for it parameters (arguments), which are
converted to the Matlab format.

Below are fragments of such an application that
perform the above actions.

// Declaring Variables

string SPar; // one
string File_Name; // 2
double par; // 3
double step; // four
MWArray [] mod = null; // 5
MWArray [] Res = null; // 6
MWArray [] Param = null; // 7
MWStructArray Point = null; // eight
MWStructArray Result = null; // 9

Lines 1 ÷ 4 do not need comments, their
purpose is similar to similar variables considered in
the previous example. The mod object of the
MWArray class (line 5) is needed to store the
handle of the model file being loaded. This
descriptor is an object of the class of the Matlab
programming system [Leo05] and passed to the
application using the Init1 method of an object
named Model belonging to class TFuzzy. The Res
object of the class (line 6) of the MWArray is used
to store the result of the next simulation step
returned by the ModelF CLR method - the Model
class. The result is an object of the class of the
struct programming system in accordance with
Figure 3.

The Param object of the MWArray class (line 7)
is used to store the current parameters of the
simulation session and belongs to the struct class of
the programming system. The Point and Result
objects of the MWStructArray class (lines 8÷9) are
intended for storing and converting arrays of
structures in accordance with Figure 3.

TFuzzy Model = new TFuzzy (); // 10
MWCharArray Mod_Name = new
MWCharArray (File_Name);
MWNumericArray Number; // 11
panel1.Visible = false;
mod = Model.Init1 (1, Mod_Name); // 12
Point = (MWStructArray) mod [0]; // 13
Param = Model.Start_Rnd (1); // 14
Step = 1;
while (Step <Par)
{
Res = Model.ModelF (1, (MWArray)

 39

Point, (MWArray) Param [0], Step); // 15
Result = (MWStructArray) Res [0]; // sixteen
Point = (MWStructArray) Result. GetField
("ND"). Clone (); // 17
Number = Result. GetField ("N"). ToArray

(); // 18
listBox1.Items.Add ("Connection to the point

No.:" + (Number.ToScalarDouble ()).ToString ());
Step = Step + 4; // nineteen
};
listBox1.Visible = true;
Model.Print (0, Result); // 20

The operator in line 10 creates a Model CLR
object of the TFuzzy class. The Number object of
the MWNumericArray class is used to convert
formats between the application and the
corresponding methods of the CLR – Model class
(the MWNumericArray class is a controlled
representation of the types of Matlab numeric
arrays) [Bey05, Mat09]. The operator in line 12
performs model initialization, passing the model
file name as a parameter (see previous example).
As was shown above, the Init1 method returns a
model descriptor, which in this case has the
following structure (Figure 4):

As in the previous example, the operator in line
13 selects the first element from the array, but in
this case the array consists of structures, so the
appropriate type conversion is applied here.

Figure 4: The structure of the model descriptor

The operator in line 14 receives a structure
containing the current parameters of the simulation
session. Operators in lines 15 ÷ 18 work in a loop
and perform the following actions:
● Performs model calculation, which consists in

determining the best access point at this modeling
step (line 15). The ModelF method takes the Point
and Param structures as parameters (see above) and
returns the result of the Res class struct shown in
Figure 5. Since the latter is an array, it is combined
with its first element.
● Executes the simulation result at the next step,

to the class of the struct (line 16), which is
necessary to calculate the model in the next step
(line 15).
● Performs deep copying of the current values

of the simulation parameters for pass to the ModelF

method (line 17) that the model needs to be
calculated in the next step (line 15).
● Retrieves the access point number to which

the connection occurred at the current simulation
step. This is necessary to visualize the order of
connections (line 19).
● Performs graphical visualization of simulation

results (line 20).
Thus, the use of objects of the class of struct

made it possible to organize the storage of common
data of the CLR methods of the Model class in an
application implemented in C #. The above data
structures used in the application are shown in
Figure 5, 6 and 7 the results of the application work
are shown.

Figure 5: Application data structures

Figure 6: The result of the application with the
visualization of intermediate results

Figure 6 demonstrates the dynamics of
subscriber connections to access points.

name: 'MobileWiFi#1'
type: 'mamdani'

 andMethod: 'min'
orMethod: 'max'
defuzzMethod: 'centroid'
impMethod: 'min'
aggMethod: 'max'
 input: [1x2 struct]
 output: [1x1 struct]
 rule: [1x9 struct]

double N

double [] Ab

double [] R

struct ND

double Signal_Level

double Baud_Rate

double Dev_Number

double P_Number

struct Point

struct Mod

struct Res1 struct Point

struct Node

 40

Figure 7: The result of the application with the
visualization of the final results

In Figure 7 the results of simulation are
displayed. For visualization of the final results used
method Print.

Conclusion

The analysis of the considered methods of
interaction of the Matlab system with programs in
C ++ and C # languages within of the Microsoft
Visual Studio application development environment
allows to draw the following conclusions:

1. The integration of the capabilities of the
Matlab system with applications in high-level
programming languages expands the possibilities of
developing application software for solving various
problems that require both a convenient dialogue
with the user, as well as complex mathematical
calculations with graphical visualization of results.

2. Due to the impossibility of converting Script
files to CLR methods of classes and their
integration into dynamic libraries, data exchange
between related methods within the CLR class
cannot be organized.

3. The exchange of data between interrelated
methods can be organized through the application
in a high-level language, by means of passing it the
appropriate parameters.

4. When transferring parameters by methods,
one should take into account that M-functions,
unlike C ++ or C # methods, can have several
output variables-results. It follows that the main
point in organizing the interaction between the M
function and the application in a high level
language is the coordination of the types of data
transferred and the mapping of the set of output
variables of the M function to the corresponding
variables of the calling program in C ++ / C # and
vice versa. To solve this problem, it is proposed to
use the .NET MWArray class library for working
with MWArray.dll arrays. This library allows you
to easily convert data from the C ++ / C # format to
the Matlab format and back, without resorting to
explicit type conversion.

5. The usage of objects of the class of struct
makes it possible to organize the storage of
complicated data of the CLR classes methods in an
application implemented in C #. In this case,
mappings of a set of output variables M - functions
to the corresponding variables of an application in
C ++ / C # and back can be organized by combining
data into structures.

Acknowledgments

The work was partially supported by the
grant of the MES RK: project No. AP05133699
"Research and development of innovative
information and telecommunication technologies
using modern cyber-technical means for the city's
intelligent transport system".

References
[Ada17] S. Adadurov, A. Krasnovidow, A.

Khomonenko, I. Koroteev. Metody
integracii informacionnych system v
protsesse razrabotki bezopasnyh
prilojeniy [Methods of integration of
instrumental systems in the development
of secure applications]. // Information
security issues. Computer systems. 2017,
№4. Pp. 80–86.

[Bey05] Ing Bey, Dzhifeng Ksu. Vzaimodeistvie

Matlab s ANSI C, Visual C ++, Visual
Basic i Java, [Interaction of MATLAB
with ANSI C, Visual C ++, Visual Basic
and Java] M.: Williams, 2005. 207 p.

[Hem80] R. Hemming. Tsifrovie filtry. [Digital

filters]. // Ed. A. M. Trahtman. M.:
Sovietskoe Radio, 1980. 224 p.

 [Kra18] A. Krasnovidow, A. Zabrodin, A.

Khomonenko. Ob osobennostiah
vzaimodeistvia mezhdu sistemoi Matlab I
prilozheniiami s pomoschiu tehnologii
COM [About the features of the
interaction between the Matlab system
and applications using COM technology].
// Professional education, science and
innovations in the XXI century.
Collection of works of the XII St.
Petersburg Congress. 2018 Pp, 126–127

 [Kra16] A. Krasnovidow. Model akgoritma

opredelenia nailutshei tochki dostupa dla
podkluchenia mobilnogo ustroistva.
[Model of algorithm to determine a best
access point to connect a mobile device to
the LAN] // Intellectual Technologies on
Transport. 2016. № 2. Pp. 36–42.

 41

[Leo05] A. Leonenko. Nechetkoie Modelirovanie v
Srede Matlab i fuzzyTECH. [Fuzzy
modeling in MATLAB environment and
fuzzyTECH] BHV–Petersburg [Link],
Saint–Petersburg, 2005 – 736 p.

[Mat09] MATLAB C/C++ Book for MATLAB

Compiler 4.5. 2009. – LePhan Publishing,
http://www.lephanpublishing.com/MATL
ABBookCplusplus.html.

 [Smo05] N. Smolentsev. Sozdanie Windows-

prilozhenii s ispolzovaniem
matematicheskih protsedur Matlab
[Creating Windows applications using
Matlab mathematical procedures]. - M .:
DMK_Press, 2008. 456 p., Ill.

