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Abstract 
 
In this paper the sequential algorithm for 
generating a matrix of coefficients for a 
system of homogeneous differential 
equations describing a model of a non-
stationary queueing system is proposed. Its 
comparison with the recursive algorithm is 
given. The optimal storage structure of the 
list of states for a sequential algorithm is 
given. A decrease of the performing time 
for the algorithm compared with the 
recursive one was noted due to no need to 
sort the list of states and matrix of 
coefficients.  
 

1 Introduction 
 

Automated monitoring systems play an important 
role in the life of modern society. Monitoring is a 
continuous process of observing and recording the 
parameters of an object in comparison with the 
specified criteria. In some industries data is 
collected and accumulated very intensively. The 
mathematical basis for simulation of monitoring 
systems is queuing theory. Most authors use models 
of theory on the assumption that the task queue is 
infinite, there is a stationary mode, and the load 
factor does not exceed unity [Zeg12, Oso13, 
Upa16].1 
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Great practical and theoretical interest are non-
stationary queueing system (nSQS). There are few 
works devoted to this topic in comparison with 
works devoted to the stationary regime. Examples 
of such works are [Bub11, Bub10, Bub99]. The 
various models are discussed in detail in [Bub99]. 
The disadvantage of the work [Bub11, Bub10] is 
that they consider only the classical numerical 
method for solving systems of ordinary differential 
equations (ODE) - the Runge-Kutta method. 

Later in [7–9] a numerical-analytical method is 
presented, the speed and accuracy of which, when 
solving an ODE system describing nSQS, are 
superior to the most common Runge-Kutta method 
for solving this kind of problems. One of the 
advantages of this method is the recursive 
algorithm for generating the matrix of coefficients 
of an ODE system without deriving the general 
equation of the ODE system. But this algorithm 
also has significant disadvantages: (1) the output of 
the algorithm provides an unordered list of states, 
the states in it are in the order of their recursive 
generation; (2) the output of the algorithm provides 
an array of the desired dimension instead of the 
lower triangular matrix; (3) based on the first two 
points, it follows the necessity of sorting the list of 
states and the matrix of coefficients to bring them 
into a ready for further use. When replacing the 
values in the list of states, it is necessary to swap 
rows and columns for the same state numbers in the 
matrix, and for large matrix sizes, this is a resource-
intensive operation. To eliminate these 
disadvantages, a sequential algorithm for generating 
a matrix of coefficients is proposed, this algorithm 
is using a completely different approach. 
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2 Essence of a sequential algorithm  
 

The essence of the sequential algorithm is to divide 
the list of states into subgroups with the same 
properties and further use these properties. For 
example, consider the simplest single-channel 
queueing system (QS) characterized by the number 
of tasks i (i=¯(0,N)) in it and the number of tasks j 
(j=¯(0,N-i)), that have already been completed, 
where N is the total number of tasks that can enter 
into the system. The input is sequentially received 
N tasks with intensities {λ1, λ2, … , λN}, which 
depends on the task number, and they are served 
with intensities{µ1, µ2, … , µN}, which also 
depends on the task number. 

We divide states into groups, in a way that in 
each group with constant j, the value of i will grow 
to N-j. Note some important facts: (1) the number 
of groups will always be N+1; (2) the length of 
each next group will always be 1 less than the 
current; (3) within one group, states can transit into 
each other sequentially and only with intensity λ; 
(4) the transition with intensity µ can occur only 
from state i of group j to the state of the next group 
j + 1, while the number of the new state inside the 
group will always be i-1, the intensity of such a 
transition will always be µj. 

The next step is generating a list of states with 
length Ns = (N+1)*(N+2)/2. The list is generated 
by simply iterating j in the outer loop, i in the inner 
loop, until i+j <= N. When this threshold is 
reached, j increases by one. At the output, the 
algorithm provides an ordered list of states and does 
it in a single loop pass. 

An important component is the data structure 
for storing this list. The main list of states contains 
several groups, each of them is a separate list. 
Inside the group there are states, each of them is 
stored as a list containing a state number and a list 
with its description. This storage structure 
simplifies further filling of the matrix of 
coefficients and makes it possible not to go through 
the list of states when searching for the desired 
state, but to immediately go to the right place in the 
list. For example: 
Main list of states [ 
 Group [ 
  State [ 
                 State number, 
                   [tasks in the system, 
    completed tasks] 
   ] 
    ] 
  ]. 

The next step is filling of the coefficient matrix. 
Under initial conditions, this is a square zero matrix 
with dimension Ns. We must sequentially take 
states one by one from the list of states and 
sequentially apply 3 boundary conditions for each 
state, due to it all necessary changes of the matrix 
of coefficients that describe this state occur. Denote 

the matrix of coefficients as A, the number of the 
current state as Num, µ and λ – the intensities of 
arriving and maintenance of the task with the 
number Num. 
 
1. If this is not the first state within group: 

 

2. If this is not the last state within group: 
 

3. If this is not the first group: 
 

where Prev_Num is the state number from which 
you can transit to the state with the Num state 
number after completed the task, in the state list it 
is always in group j-1 and has a number in its group 
i + 1. 

After processing all states, such algorithm at the 
output provides a ready-made lower triangular 
matrix of coefficients that eliminates the need to 
sort it. 

The flowchart of the entire algorithm is shown 
in Figure 1. 

 
3 Comparative analysis of recursive and 
sequential algorithms 

 
Both algorithms for generating a matrix of 
coefficients of an ODE system without deriving the 
general system equation were implemented in 
Python3. All measurements were performed when 
the algorithms are running on the same device, it 
allows us to consider the obtained values as valid 
for comparison. The performing time of the 
algorithms may differ up or down depending on the 
power of the platform on which the algorithms are 
running, but the general trends will remain correct. 
The results of the comparative analysis are 
presented in the table 1.The flowchart of the entire 
algorithm is shown in Figure 1. 

As we can see from Table 1, the number of 
possible states of the system, and consequently, the 
number of equations in the system of ODE grows 
exponentially from the number of tasks that can 
enter the nSQS. A graph of dependence between 
number of tasks and number of states is presented 
in Figure 2. 

 
 

Figure 2: Dependence between number of tasks 
and number of states 
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Figure 1: The flowchart of the sequential algorithm 
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Table 1: Comparison of performing time of algorithms 
 

Tasks States Performing time of sequential 
algorithm, seconds 

Performing time of 
recursive algorithm, 

seconds 

Generation without 
sorting (for recursive), 

seconds 

3 10 0.0027289390564 0.000235080718994 0.000102996826172 
5 21 0. 000874042510986 0.000907897949219 0.000251054763794 
10 66 0. 000315189361572 0.00605607032776 0.000638008117676 
20 231 0. 00100684165955 0.129016876221 0.00578188896179 
30 496 0. 00470900535583 0.592235088348 0.0215079784393 
40 861 0. 00546598434448 2.48418688774 0.0802609920502 
50 1326 0.0105609893799 12.4112920761 0.151191949844 
60 1891 0.0128128528595 83.0276899338 0.318285942078 
70 2556 0.0225200653076 224.342078924 0.576465129852 
80 3321 0.0305080413818 568.904677153 0.847626924515 
90 4186 0.0393660068512 1163.46502709 1.33484387398 

100 5151 0.105370044708 2274.09017706 1.87042212486 

Figure 3 shows a comparison of two parts of the 
recursive algorithm: generating a list of states and a 
matrix of coefficients and their sorting. As we can 
see from Figure 3, with an increase the number of 
states, most of the time the recursive algorithm is 
busy sorting the results. 

 
 

Figure 3: Performing time for both parts of 
recursive algorithm 

 
Figure 4 presents a comparison of the total time 

of the recursive and sequential algorithms for 
generating the coefficient matrix. The execution 
time of the recursive algorithm grows exponentially 
with an increase the number of states, from Figure 3 
it can be concluded that most of this time is spent to 
sorting. 

 

 
 

Figure 4: Performing time for sequential and 
recursive algorithms 

 
Figure 5 shows the execution time of the 

sequential algorithm and the execution time of the 
recursive algorithm without the time-consuming 
sorting step. As you can see, even in this case, the 
recursive algorithm is inferior to the sequential 
algorithm in speed. 

 
 

Figure 5: Performing time for sequential algorithm 
and recursive algorithm excluding sorting 

 
Figure 6 shows a graph of dependence between 

number of states and performing time of sequential 
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algorithm, 100 values are used with the number of 
incoming applications from 1 to 100. 

 
 

Figure 6: Dependence between number of states 
and performing time of sequential algorithm 

 
As we can see from Figure 6, the performing 

time of this algorithm has an ordinary linear 
dependence on the number of tasks coming into the 
system and the number of states of this system. 

 
4 Conclusion 

 

The proposed sequential algorithm has undeniable 
advantages compared with the recursive algorithm: 
the performing time of it is significantly less and 
has a linear dependence on the number of tasks 
coming into the system, in contrast to the 
exponential dependence in the recursive algorithm. 
A sequential output algorithm provides a sorted list 
of states and a lower triangular matrix of 
coefficients, which eliminates the need for sorting 
used in the recursive algorithm. 

As the system parameters increase, the number 
of states may increase, in some individual cases, the 
number of rules and conditions for transitions, but 
the overall complexity remains at the same level. It 
is recommended to use a sequential algorithm for 
implementations of the numerical-analytical 
method, instead of a recursive algorithm. 
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