

42

Generating of the Coefficient Matrix of the System of
Homogeneous Differential Equations

Kirill S. Shardakov

Department of Information
Systems and Technologies,

Emperor Alexander I St.
Petersburg State Transport

University
St. Petersburg, Russia

k.shardakov@gmail.com

Vladimir P. Bubnov
Department of Information
Systems and Technologies,

Emperor Alexander I St.
Petersburg State Transport

University
St. Petersburg, Russia

bubnov1950@yandex.ru

Alexander N. Pavlov
Laboratory of Information
Technologies in System
Analysis and Modeling,

St. Petersburg Institute for
Informatics and

Automation of the RAS,
St. Petersburg, Russia

pavlov62@list.ru

Abstract

In this paper the sequential algorithm for
generating a matrix of coefficients for a
system of homogeneous differential
equations describing a model of a non-
stationary queueing system is proposed. Its
comparison with the recursive algorithm is
given. The optimal storage structure of the
list of states for a sequential algorithm is
given. A decrease of the performing time
for the algorithm compared with the
recursive one was noted due to no need to
sort the list of states and matrix of
coefficients.

1 Introduction

Automated monitoring systems play an important
role in the life of modern society. Monitoring is a
continuous process of observing and recording the
parameters of an object in comparison with the
specified criteria. In some industries data is
collected and accumulated very intensively. The
mathematical basis for simulation of monitoring
systems is queuing theory. Most authors use models
of theory on the assumption that the task queue is
infinite, there is a stationary mode, and the load
factor does not exceed unity [Zeg12, Oso13,
Upa16].1

Copyright © by the papers’ authors. Copying
permitted for private and academic purposes.
In: B. V. Sokolov, A. D. Khomonenko, A. A.
Bliudov (eds.): Selected Papers of the
Workshop Computer Science and Engineering
in the framework of the 5 th International
Scientific-Methodical Conference "Problems of
Mathematical and Natural-Scientific Training
in Engineering Education", St.-Petersburg,

Great practical and theoretical interest are non-
stationary queueing system (nSQS). There are few
works devoted to this topic in comparison with
works devoted to the stationary regime. Examples
of such works are [Bub11, Bub10, Bub99]. The
various models are discussed in detail in [Bub99].
The disadvantage of the work [Bub11, Bub10] is
that they consider only the classical numerical
method for solving systems of ordinary differential
equations (ODE) - the Runge-Kutta method.

Later in [7–9] a numerical-analytical method is
presented, the speed and accuracy of which, when
solving an ODE system describing nSQS, are
superior to the most common Runge-Kutta method
for solving this kind of problems. One of the
advantages of this method is the recursive
algorithm for generating the matrix of coefficients
of an ODE system without deriving the general
equation of the ODE system. But this algorithm
also has significant disadvantages: (1) the output of
the algorithm provides an unordered list of states,
the states in it are in the order of their recursive
generation; (2) the output of the algorithm provides
an array of the desired dimension instead of the
lower triangular matrix; (3) based on the first two
points, it follows the necessity of sorting the list of
states and the matrix of coefficients to bring them
into a ready for further use. When replacing the
values in the list of states, it is necessary to swap
rows and columns for the same state numbers in the
matrix, and for large matrix sizes, this is a resource-
intensive operation. To eliminate these
disadvantages, a sequential algorithm for generating
a matrix of coefficients is proposed, this algorithm
is using a completely different approach.

Russia, 8–9 November, 2018, published at
http://ceur-ws.org

 43

2 Essence of a sequential algorithm

The essence of the sequential algorithm is to divide
the list of states into subgroups with the same
properties and further use these properties. For
example, consider the simplest single-channel
queueing system (QS) characterized by the number
of tasks i (i=¯(0,N)) in it and the number of tasks j
(j=¯(0,N-i)), that have already been completed,
where N is the total number of tasks that can enter
into the system. The input is sequentially received
N tasks with intensities {λ1, λ2, … , λN}, which
depends on the task number, and they are served
with intensities{µ1, µ2, … , µN}, which also
depends on the task number.

We divide states into groups, in a way that in
each group with constant j, the value of i will grow
to N-j. Note some important facts: (1) the number
of groups will always be N+1; (2) the length of
each next group will always be 1 less than the
current; (3) within one group, states can transit into
each other sequentially and only with intensity λ;
(4) the transition with intensity µ can occur only
from state i of group j to the state of the next group
j + 1, while the number of the new state inside the
group will always be i-1, the intensity of such a
transition will always be µj.

The next step is generating a list of states with
length Ns = (N+1)*(N+2)/2. The list is generated
by simply iterating j in the outer loop, i in the inner
loop, until i+j <= N. When this threshold is
reached, j increases by one. At the output, the
algorithm provides an ordered list of states and does
it in a single loop pass.

An important component is the data structure
for storing this list. The main list of states contains
several groups, each of them is a separate list.
Inside the group there are states, each of them is
stored as a list containing a state number and a list
with its description. This storage structure
simplifies further filling of the matrix of
coefficients and makes it possible not to go through
the list of states when searching for the desired
state, but to immediately go to the right place in the
list. For example:
Main list of states [
 Group [
 State [
 State number,
 [tasks in the system,
 completed tasks]
]
]
].

The next step is filling of the coefficient matrix.
Under initial conditions, this is a square zero matrix
with dimension Ns. We must sequentially take
states one by one from the list of states and
sequentially apply 3 boundary conditions for each
state, due to it all necessary changes of the matrix
of coefficients that describe this state occur. Denote

the matrix of coefficients as A, the number of the
current state as Num, µ and λ – the intensities of
arriving and maintenance of the task with the
number Num.

1. If this is not the first state within group:

2. If this is not the last state within group:

3. If this is not the first group:

where Prev_Num is the state number from which
you can transit to the state with the Num state
number after completed the task, in the state list it
is always in group j-1 and has a number in its group
i + 1.

After processing all states, such algorithm at the
output provides a ready-made lower triangular
matrix of coefficients that eliminates the need to
sort it.

The flowchart of the entire algorithm is shown
in Figure 1.

3 Comparative analysis of recursive and
sequential algorithms

Both algorithms for generating a matrix of
coefficients of an ODE system without deriving the
general system equation were implemented in
Python3. All measurements were performed when
the algorithms are running on the same device, it
allows us to consider the obtained values as valid
for comparison. The performing time of the
algorithms may differ up or down depending on the
power of the platform on which the algorithms are
running, but the general trends will remain correct.
The results of the comparative analysis are
presented in the table 1.The flowchart of the entire
algorithm is shown in Figure 1.

As we can see from Table 1, the number of
possible states of the system, and consequently, the
number of equations in the system of ODE grows
exponentially from the number of tasks that can
enter the nSQS. A graph of dependence between
number of tasks and number of states is presented
in Figure 2.

Figure 2: Dependence between number of tasks
and number of states

, ,

, 1 , 1

;
;

Num Num Num Num

Num Num Num Num

A A
A A

µ

l- -

= -

= +

, , ;Num Num Num NumA A l= -

,Pr _ ,Pr _ ,Num ev Num Num ev NumA A µ= +

 44

Figure 1: The flowchart of the sequential algorithm

 45

Table 1: Comparison of performing time of algorithms

Tasks States Performing time of sequential
algorithm, seconds

Performing time of
recursive algorithm,

seconds

Generation without
sorting (for recursive),

seconds

3 10 0.0027289390564 0.000235080718994 0.000102996826172
5 21 0. 000874042510986 0.000907897949219 0.000251054763794
10 66 0. 000315189361572 0.00605607032776 0.000638008117676
20 231 0. 00100684165955 0.129016876221 0.00578188896179
30 496 0. 00470900535583 0.592235088348 0.0215079784393
40 861 0. 00546598434448 2.48418688774 0.0802609920502
50 1326 0.0105609893799 12.4112920761 0.151191949844
60 1891 0.0128128528595 83.0276899338 0.318285942078
70 2556 0.0225200653076 224.342078924 0.576465129852
80 3321 0.0305080413818 568.904677153 0.847626924515
90 4186 0.0393660068512 1163.46502709 1.33484387398

100 5151 0.105370044708 2274.09017706 1.87042212486

Figure 3 shows a comparison of two parts of the
recursive algorithm: generating a list of states and a
matrix of coefficients and their sorting. As we can
see from Figure 3, with an increase the number of
states, most of the time the recursive algorithm is
busy sorting the results.

Figure 3: Performing time for both parts of
recursive algorithm

Figure 4 presents a comparison of the total time

of the recursive and sequential algorithms for
generating the coefficient matrix. The execution
time of the recursive algorithm grows exponentially
with an increase the number of states, from Figure 3
it can be concluded that most of this time is spent to
sorting.

Figure 4: Performing time for sequential and
recursive algorithms

Figure 5 shows the execution time of the

sequential algorithm and the execution time of the
recursive algorithm without the time-consuming
sorting step. As you can see, even in this case, the
recursive algorithm is inferior to the sequential
algorithm in speed.

Figure 5: Performing time for sequential algorithm
and recursive algorithm excluding sorting

Figure 6 shows a graph of dependence between

number of states and performing time of sequential

 46

algorithm, 100 values are used with the number of
incoming applications from 1 to 100.

Figure 6: Dependence between number of states
and performing time of sequential algorithm

As we can see from Figure 6, the performing

time of this algorithm has an ordinary linear
dependence on the number of tasks coming into the
system and the number of states of this system.

4 Conclusion

The proposed sequential algorithm has undeniable
advantages compared with the recursive algorithm:
the performing time of it is significantly less and
has a linear dependence on the number of tasks
coming into the system, in contrast to the
exponential dependence in the recursive algorithm.
A sequential output algorithm provides a sorted list
of states and a lower triangular matrix of
coefficients, which eliminates the need for sorting
used in the recursive algorithm.

As the system parameters increase, the number
of states may increase, in some individual cases, the
number of rules and conditions for transitions, but
the overall complexity remains at the same level. It
is recommended to use a sequential algorithm for
implementations of the numerical-analytical
method, instead of a recursive algorithm.

References

[Zeg12] P.D. Zegzhda, D.P. Zegzhda, A.V.
Nikolskiy (2012). Using graph theory for
cloud system security modeling. Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics). Рp. 309–318.

[Oso13] T. Osogami, R. Raymond (2013). Analysis

of transient queues with semi definite
optimization. Queueing Systems, vol. 73.
Рp. 195–234.

[Upa16] S. Upadhyaya (2016). Queueing systems
with vacation: an overview. International
journal of mathematics in operational
research, vol. 9, issue 2. Рp. 167–213.

[Bub11] V.P. Bubnov, A.D. Khomonenko, A.V.
Tyrva Software reliability model with
coxian distribution of length of intervals
between errors detection and fixing
moments // International Computer
Software and Applications Conference.
2011. Pp. 310-314.

[Bub10] V.P. Bubnov, A.V. Tyrva, A.D.

Khomonenko Model of reliability of the
software with coxian distribution of
length of intervals between the moments
of detection of errors // International
Computer Software and Applications
Conference. 34th Annual IEEE
International Computer Software and
Applications Conference, COMPSAC
2010. Seoul, 2010. Pp. 238-243.

[Bub99] V.P. Bubnov, V.I. Safonov Razrabotka

dinamicheskih modelej nestacionarnyh
system obsluzhivaniya. [Developing
dynamic modeling of non-stationary
systems.] / V.P. Bubnov, V.I. Safonov. –
Saint-Petersburg, 1999, 65 p.

[Bub15] V.P. Bubnov, A.S. Eremin, S.A. Sergeev

Osobennosti programmnoj realizacii
chislenno analiticheskogo metoda
raschyota modelej nes-tacionranyh sistem
obsluzhivaniya: Trudy SPIIRAN.
[Features of the software implementation
of numerical-analytical method of
calculation models non-stationary service
systems: SPIIRAS Proceedings.] / V.P.
Bubnov, A.S. Eremin, S.A. Sergeev.
2015. №1. Pp. 218-232.

[Bub15] V.P. Bubnov, A.D. Khomonenko, S.A.

Sergeev Recursive method for generating
the coefficient matrix of the system of
homogeneous differential equations
describing nonstationary system
maintenance: Proceedings of International
Conference on Soft Computing and
Measurements, SCM 2015 18. 2015. Pp.
75-77.

[Ser15] S.A. Sergeev Method for compilation of the

system of homogeneous differential
equations for calculation probability-time
characteristics which describing non
stationary systems. // Intellectual
Technologies on Transport.. 2015. №2.
Pp. 32-42.

 47

[Wol14] R.W. Wolff, Y.-C. Yao Little’s law when
the average waiting time is infinite.
Queueing Systems, 2014. vol. 76. Pp.
267–281.

[Sud13] R. Sudhesh, K.V. Vijayashree Stationary
and transient analysis of M/M/1 G-
queues. Int. J. of Mathematics in
Operational Research, 2013. vol. 5. no 2.
Pp. 282–299.

[Sud13] R. Sudhesh, L. Francis Raj Stationary and

transient solution of Markovian queues —
an alternate approach. Int. J. of
Mathematics in Operational Research,
2013. vol. 5. no. 3. Pp. 407–421.

[Bub14] V.P. Bubnov, A.V. Tyrva, A.S. Eremin [A

set of non-stationary queuing system
models with phase-type distributions].

Trudy SPIIRAN – SPIIRAS Proceedings,
2014. vol. 6(37). Pp. 61–71.

[Feh69] E. Fehlberg Low-order classical Runge—
Kutta formulas with step size control and
their application to some heat transfer
problems. NASA Technical Report 315
(1969), extract published in Computing
vol. 6, no. 1–2, 1970. Pp. 61–71.

[Bub11] V.P. Bubnov Algoritm analiticheskogo

raschyota veroyatnostej sostoyanij
nestacionarnyh system obsluzhivani-ya:
Izvestiya Peterburgskogo universiteta
putej soobshcheni-ya. [Algorithm of
analytical calculation of non-stationary
state probabilities service systems: News
from the St. Petersburg University of
communication.] / V.P. Bubnov. 2011. №
4. 90-97 p.

