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Abstract 
 
The concept of a state of  L. Zadeh of the 
theory of systems is in detail studied. The 
yielded concept educes with reference to 
information systems. It is offered to define a 
state and quantitatively to estimate, as well 
as a yield of information system, the 
entropy distribution function. Transferring 
from L. Zadeh theory to use of the equation 
of Kolmogorov`s–Chepmen`s is offered. As 
the initial data construction of distribution 
functions of entropy is recommended.  
 

1 Introduction 
 

The concept of state is often used in science and 
technology. It is most simply defined in the theory 
of the operation of systems. It is simply a set of 
values of the parameters of the elements of the 
systems. However, in the theory of systems, the 
concept of state considered more precisely and 
strictly depending on the type of system. 
Researchers especially associate this concept with 
dynamic systems, more precisely with continuous 
and discrete systems.1 

Currently, there is a particular interest in the 
study of information systems. For example, in 
[Mar14] the value of entropy considered in the 
study of the state of information systems, the 
essence of informational entropy analyzed. 
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However, the concept of state in information 
systems not formally defined. This article solves 
two problems: first, to connect the concept of state 
with the classical results of systems theory and 
second, to connect this concept with the 
achievements of modern information theory. The 
verbal formulation of the concept of the state of the 
information system follows from the results of the 
article. 

 
2 Formal Analogue of the State of the 
Dynamic Systems Theory 

 

A dynamical system, according to [Nem49], is a 
group of transformations {Ri}, defined on a 
separable metric space R and having the properties: 

1.  Defined for all  on .  

2. The function , where  – the 
image of a point  from in  in accordance with

, has a group property:  

 

3. The group Ri is continuous in the sense that 
for all t0 and p0, and sequences {tn} and {pn}, 
converging to t0 and p0, the relation is true 

             (2) 

The element p of R is the state of the dynamic 
system, and q=f(p,t), describes the state of the 
system at the moment t provided that at the moment 
t=0 the system was in the state p. 

It is formulated on the basis of the analysis of 
problems of celestial mechanics or problems of 
dynamics of a solid body. Therefore, the system 
inputs and outputs are not explicitly highlighted in 
the definition. This definition requires a slight 
change. 

 
3 Formal Analogue of the State from 
Information Theory 

 

An information system is a group of 
transformations {Hi} defined on the probabilistic 
space H and possessing properties: 
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1. The Hi transformations defined for all t on [0, 
∞).  

2. The function g=f (h,t), where g is the image 
of a point from H according to Hi, has a group 
property 

          (3) 

3. The group Hi is continuous in the sense that 
for all t0 and h0 and all sequences {tn} and {hn} 
converging to t0 and h0, the relation is true 

            (4) 

Element h of H is the state of the information 
system, and g=f (h,t), describes the state of the 
information system at the time t, provided that at 
the time t=0 the system was in the state of h. This 
definition needs to specified and clarified. 

As a function f(t), in our opinion, we can take 
the density or entropy distribution function supplied 
to the input of the system. For example, we 
consider the function of differential entropy for 
normal distribution with probability density f 
(t)=dnorm (t, m, σ), m=100 units, σ =20 units. It has 
the form: 

      (5) 

Expression (5) is the first initial moment of the 
random entropy. Second initial entropy moment: 

   (6) 

Similarly, we can find the higher initial 
moments of entropy. In practical applications, it is 
enough to limit you by two points. At the Figure 1 a 
graph of the hi(t) function is shown. 

 
Figure 1: Graph of the hi(t) function 

For our example, the minimum entropy value is 
0 nat. and a maximum of 4, 415 nat. Median value 
h1 (100)=2,207 nat. For the first case, the initial 
moments are: v1(800)=4,415 nat. v2(800)=19,989 
nat.2, the standard deviation δ(800)=0.707 nat., 
coefficient of variation η(800)=0.16. For the second 
case, the corresponding values: v1(100)=2.207 nat., 
v2 (100)=9.905 nat.2, δ (100)=2,263 nat., 
η(100)=1.0125. For the given data, the probability 

density of random entropy values determined by the 
relations: 

 (7) 

Graphics densities g1(x) and g2(x) are provided 
below in Figure 2. 

 
4 The Concept of Oriented Abstract 
Object L. Zadeh 

 

According to [Zad64, Zad63] under the oriented 
abstract object (OAO) understand a certain system 
associated with some input signal (cause) u and 
output signal (consequence). Both signals are 
understood as vector functions of time. The 
relationship between them is not straightforward. A 
specific function u can correspond to several output 
functions y, and, conversely, a specific output 
signal can correspond to several input functions. 

To formalize the OAO, the segment of the 
function u defined on the observation interval [t0, 
t1], is denoted u[t0 , t1]   

on the closed or u(t0 , t1]   on semi–open interval, depending on the context-
simply u. As a result of the experimental study, a 
set of input–output pairs (u(t0 , t1] , y(t0 , t1] ) is 
usually obtained. 

If the same signal is applied to the input of 
another sample of the test device, the output signal 
it does not have to be the same as in the first case, 
since the initial conditions for the second sample 
may be different. Therefore, this definition 
[Nem49] reflects the fact that more than one y(t0 , 
t1] can correspond to a given u(t0 , t1]. 

The set of ordered pairs of time functions on the 
specified interval denoted as 

.       (8)  

Based on this concept, the following definition 
proposed in [Zad64]. OAO a is a family R(t0 , t1]  = 
{ u(t0 , t1] , y(t0 , t1] },  t0 , t1  є (0,∞)  of sets of 
ordered pairs (u, t) of time functions. Here the first 
element in (8) called the segment of the input signal 
or simply the input signal, and the second – the 
segment of the output signal or simply the output 
signal. Thus, the OAO identified with a set of 
input–output pairs that belong to the A. In addition, 
any segment of the pair for which t0 ≤ τ0 ≤ t1, τ0 ≤ 
τ1≤ t1   must belong to the A. 

The set of all segments u on the interval (t0, t1], 
such that , called the space of input 
signals A and denote R[u]. Similarly, the set of all 
segments y, such that , called the output 
signal space and denote R[y]. It follows that the set 
R(t0, t1] of all pairs (u(t0 , t1] , y(t0 , t1] ) є A, there is 
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some subset of the product R[u]×R[y]. In the "list" 
of ordered pairs (u, y) each fixed u corresponds, 
generally speaking, to a set of different y and, 
conversely, to each fixed y – a set of different pairs. 

From a mathematical point of view, this 
essentially boils down to defining the system as a 
relationship rather than, as usual, some function or 
operator. The difference can explained by the 
example of the integrator. The values of the input 
and output signals at the same time t are related to 
each other by a differential equation 

.                 (9)  

The statement that the integrator is OAO can 
described by a set of ordered pairs of functions of 
time of the form 

,  

where the parameter α belongs to the space of real 
numbers, and the function u – to the class of time 
functions, integrable on any finite interval. In this 
case, each fixed value u (t0 , t1] corresponds to a set 
y(t0 , t1], each element of which corresponds to 
different values of the parameter α: 

. (10)  

Any mathematical relation between u and y, that 
defining the set of pairs of input–output that form A 
is called the characteristic input–output for A. In 
this sense, (10) is a characteristic input / output for 
A. More generally, if the input and output signals of 
the system A satisfy differential equation of the 
form 

          (11)  

Then this equation is the input–output characteristic 
for A, since it defines the set of all input–output 
pairs belonging to A. 

It is useful to parameterize (or move) many 
input–output pairs R (t0 , t1] 

so that each segment of 
the input signal u (t0 , t1] and each parameter value 
corresponds to a single segment of the output signal 
y(t0 , t1]. Such a parameterization would correspond, 
roughly speaking, to the page numbering of the 
"list" of input–output pairs, on each page of which 
pairs with the same output signals are written out. A 
States are essentially the values of such a 
parameter. From this point of view, the main role of 
the concept of state is to provide the ability to 
associate a single output signal with each input 
signal, using the state of the system as a parameter. 
 

5 Concept of State  
 

We present an approach to the construction of the 
concept of the state of L. Zadeh [Zad64]. Statement: 
based on the content of section 4, it can be assumed 
that parameter α parametrizes A if there is some 
function А defined on the product ΣxR[u]  and such 
that for all pairs (u, y) belonging to A and all t0 and 
t1 can be chosen from Σ such α that 

.                      (12)  

For each α of  Σ and for each u of R[u] in this 
case, the pair (u, A(α;u)) is an input-output pair, 
which belongs to the A. To call α by the state of the 
system, it is necessary for the function A to have the 
property of conjugating reactions, which formulated 
as follows. We agree that uv denotes a signal in 
which a segment v=v (t, t1] follows a segment 
u=u(t, t1]. This is one of the reasons for choosing to 
use half-open observation intervals. Otherwise, 
there would be a difficulty with the definition uv at 
the point t, provided that u(t)≠v(t). In particular, if 
by definition u=u(t0 , t1] and u=u(t, t1], then 
uu=u(t0, t1].   

Definition 1. A function A (α; u) has the 
property of conjugating reactions: if for each α 
from Σ and each uu of R[uu] there is an element α * 
from Σ, uniquely defined by α and u, that 

.    (13)  

Condition (13) means that the output signal (the 
response of the system corresponding to the value 
of the parameter α and the segment uu of the output 
signal) coincides with the response segment 
corresponding to the parameter α and the input 
signal u, followed by the response segment 
corresponding to the parameter α* and the input 
signal u.  

Definition 2. If α is used to parameterize A, and 
the function A(α;u) has the property of conjugation 
of reactions, then the elements Σ represent the state 
A, the space Σ is called the state space A, and the 
input-output characteristic is the state of the system 
A. If u=u(t0, t1], then α of A(α;u) is called the initial 
state of the system A at time t0 and is denoted by s 
(t0). In this regard, the characteristic input-output-
state of the system A can be represented in a more 
explicit form as   

,              (14) 

Where u(t0, t1]  is the segment of the input signal, 
s(t0) – the initial state of the system, and y (t0 , t] –  
the corresponding output signal. Thus, equation 
(14) States that the initial state of the system A at 
the time t0 and the interval u(t0, t1]   of the input 
signal uniquely determines the interval of reactions 
y (t0 , t].  

Definition 3. Let system A be in the state s 
(t0)=α and at its input a signal u = u (t0, t1] is given. 
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Thanks to conjugation of the reactions A (α; u), 
there is an element α* ϵ Σ such that the equation 
(13) holds for any u = u (t, t1]. 

The element α*, which is uniquely determined 
by the values s (t0) and u = u (t0, t1], is called the 
state of system A at time t and is denoted by s (t). 
Thus, the state of the system at time t uniquely 
determined by the state of the system in time t0 and 
the value of the signal at its input in the interval 
between these points in time. Symbolically 
 

          (15)  

and the resulting equation is called the state 
equation A. Therefore, the conjugation property of 
reactions (13) can expressed as: 

.   (16)  

The reaction of system A, which is in the state s 
(t0), to the input signal uu must be identical to the 
response of system A, which is in the state s (t0), to 
the input signal u and the subsequent reaction of the 
same system, which is in the state s (t), at the input 
signal u. 

In [Zad64] it is shown that the function A (α;u) 
has the property of conjugation of reactions defined 
by equations (13) and (16), it follows that the 
function from equation (15) has the property of 
conjugation of states 

.    (17)  

This property is equivalent to the group property 
2 in the definition of the dynamic system. Consider 
a simple example with the input output 
characteristic: 

.               (18) 

In this case, the input–output pairs defined on 
have the form 

.   (19)  

If we identify Σ with the axis of real numbers 
(0, ∞) then the parameter α from equation (19) can 
be used to parameterize A. Moreover, writing the 
equation 

   (20)  

it is easy to verify the validity of an identity: 

 

     (21) 

Where t0 ≤ τ0 ≤ t and  

.     (22)  

Equation (20) is equivalent to the relation of the 
form (13) y = A (α; u), since it determines the 
values of y for t > t0. Moreover, equations (20) and 
(22) indicate that the function on the right side of 
equation (20) has the property of conjugation of 
reactions. Therefore, equation (20) can be called the 
input–output–state characteristic for system A, 
where α is the state of the system at time t0 and Σ = 
(0, ∞), we also note that putting t = t0 (which is 
valid if it does not contain delta functions with a 
singularity at the point t0), we obtain 

            (23)  

It follows that the state of system A at time t0 

can identified with the output signal of this system 
at time t0. This concludes the state definition and an 
example illustrating the definition. 

As result of the study of the concept of "state" 
L. Zadeh note the following. 

1. The result is the introduction of the concept 
of an abstract object, defined as a family of ordered 
pairs of time functions. An abstract object is 
defined by itself, regardless of how the concept of 
state is introduced to it. 

2. The concept of state introduced as a method 
of parameterization of a set of input–output pairs 
that provide providing a unique dependence of the 
output signal and the state of the system. There are 
countless ways to parameterize input-output pairs. 
Hence, we should conclude that any 
characterization of input–output can match many of 
the characteristics of the input–output–state are 
essentially equivalent. The input–output–state 
characteristic can considered as a description of an 
oriented abstract object with a specific choice of a 
system of parameters for a set of its input–output 
pairs. 

3. Definition 3 extends to a broader class of 
systems than dynamic systems. In this regard, 
definitions 1 and 2 are more General definitions of 
the concept of state than the indirect definition of 
the concept contained implicitly in the definition of 
a dynamic system. 
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6 An Example of the Concept of State in 
the Information System 

 

As an input u (t), we use the density functions of 
the distributions of the random variable of entropy 
(7) – g1 (t), g2 (t), shown in Figure 2. 

 
Figure 2: Density functions 

We apply these functions to construct states and 
exit functions of information systems, applying the 
results of the theory of L. Zade. To illustrate the 
calculations, we use the integrator element. The 
dependence for it input–output is represented by a 
differential equation: 

.            (24)  

In this equation, u1 (t) = g1 (t), u2 (t) = g2 (t). 
Since it is represented by OAO, the first 
dependence can be described by a set of ordered 
pairs of time functions of the following form (for 
example, g1 (t)). 

.           (25)  

In this case, each fixed value g1 (t0, t1) 
corresponds to a certain set y (t0, t1], each element 
of which corresponds to different values of the 
parameter α: 

.     (26)  

This relationship between g1 (t) and y, which 
determines the set of input–output pairs that make 
up system A, is the input–output characteristic for 
A, and α, the state of the system. But for this, it is 
necessary to require that the function of system A, 
on the basis of parametrization, has the property of 
conjugating reactions and define a new function y = 
A (α; u), satisfying the property 

,      (27) 

where , and 

uv is a signal in which the segment v = g1 (t, t1] 
follows the segment u = g1 (t0, t]. In this case, we 
can assert 

         (28) 

which means the state of the system at time t0. It 
can identified with the output of this system at time 
t0. Followed by  

,           (29) 

.           (30) 

The value of the output variable defined as 
.       (31) 

Consider the numerical presentation of the 
example with the initial data for the maximum 
entropy point in Figure 1. The average entropy 
value and standard deviation will be equal to v1 = 
4.415 nat., Σ = 0.707 nat. The integrator input 
function is u1 (t) = dnorm (t, v1, σ). We take the 
initial values of time t0 = 1; 3h. For them, the state 
values will be s (1) = 6.815 nat. and s (3) = 0.023 
nat., output variables: 

     

 

and their integral components are 

 

In Figure 3 and 4 are graphs of these functions. 
It follows from the figures that there is practically 
no difference between the graphs. 

 
Figure 3: Charts y11(t) and y12(t)           

uy
dt
dy

=+

1

0

1 1

0 1

( ( )), ( ) ,

(0, )

t

t

g t g d

t t t

a x x+

£ £ Î ¥

ò

=)(ty

1

0

1

0 1

( ) ,

, (0, )

t

t

g d

t t t t

a x x+

£ £ Î ¥

ò

`( ; ) ( ; ) ( ; )A uu A u A ua a a*=

0

0

( ) ( )
1( )

tt

t
e e g dt t xa a x x- -* - -= + ò

=)( 0ts ),( 0ty=a

);(()( 0tssts = 1 0( , ])g t t
`

0 0
`

1 0 1 1

( ( ); ) ( ( );

( , ]); ( , ] )

s s t u s s t
g t t g t t

=

0( , ] 0 1 0( ( ); ( , ])t ty A s t g t t=

11 11
( ) (1) ( ) ;

t
y t s u dx x= + ò
12 13
( ) (3) ( )

t
y t s u dx x= + ò

11 1 1
1 3

( ) ( ) ; 12( ) ( ) .
t t

v t u d t u dx x n x x= =ò ò



 58 

 
Figure 4:  Charts v11(t) and v12(t) 

Consider the presentation of the example with 
the initial data for the point of the average value of 
entropy in Figure 1. The mean value of entropy and 
the standard deviation are v2 = 2,207 nat., Σ = 2.263 
nat. The integrator input function is u2 (t) = dnorm 
(t, v2, σ). We take the initial values of time t0 = 1; 
3h. For them, the state values are s (1) = 0.158 nat., 
s (3) = 0.565 nat., and the output variables are: 

 

And their integral components are: 

 

Figure 3-6 show how, depending on and, the 
values of variables at the integrator output, 
measured by the value of the entropy distribution 
function. They can also act as the values of future 
states in the case of continuation in time of the 
process under consideration. 

 
Figure 5: Charts y21(t) and y22(t)

  

 
Figure 6: Charts v11(t) and v12(t) 

We have considered an example of calculation 
provided, that the second phase of the process does 
not depend on the duration of the first phase. This is 
not fully consistent with equation (32) below. If we 
take into account this dependence, we will have to 
build two-dimensional graphs of calculations.  

 
7 Analogy of the Theory of L. Zade and 
the Kolmogorov–Chapman Equations 
for Information Systems 

 

Based on the study of the state model of L. Zadeh, a 
qualitative conclusion suggested: in the information 
system, the input state can be the value of the 
entropy distribution function at the initial moment 
of time before the process of information 
transformation in the system begins. For the values 
of the variable at the output of the system, take the 
values of the entropy distribution function obtained 
as result of the transformation in the system. 

Heuristic statement. For a complex system, as a 
subject of future research of its informational 
property, try to apply the Kolmogorov–Chapman 
equation [Fel57]. This equation described using the 
theory of L. Zade, but using the entropy distribution 
functions to determine the states and output 
variables of the system [Sma10]. 

Consider an example that is simpler than the 
integrator, namely, a two-phase single-beam 
random process from the standpoint of solving the 
simplest Kolmogorov – Chapman equation. This 
allows us to show the process of solving the 
Kolmogorov – Chapman equation and compare the 
adequacy of the research with the theory of L. 
Zade. Let us present an example for the numerical 
illustration of the solution of the Kolmogorov–
Chapman equation:  

.       (32)  

Equation (32) reflects the presence of three 
discrete states and two phases with continuous 
distributions following each other. Moreover, the 
second phase is dependent on the first phase. It is 
required to calculate the output variable (state 02), 
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if the initial state is determined by the delay in the 
first phase t0, and the continuous distributions are 
independent.  

The initial data: t0 = 10 nat., the first phase f01 = 
dnorm (t, v1, σ1), v1 = 50 nat., σ1 = 12 nat., the 
second phase f12 = dnorm (t, v2, σ2), v2 = 40 nat., σ2 
= 7 nat. The probabilities that the phases will be at 
least t represented as 

The variables t0, t are measured by the measure nat. 
Recall that we are investigating an information 

system defined by information states and exits, the 
densities and probabilities introduced above already 
measured in advance by entropy distributions. 
Perform the following numerical calculations: 

A. Phases are independent. 

(33 a) 

The results of the calculations are presented in 
Figure 7. For example, consider the values of the 
curves at the point t = 35 nat .: p01 (t) = 0.662 nat., 
p12 (t) = 0.762 nat., p02 (t) = 0.505 nat.  

 
Figure 7: Plots p01 (t), p12 (t), p02 (t) for s (10) 

The initial state 

 

Is: s (10) = 4.136 × 10-4 nat., and s (30) = 0.048 nat. 

In Figure 8 s (30) for comparison, an analogue 
of Figure 7 s (10) is shown. To estimate the 
uncertainty function at the output of the system 
based on the application of the Kolmogorov–
Chapman equation, the indicator y (t) = 1 – p02 (t) 
should be used instead of the indicator p02(t). 

 
Figure 8: Plots p01 (t), p12 (t), p02 (t) for s(30) 

The given example illustrates a method for 
determining the state and magnitude of a function at 
the output of a system based on the solution of the 
Kolmogorov–Chapman equation. Real information 
systems are more complex, they, as a rule, 
"multipath", can contain in each "information ray" 
more than two phases of random processes. The 
number of states (initial and intermediate) can be 
very large. 

B. Phases are dependent. In this case, the 
formulas for the probability of phase 
implementation take the form: 

 

 

   (33 b)  

Let t = 30h., Δt = 15h., Then p01 (30) = 0.798, 
p12 (30.45) = 0.249, p02 (30.45) = 0.199. Since p02 (t, 
∆) is a function of two variables, for it we can to 
construct a two-dimensional graphical dependence. 

Similarly, we can consider an example of the 
application of the Kolmogorov–Chapman equation 
covered by feedback. The use of systems of 
equations of the Kolmogorov–Chapman type for 
estimating and predicting the values of the 
indicators of entropic (informational) uncertainty, 
in our opinion, can be effective. It requires further 
study. 

 
8 Conclusion 

 

The essence of the proposed model is that the 
concept of state, the input and output of information 
systems should be measured by such indicators that 
measure entropy and information. Therefore, we 
propose an informational modification of the model 
L. Zade. To work with such a model, it is 
necessary, on the basis of the method of moments 
of a random variable of entropy, to approximately 
construct the necessary distribution functions of all 
the components constituting the information 
system. Then, using these distribution functions, 
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you can apply the model L. Zade. An example of 
calculation for the integrator [Zad64] is given. 

The essence of the method consists in 
modifying the method for solving the Kolmogorov 
– Chapman equation by applying in it the 
distribution functions of the random variable of 
entropy indicated in the preceding paragraph of the 
conclusion. The simplest examples for an equation 
with three discrete states and two random phases 
with normal distributions are considered. General 
conclusion: the state and output indicators in the 
information system should be measured by the 
entropy (information) associated with a certain 
probability. 

We present a number of modern works related 
to current applied research areas in the application 
of information systems models, including those 
based on the use of entropy. In [Kud16], issues 
related to the concept of information and 
terminology in this area, as well as models of 
information, communication and info 
communication systems and their interconnection 
are considered. In [Liv17], an analysis of 
information security systems is conducted from the 
position of determining the total entropy of an 
information system. In [San08], clustering 
algorithms based on multilevel entropy sub graphs 
are proposed. In [Kho16], a cloud computing model 
in information systems with a Web interface based 
on a multi-channel queuing system with “cooling” 
and iterative solution of the Kolmogorov-Chapman 
equations. The concepts of informational entropy, 
coarse entropy, knowledge granulation and 
measures of granularity in incomplete information 
systems are considered in [Lia06]. 
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