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Abstract—We present here a new signature scheme based on
a combinatorial problem named the Permuted Kernel Problem
(PKP) [Sha89]. PKP is an NP-complete [GJ79] algebraic problem
that consists of simple mathematical operations and involves only
basic linear algebra.
To solve PKP is to find a particular kernel vector for a publicly
known matrix. Through the complexity analysis of solving PKP,
we found the opposite of what is presented in [JJ01]. Precisely,
we noticed that the most efficient algorithm for solving PKP
remains the one which was introduced by J. PATARIN and
P. CHAUVAUD in [PC93]. Moreover, PKP has always had the
reputation of being the best combinatorial algorithm known for
authentication. It was used to build the first Identification Scheme
(IDS) which has an efficient implementation on low-cost smart
cards. Consequently, and via the traditional Fiat-Shamir (FS)
paradigm, we derive the signature scheme PKP-DSS from a
Zero-Knowledge Identification Scheme (ZK-IDS) based on PKP
[Sha89].
Thus, PKP-DSS has a security that can be provably reduced, in
the (classical) random oracle model, to essentially the hardness
of random instances of PKP.
Also, we propose different sets of parameters according to
several security levels. Each parameter set arises signatures of
length comparable to the other signatures derived from Zero-
Knowledge identification schemes. In particular, PKP-DSS-128
gives a signature size approximately about 18 KBytes for 128 bits
of classical security, while the best known signature schemes built
from a ZK-IDS (such as MQDSS [CHR+18], Picnic [CDG+17],...
) give similar signatures (≈ 16 KB for MQDSS, ≈ 33 KB for
Picnic,... ).
Since there are no known quantum attacks for solving PKP,
we believe that the recommended sets of parameters provide a
quantum secure scheme.

Index Terms—public-key cryptography, post-quantum cryp-
tography, Fiat-Shamir, 5-pass identification scheme, Permuted
Kernel Problem.

I. INTRODUCTION

The construction of large quantum computers would break
all public-key cryptographic schemes in use today based on the

traditional number-theoretic problems. Despite the fact that it
isn’t clear when and even if enormous quantum computations
would be feasible, it is important to anticipate a technological
breakthrough and design new public key cryptosytems that are
resistant to quantum attacks.

Due to the call for post-quantum standards of the NIST
(https://www.nist.gov/), there has been renewed interest in the
transformed Zero-Knowledge Identification Schemes into Dig-
ital Signatures Schemes (DSS) via the Fiat-Shamir paradigm
[FS86]. This transformation method is important since it
yields to efficient signature schemes in terms of minimal and
sufficient security assumptions.

Particularly, we are interested in the post-quantum crypto-
graphic schemes which belongs to the post-quantum branch
whose security relies on the fact that there is no quantum
algorithms known to solve NP-Complete problems [BBBV97].
Namely, the Permuted Kernel Problem: the problem of finding
a permutation of a known vector such that the resulting vector
is in the kernel of a given matrix.

Here, we study the application in cryptography of the PKP
problem over a finite field. We are essentially concerned about
this problem because it can be used to build a post-quantum
signature scheme based on the hardness of solving random
instances of PKP. It is an old-time combinatorial NP-Complete
problem. It requires simple operations which involve basic
linear algebra computations. For a little long time, no new
attacks on PKP were reported which makes the construction
of schemes based on hard instances of this problem more
applicable.

II. MAIN RESULTS

The main contribution of this paper is to present a new post-
quantum signature scheme.
In [JJ01], a new approach to attack PKP was introduced.
The authors of this latter, assume that the technique described
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in their article, is faster than any previously known method.
But, after the complexity analysis of the PKP problem, it
appears that we have different results: the improved algorithm
presented in [PC93] form the best attack on PKP. Besides, we
are particularly interested in the design of a signature scheme.
Similarly to the approaches cited above, by applying the
Fiat-Shamir transform, we study the design of post-quantum
signature constructed from a 5-pass authentication scheme
based on the PKP problem.

Our objective is to define the most optimal parameters for
hard instances of this problem, with respect to the security
levels identified by NIST [NIS].
The PKP-DSS scheme based on PKP compared well with the
other similar (in terms of construction) schemes. We obtained
the following results: comparable signature size for the same
security levels. Then, this makes the signature scheme based
on PKP a competitive cryptosystem.

III. THE PERMUTED KERNEL PROBLEM

In order to introduce the signature scheme, we first present
the PKP problem [Sha89]. We also present the best technique
for solving it.

A. Introduction to PKP

PKP [Sha89], [GJ79] is the problem on which the security
of PKP-DSS is based. PKP is a linear algebra problem which
asks to find a kernel vector of given matrix under a vector-
entries constraint. It’s a generalization of the Partition problem
[GJ79, pg.224]. More precisely, it is defined as follows:

Input. A finite field Fp, a matrix A ∈Mm×n(Fp) and a
n-vector V ∈ Fp

n.
Question. Find a permutation π over (1, . . . ,n) such that
A×Vπ = 0, where Vπ = (Vπ( j)), j = 1, . . . ,n.

A reduction of the 3-Partition problem proves PKP to be
NP-Complete [GJ79] in the good reasoning (i.e.its hardness
grows exponentially with p). A fundamental design assump-
tion of PKP-DSS is that solving random instances of PKP
are hard to solve in practice (Section IV). In fact, the solidity
of PKP comes from, on the one hand, the big number of
permutations, on the other hand, from the small number of
possible permutations which may suit the kernel equations.
More precisely, PKP is hard because it obligates the choice of
a vector, with already fixed set of entries, from the kernel of
the matrix A.
Note that, to reach higher security levels, it’s more desirable
that the n-vector V has distinct coordinates.

IV. BEST KNOWN ATTACKS

The implementation’s efficiency of the first IDS, proposed
by A. SHAMIR [Sha89], based on PKP problem has led to
several solving tools. In fact, there are various attacks for PKP,
which are all exponential.

In [Geo92], J. GEORGIADES presents symmetric polynomi-
als equations which will be utilized by all the other attacks.
The authors of [BCCG92] investigate also the security of PKP,

where a time-memory trade-off was introduced. Moreover,
J. PATARIN and P. CHAUVAUD improve algorithms for the
Permuted Kernel Problem [PC93]. Also, in [JJ01], a new time-
memory trade-off was proposed. After all, it appears that the
attack of PATARIN-CHAUVAUD [PC93] is the most efficient
one. The details of each attack and the numerical results are
given in the main article.

We assume that the matrix A ∈Mm×n(Fp) is of rank m,
given in a systematic form:

A = (ai j)1≤i≤m,1≤ j≤n =
[
A′|I
]
,

where A′ = (a′i j)1≤i≤m,1≤ j≤n−m ∈Mm×n−m(Fp) and I is the
identity matrix of size m. By denoting Aπ = (aiπ( j)), the effect
of the permutation π over the columns of A, it’s easy to see
that AπVπ = AV.

A. Brute-force search

First of all, let’s consider the exhaustive search. This test
consists of examining all the possible candidates (permutations
of a set on n elements) for the solution in order to determine
whether a candidate satisfies the problem’s conditions. Despite
the fact that this search technique is very general and naive,
mainly in this case, where the search space is large, it is
important to consider its complexity which is in n!.

B. A new Approach of A. JOUX and E. JAULMES

In [JJ01], A. JOUX and E. JAULMES introduce a new time-
memory trade-off algorithm which is an application of the
algorithm described in [JL01] to the Permuted Kernel Problem.
In fact, the algorithm consists of two main steps: A-Phase
and B-Phase. The authors of [JJ01] assume that the B-Phase
controls the time complexity of this approach. Without going
too far into the analysis of this technique, we found that
the contrary is true. By considering a reasonable choices
of parameters, it turns out that the time complexity of the
algorithm is dominated by the A-Phase. This is one of the
most interesting points of our article.

Thus, this attack is not the most efficient for solving PKP
but, the attack of PATARIN-CHAUVAUD [PC93]. This also
shows that the PKP problem is more difficult to attack than
we thought before our article, which has a good impact when
it comes to the PKP-based signature scheme.

C. Improved algorithms for PKP

J. PATARIN and P. CHAUVAUD combine in [PC93] the
two ideas presented in the previous attacks (see [BCCG92],
[Geo92]). The result was a reduction in the time required to
attack PKP. They also present some new ideas in order to
reduce this time the memory needed.
Thus, this leads to a new algorithm which is quicker and
more efficient than the attacks cited above. The details and
the numerical results are given in the main article [PC93].
Here is the Magma code that gives the time complexity of the
last improved algorithm.

patarin6:=function(n,m,p)
cmin:=999999;
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Lp:=Ceiling(Log(2,p));
nS :=Binomial(n,m);
NU:=Round((1-&*[ 1-p^(i-m) :

i in [0..m-1]])*nS);
PR:=[ Round( m*(nS-NU)*Binomial(m,i)

*(1-1/p)^(m-i)/p^i) : i in [0..m]];
a:=Maximum([ i+1 : i in [0..m] | PR[i+1] gt

100 ]);
for k:=2 to m do;
r:=n-m-1+k;
for l:=1 to r do;
s:=r-l;
if s+a lt n-m then continue; end if;
pr:=Maximum(1,Factorial(n)/Factorial(n-l)

/p^(k-1));
for t:=1 to s-1 do;
u:=s-t;
pr2:=Maximum(1,Factorial(n-u)/

Factorial(n-s)/p);
step1 := Factorial(n)/Factorial(n-l);
step20 := Factorial(n-u)/Factorial(n-s);
step2 := Binomial(n,u) * ( step20 +

Factorial (u) * pr2 * pr);
ctime:= Log(2,Maximum(step1, step2));
if ctime lt cmin then cmin:=ctime;
nbper:=Round(Log(2,Factorial(n)/p^m));
nbker:=Round(Log(2,Factorial(p)

/Factorial(p-m)/p^m));
mem:=Round(Log(2,step1*l*Lp));
U:=ctime;
end if;
end for;
end for;
end for;
return U;
end function;

V. IDENTIFICATION SCHEME (IDS) BASED ON PKP

In this section, we present the 5-pass Zero-Knowledge
Identification Scheme (ZK-IDS) based on the computational
hardness of PKP [Sha89], [LP11], noted here PKP-IDS.

We first quote and refer to some of the general defini-
tions given in [CHR+18] : Identification scheme, Complete-
ness, Soundness (with soundness error), Honest-verifier zero-
knowledge, and also in [HNO+09], [Dam99] : statistically
hiding commitment, computationally binding commitment. We
then apply and adapt these definitions to the Identification
scheme base on PKP and give and prove its own properties
of performance and security. This approach will be more
convenient for presenting the signature scheme in the next
section.

A. Preliminaries

In what follows and as in [CHR+18], we assume the
existence of a non-interactive commitment scheme Com which

verifies the two properties : statistically hiding and compu-
tationally binding (see [HNO+09], [Dam99] for details). The
commitments are computed using the function Com. Note that,
it is possible to let Com be H a one way hash and collision
intractable function, behaving like a random oracle.

B. PKP 5-pass IDS

In this section, we present (slightly modified version of)
PKP-IDS. It can be described as three probabilistic polynomial
time algorithms IDS =

(
KEYGEN, P, V

)
for which we

give below a literal description. The security parameter of the
identification scheme is noted λ .

Generation of the public key and secret key in PKP-IDS.
The users first agree on a prime number p, and a m×n matrix
A with coefficients in Fp. The public-key in PKP-IDS is given
by an instance of PKP with a preassigned solution that will
be the secret-key. Thus, each user picks a (right) kernel-vector
W ∈ Ker(A), then randomly generates a secret permutation of
n elements sk= π and finishes by computing V =Wπ−1 .

We summarize the public-key/secret-key generation in Al-
gorithm 1. It takes the security parameter λ as input.

Algorithm 1 pk/sk generation in PKP-IDS

1: procedure PKP-IDS.KEYGEN(1λ )
2: pk.seed← Randomly sample λ bits
3: Randomly sample a matrix A ∈ Mm×n(Fp) using a

pseudo-random generator with pk.seed
4: Randomly pick a n-vector W ∈ Ker(A)
5: sk.seed← Randomly sample λ bits
6: Generate a random permutation π ∈ Sn using a pseudo-

random generator with sk.seed
7: sk← π

8: Compute V =Wπ−1

9: pk← (p, pk.seed,V )
10: Return (pk,sk)
11: end procedure

One 5-pass round of identification : Prover P and
Verifier V . Prover and Verifier are interactive algorithms that
realize the identification protocol in 5 passes. The 5 passes
consist in one commitment and two responses transmitted
from the prover to the verifier and two challenges transmitted
from the verifier to the prover. Random choices of prover and
verifier are made using the uniform distribution. The protocol
of identification is summarized in Algorithm 2.

From Shamir in [Sha89] we have the following results.
Theorem 5.1: PKP-IDS is complete. PKP-IDS is statistically

zero knowledge when the commitment scheme Com is com-
putationally binding. PKP-IDS is sound with soundness error
p+1
2p when the commitment scheme Com is computationally

binding.
Definition 5.2 (N rounds of PKP-IDS): Let PKP-IDS=

(KEYGEN,P,V ) then PKP− IDSN = (KEYGEN,PN ,V N)
is the parallel composition of N rounds of PKP− IDS.

Key sizes. The secret key is the permutation π obtained
using a pseudo random generator that takes as input a seed of
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Algorithm 2 One round of the 5-pass identification scheme
1: procedures P(sk),V (pk)
2: //Prover setup
3: P sets R← Random vector in Fp

n

4: P sets σ .seed ← Random seed of λ bits
5: P sets σ← Random permutation in Sn using a pseudo-

random generator with σ .seed
6: //Commitment step by the Prover
7: P sets C0← Com

(
σ ,AR

)
8: P sets C1← Com

(
πσ ,Rσ

)
9: P sends (C0,C1) to V

10: //First challenge by the verifier
11: V sets Ch0← c random in Fp
12: V sends Ch0 to P
13: P sets Z← Rσ + cVπσ and sends Z to V
14: V sets Ch1← b random bit
15: V sends Ch1 to P
16: if Ch1 = 0 then
17: P reveals σ .seed to V
18: V accepts if Com

(
σ ,Aσ Z

)
= C0

19: else
20: P reveals πσ to V
21: V accepts if Com

(
πσ ,Z− cVπσ

)
= C1

22: end if
23: end procedure

λ bits. The size of the public vector V is n log2(p) bits. The
bit size of the public key (p,A,V ) is:

log2(p)+λ +n log2(p) bits.

Performance of the scheme. We can now provide the
communication complexity of the IDS, where its fraud’s
probability is p+1

2p . Consider that the commitment function
Com used in the protocol, returns values of 2λ bits. The
transfer of the n-vector Z ∈ Fp

n requires n log2 p Thus, the
fourth passes demand 4λ +(n+1) log2 p+1 bits.

Note also that, compared to the original scheme of Shamir in
[Sha89], we have reduced the complexity in communication by
revealing only the seed used to generate the random elements.
More precisely, instead of revealing the random permutation
σ , the prover P only sends its seed sigma.seed.

So, the last pass needs, according to Ch1, λ bits to reveal
the permutation σ if Ch1 = 0; and log2(n!) bits to reveal the
permutation πσ , if Ch1 = 1.
In total, the weighted average bit complexity of the scheme
repeated N rounds is given by:(

4λ +(n+1) log2 p+1+
1
2
(λ + log2(n!))

)
×N.

VI. DIGITAL SIGNATURE SCHEME (DSS) BASED ON PKP
We present here the main contribution of this work which

is to construct a DSS i.e. a digital signature scheme, based on
the PKP problem, from the IDS defined in Section V-B. This
construction uses the well-known Fiat Shamir transformation
[FS86].

So next, we introduce the basic definitions needed. Then,
similarly to the MQ-based signatures and Picnic, we define
our scheme, and we finish with a comparison with other
cryptosystems.

A. Introduction

The classical method of Fiat-Shamir (FS) transforms an in-
teractive proof of knowledge (identification scheme) into a non
interactive one (signature scheme). This work is a direct appli-
cation of this method to get PKP-DSS from PKP-IDS. Fiat-
Shamir transform for PKP-IDS. We recall that PKP-IDS the
previously defined identification scheme achieves soundness
with soundness error κ = 1+p

2p . We select N the number of
parallel rounds of PKP-IDS such that κN is negligible in λ .
We select two cryptographic hash functions H1 : {0,1}∗→ FN

p
and H2 : {0,1}∗ → {0,1}N . By applying Construction 4.7
in [CHR+18], we get PKP-DSS= (KEYGEN,SIGN,VERIFY).
See Algorithms 3 and 4.

A valid signature of a message m by PKP-DSS is then a
tuple (m,σ0,σ1,σ2), where σ0,σ1,σ2 hold the (vector of paral-
lel) commitments and responses of the non interactive prover.
The implicit values h1 = H1(m,σ0) and h2 = H2(m,σ0,h1,σ1)
represent the (vector of parallel) challenges of the non inter-
active verifier.

We get the similar result as Th. 5.1 in [CHR+18].
Theorem 6.1: PKP-DSS is Existential-Unforgeable under

Chosen Adaptive Message Attacks (EU-CMA) in the random
oracle model, if
• the search version of the Permuted Kernel problem is

intractable,
• the hash functions are modeled as random oracles,
• the commitment functions are computationally binding,

computationally hiding, and the probability that their
output takes a given value is negligible in the security
parameter,

• the pseudo-random generators are modeled as random
oracle, and

• the pseudo-random generators have outputs computation-
ally indistinguishable from random.

The proof is exactly the same as in [CHR+18].

B. Quantum analysis of PKP

Since we are comparing PKP-DSS to other post-quantum
schemes, it is important to define the security of our scheme
against quantum attacks. This can be done by investigating
quantum algorithms for solving PKP. However, till now there
are no quantum versions of the known attacks on PKP cited
above IV. Also, there is no gain of considering Grover’s
algorithm because the best attack for solving PKP is much
more efficient than the exhaustive search (by a quadratic
factor).

Moreover, the post-quantum security of the FIAT-SHAMIR
transform has been studied in [Unr15], [Unr17]. The author
of [Unr15] explains that the classic FIAT-SHAMIR transform
might not be secure against quantum computers. Thus, a
new technique with the extra property of "extractability" was
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Algorithm 3 Signing process in PKP-DSS
1: procedure PKP-DSS.SIGN(m,sk)
2: R←H0

(
sk || m

)
, R is a message-dependent

random value
3: D←H0

(
pk || R || m

)
, D is the randomized

message digest
4: R(1), . . . ,R(N)← RG0

(
R.seed, D

)
5: σ (1), . . . ,σ (N)← RG1

(
σ .seed, D

)
6: for j f rom 1 to N do
7: C

( j)
0 = Com

(
σ ( j),AR( j)

)
,

8: C
( j)
1 = Com

(
πσ ( j),R( j)

σ ( j)

)
.

9: COM(j) :=
(
C
( j)
0 , C

( j)
1

)
10: end for
11: S0←H0

(
COM(1)|| . . . ||COM(N)

)
.

12: Ch0←H1
(
D, S0

)
13: Parse Ch0 as Ch0 := (c(1), . . . ,c(N)), c( j) ∈ Fp
14: for j f rom 1 to N do
15: Z( j)← R( j)

σ ( j) + c( j)V
πσ ( j) ,

16: resp
( j)
0 := Z( j).

17: end for
18: S1←

(
resp

(1)
0 || . . . ||resp

(N)
0

)
=
(
Z(1)|| . . . ||,Z(N)

)
.

19: Ch1←H2
(
D, S0, Ch0, S1

)
20: Parse Ch1 as Ch1 := (b(1), . . . ,b(N)), b( j) ∈ {0,1}
21: for j in(1 . . .N) do
22: if b( j) = 0 then
23: resp

( j)
1 ← σ ( j).

24: else
25: resp

( j)
1 ← πσ ( j).

26: end if
27: end for
28: S2←

(
resp

(1)
1 || . . . ||resp

(N)
1 ||C

(1)
1−b(1)

|| . . . ||C(N)

1−b(N)

)
.

29: Return
(
R, S0, S1, S2

)
.

30: end procedure

developed to obtain a quantum-secure transform.
In [Unr17], D. UNRUH justifies that the FIAT-SHAMIR trans-
form is secure under certain conditions. Currently, it seems
impractical to apply the Unruh transform since the obtained
scheme is costly in terms of signature’s size. Therefore, we
can keep the initial FIAT-SHAMIR as long as there is neither
perfect proof nor quantum attack.

C. Performance of the scheme

Our main goal is to find the best parameters which can
ensure the minimal size of a signature. We show, in the
next sections, that the PKP-based signature scheme provides
a signature’s size less than the other signature schemes,
precisely MQDSS [CHR+18] and Picnic [CDG+17].

Signature size: We said that our signing scheme is con-
structed from the iterations of the IDS (given in 2). Now, to
have the total cost, it is important to define the number of
rounds N needed to achieve EU-CMA for λ bits of security.

Algorithm 4 Verification process in PKP-DSS
1: procedure PKP-DSS.VERIFY

(
m,pk,S =

(R,S0,S1,S2)
)

2: D←H0
(
pk || R || m

)
, D is the randomized

message digest
3: Ch0←H1

(
(D, S0)

)
4: Parse Ch0 as Ch0 := (c(1), . . . ,c(N)), c( j) ∈ Fp
5: Ch1←H2

(
D, S0, Ch0, S1

)
6: Parse Ch1 as Ch1 := (b(1), . . . ,b(N)), b( j) ∈ {0,1}
7: Parse S1 as S1 :=

(
resp

(1)
0 || . . . ||resp

(N)
0

)
8: Parse S2 as S2 :=(

resp
(1)
1 || . . . ||resp

(N)
1 ||C

(1)
1−b(1)

|| . . . ||C(N)

1−b(N)

)
.

9: for j in(1 . . .N) do
10: Z( j) := resp

( j)
0 ,

11: if b( j) = 0 then
12: σ ( j) := resp

( j)
1 ,

13: C
( j)
0 := Com

(
σ ( j),A

σ ( j)Z( j)
)

14: else
15: πσ

( j)=resp
( j)
1

16: C
( j)
1 = Com

(
πσ ( j),Z( j)− c( j)V

πσ ( j)

)
17: end if
18: COM(j) :=

(
C
( j)
0 , C

( j)
1

)
19: end for
20: S ′

0 ←H0
(
COM(1)|| . . . ||COM(N)

)
.

21: return S ′
0 = S0.

22: end procedure

By considering the scheme where the fraud’s probability is
Pf =

p+1
2p . We require that

PN
f ≤ 2−λ ,

as an attacker could perform a preimage search to control the
challenges. Hence, we get that N ≥ λ/ log2(

p+1
2p ).

We begin to present how to compute the complexity in
bits. Recall that the signature is composed of R the message-
dependent random value, S0, S1 and S2, where S0 is the
hashed value of the commitments of all rounds, S1 is formed
by the first responses, and S2 is the concatenation of the some
commitments and the second responses to the challenges.
For S0 which is a hashed value, it costs 2λ bits. S1 depends
on the size of Z, so it is in N×n log2 p. For S2, we present
next each case:
• b=0: The signer reveals one seed sigma.seed (similarly to

2) as a response. It costs the seed size which is presented
by λ bits. In addition to the size of the commitment C1,
we have in average:

A =
1
2
(
Size(C1)+Size(resp1)

)
=

3
2

λ .

• b=1: The signer reveals the permutation πσ ( j) as a
response resp1 to the challenge b( j). By adding also the
commitment C0 of size 2λ bits, we have in total:

B =
1
2
(
2λ + log2(n!)

)
.
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We have thus the following signature size:

size o f R︷︸︸︷
2λ +

size o f S0︷︸︸︷
2λ +N

(
n log2(p)+A+B

)︸ ︷︷ ︸
size o f S1 and S2

.

How parameters affect performance As we said previ-
ously, the DSS is mainly affected by the following set of
parameters: (p,n,m). We now explicitly detail the choice
of parameters. Recall that firstly the IDS [Sha89] was
designed to suit small devices. Thus, A. SHAMIR proposed
p= 256. Nowadays, with the 64−bit computer architecture,
the computations modulo a prime number of 32 or 64 bits
are feasible. Thus, we consider that p is of 8, 16, 32, or
64 bits.

A solution of a random instance of PKP is to find a
kernel n-vector (Vπ) with distinct coordinates in Fp. Hence,
the probability to find such vector shouldn’t be too small.
Also in [Sha89], A. SHAMIR estimated n to be between
32 and 64. Later on, several attacks [BCCG92], [PC93]
shows that the choice n= 32 is not recommended for strong
security requirements. So, to find an n-vector with no
double in Fp, and by considering the Birthday Paradox, we
keep the choice of n around 64, in addition to n≈O

(√
p
)
.

On the other hand, the probability of an arbitrary vector
to be in the kernel of the matrix A ∈Mm×n whose rank
is equal to m, is p−m. Moreover, if the n-vector V has
no double, the cardinal of its orbit under the possible
permutations π is n!. Thus, in order to get one solution,
we have the following constraint: n!≈ pm.

Hence, following these criteria, we have in total:

p≈ O
(
n2
)
,

n!≈ nn ≈ pm.

This leads to take m≈ n log(n)/log(p)≈ n/2.
How to choose the security parameter λ . Recall

that, the security parameter λ controls the number of
iterations N = λ/ log2(

p+1
2p ) performed to achieve a security

level needed. It also defines the output of the hash and
commitments functions which is in 2λ , in addition to the
seeds length.

In general, the hash and commitment functions require
collision resistance, preimage resistance, and/or second
preimage resistance. Thus, in this article, to reach for
example a security of 128 bits, we initiate λ to be exactly
of 128 bits. As well for the others security levels (192 and
256).

However, as shown in [GS94], it is always possible to
reduce this choice of 256-bit hash values while keeping a
security level of 128 bits. Yet, to compare PKP-DSS to the
other schemes (as MQDSS) we keep this doubling. Note
that, the optimization of [GS94] can be applied to PKP-
DSS as well to the other schemes (MQDSS, Picnic,...).

In the following table we present several parameters
sets for different levels of security. We define these
parameters by considering the formulas given in Section

VI-C and the criteria defined above. Furthermore, our
parameters raise a secure scheme against all the attacks
described in Section IV, mainly, against the most efficient
attack: the algorithm of PATARIN-CHAUVAUD [PC93].

Parameters λ p n m Iterations number Best classical
Set N attack
PKP-DSS-128 128 977 61 28 129 2130 op.
PKP-DSS-192 192 1409 87 42 193 2198 op.
PKP-DSS-256 256 1889 111 55 257 2262 op.

TABLE I
PKP-DSS PARAMETERS SETS

Next, we compare PKP-DSS to MQDSS [CHR+18] and
Picnic [CDG+17]. We consider the public/secret (pk/sk)
keys size and the signature size, for different security levels.

Security level Parameters Sets Secret key Public key Signature
size (Bytes) size (Bytes) size (KBytes)

12
8

PKP-DSS-128 16 93 16.83
MQDSS-31-48 16 46 16.15
Picnic-L1-FS 16 32 33.2

19
2

PKP-DSS-192 24 139.1 38.02
MQDSS-31-64 24 64 33.23
Picnic-L3-FS 24 48 74.9

25
6

PKP-DSS-256 32 184.4 67.49
MQDSS-31-88 32 87 60.28
Picnic-L5-FS 32 64 129.7

TABLE II
COMPARISON OF DIFFERENT SCHEMES

One can conclude that the IDS based on PKP constitutes
one of the most efficient schemes.

VII. CONCLUSION

In this article, we discussed some of the most well-known
technique for solving PKP. Particularly, we drew attention
to the fact that, the Approach of PATARIN-CHAUVAUD
[PC93] is the most efficient attack on PKP.

Moreover, our main motivation is the construction of
a post-quantum secure cryptosystem. In [Sha89], a Zero-
knowledge identification scheme (ZK-IDS) was introduced.
A well-known method, namely FIAT-SHAMIR technique
[FS86], is used to turn an IDS into a digital signature
scheme (DSS).

The authors of [CHR+18], presents a DSS, named
MQDSS. It was built from an IDS based on the MQ prob-
lem (Multivariate quadratic equations solving problem).
Thus, they give several sets of parameters which provide
post-quantum security.
As well, Picnic [CDG+17] is designed to be secure against
classical and quantum attacks. It was also constructed
from a Zero-knowledge identification scheme to match
different security levels.
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Hence, similarly to the technique used to build these
schemes, we have constructed a DSS based on the PKP
problem. We utilized the ZK-authentication scheme pre-
sented in [Sha89] to deduce the signature scheme. In order
to compare this latter to the other schemes, we have tested
the most known techniques to solve PKP.

We finally conclude several sets of parameters given in
VI-C which provides 128, 192 and 256 bits of classical
security. Mainly, we conclude that the DSS based on
PKP gives signatures with a size comparable to the ones
in MQDSS and smaller than the ones given by Picnic.
Consequently, this is what makes from this PKP-DSS a
competitive scheme to the other related cryptosystems.
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