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Abstract— Network has brought convenience to the world by 

allowing flexible transformation of data, but it also exposes a 

high number of vulnerabilities. A Network Intrusion Detection 

System (NIDS) helps system and network administrators to 

detect network security breaches in their organizations.  

Identifying anonymous and new attacks is one of the main 

challenges in IDSs researches.  

Deep learning (2010’s), which is a subfield of machine learning 

(1980’s), is concerned with algorithms that are based on the 

structure and function of brain called artificial neural networks. 

The progression on such learning algorithms may improve the 

functionality of IDS especially in Industrial Control Systems to 

increase its detection rate on unknown attacks. In this work, we 

propose a deep learning approach to implement an effective and 

enhanced IDS for securing industrial network.  

Keywords—Intrusion Detection System, Deep Learning, SCADA, 

Modbus, Industrial Control Systems, Artificial Neural Networks. 

I. INTRODUCTION  

Targeted attacks on industrial control systems are the biggest 

threat to critical national infrastructure, says Kaspersky Lab. 

Today’s industrial control systems (ICS) face an array of 

digital threats. Two in particular stand out. On the one hand, 

digital attackers are increasingly targeting and succeeding in 

gaining unauthorized access to industrial organizations. Some 

actors use malware, while others resort to spear-phishing (or 

whaling) and other social engineering techniques [1]. The 

main challenge is linked to the fact these systems typically 

control physical processes that relate to power, transport, 

water, gas and other critical infrastructure. Because the output 

of ICS relates to physical processes, the effects of any 

downtime – such as a power outage – can affect millions of 

people [2].  

 

Signature-based and anomaly-based Intrusion Detection 

System is one aspect of an effective network security 

monitoring strategy. Very few asset owners have IDS/IPS 

deployed and configured appropriately at the boundary 

between the Enterprise IT and ICS networks.  

However, network intrusion detection has been criticized for 

its propensity to generate a perceived large amount of false 

positives and false negatives. Signature-based IDS lacks the 

capability of detecting new forms of attacks that it had not 

seen before, and anomaly based produces high amount of false 

positive rates, in addition to that it is difficult to select normal 

behavior of traffic dataset in the network. 

 

Various machine learning techniques have been used to 

develop NIDSs, such as Articial Neural Networks (ANN), 

Support VectorMachines (SVM), Naive-Bayesian (NB), 

Random Forests (RF), Self-Organized Maps (SOM), etc. The 

NIDSs are developed as classifiers to differentiate the normal 

traffic from the anomalous traffic [3]. 

 

In this paper, an intrusion detection system using the deep 

learning is proposed to secure the ICS network. The proposed 

technique uses multi-layer perceptron with binary 

classification and trains high-dimensional Modbus packet data 

after a network simulation and label the data with normal and 

malicious in order to the neural network to understand the 

underlining structure of the normal and anomalous behavior of 

the network.  

 

II.ICS AND IDS 

A. ICS overview 

Industrial control system (ICS) is a general term that 

encompasses several types of control systems, including 

supervisory control and data acquisition (SCADA) systems, 

distributed control systems (DCS), and other control system 

configurations such as Programmable Logic Controllers (PLC) 

often found in the industrial sectors and critical infrastructures.  

 

ICS have different performance and reliability requirements, 

and also use operating systems and applications that may be 

considered unconventional in a typical IT network 

environment. Security protections must be implemented in a 

way that maintains system integrity during normal operations 

as well as during times of cyber-attack.  

 

A typical ICS contains numerous control loops, human 

interfaces, and remote diagnostics and maintenance tools built 

using an array of network protocols on layered network 

architectures. A control loop utilizes sensors, actuators, and 

controllers (e.g., PLCs) to manipulate some controlled 

process. A sensor is a device that produces a measurement of 

some physical property and then sends this information as 

controlled variables to the controller. The controller interprets 
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the signals and generates corresponding manipulated 

variables, based on a control algorithm and target set points, 

which it transmits to the actuators.  

 

Industrial control systems underpin the critical national 

infrastructure and are essential for the success of industries 

such as: 

 

 Electricity production and distribution 

 Water supply and treatment 

 Food production 

 Oil and gas production and supply 

 Chemical and pharmaceutical production 

 Telecommunications 

 Manufacturing of components and finished products 

 Paper and pulp production [5]. 

 

SCADA and industrial protocols, such as Modbus/TCP, are 

critical for communications to most control devices. 

Unfortunately, many of these protocols were designed without 

security built in and do not typically require any authentication 

to remotely execute commands on a control device.  

 

B. IDS for ICS 

For a long time, ICS/SCADA was an area that relied on 

different embedded devices and clear-text communications 

such as Modbus/TCP, without taking into consideration the 

security approach which made it vulnerable to different types 

of attacks and it becomes a target of cyber threats. This 

resulted in a new focus on the security issues related to 

industrial control systems. 

 

Intrusion Detection System are capable of providing visibility 

and detection of any breach on the network, IDS can alarm in 

response to network security or endpoint security events. 

IDSs for ICT networks have become very popular; especially 

for identifying the signatures of many pieces of known 

malicious code (e.g. SNORT rules), other IDSs utilize model-

base anomaly detectors. Modern ICS equipment does not 

normally fall in the same category as computer systems in 

modern-day ICT networks. ICS equipment is not typically 

designed with security logging and processing in mind. It does 

not usually run standard operating systems used in ICT 

desktops and servers. Network-based IDSs are a network 

device that collects network traffic directly from the network, 

often from a central point such as a router or switch. Data 

from multiple network sensors can be aggregated into a central 

processing engine, or processing may occur on the collection 

machine itself. The network traffic can also be analyzed for 

unsatisfactory traffic or behavior patterns; either patterns that 

are anomalous to a previously established traffic or behavior 

model, or specific traffic patterns that display non-conformity 

to standards, e.g. violations of specific communication 

protocols. 

C. Deep learning and IDS 

 Signature based IDS is effective in the detection of known 
attacks and results in a high detection accuracy and less false-
alarm rates. However, its performance suffers during detection 
of unknown or new attacks due to the limitation of rules that 
can be installed beforehand in an IDS. On the other hand, 
anomaly based IDS, is well-suited for the detection of 
unknown and new attacks. Although Anomaly Detection IDS 
produces high false-positive rates, its theoretical potential in 
the identification of new attacks has caused its wide acceptance 
among the research community. There are primarily two 
challenges that arise while developing an effective and flexible 
NIDS for the unknown future attacks. First, proper feature 
selections from the network traffic dataset for anomaly 
detection is difficult. As attack scenarios are continuously 
changing and evolving, the features selected for one class of 
attack may not work well for other classes of attacks. Second, 
unavailability of labeled traffic dataset from real networks for 
developing an NIDS. 

Deep learning belongs to a class of machine learning 
methods, where employs consecutive layers of information-
processing stages in hierarchical manners for pattern 
classification and feature or representation learning. Usually 
deep learning plays the important role in image classification 
results. In addition, deep learning is also commonly used for 
language, graphical modeling, pattern recognition, speech, 
audio, image, video, natural language and signal processing. 
There are many deep learning methods such as Deep Belief 
Network (DBN), Restricted Boltzman Machine (RBM), Deep 
Boltzman Machine (DBM), Deep Neural Network (DNN), 
Auto Encoder, Deep / stacked Auto Encoder, etc… [6]. 

The advancements on learning algorithms might improve 
IDS ability to reach higher detection rate and lower false alarm 
rate. It is envisioned that the deep learning based approaches 
can help to overcome the challenges of developing an effective 
NIDS.  

In this work, we will use Multi-layer Perceptrons with 
binary classification which we found the most useful type of 
neural network where the only two output classes will be 
normal and malicious ones. A Perceptron is a single neuron 
model that was a precursor to larger neural networks. 

The power of neural networks come from their ability to 
learn the representation in your training data and how to best 
relate it to the output variable that you want to predict. In this 
sense neural networks learn a mapping. Mathematically, they 
are capable of learning any mapping function and have been 
proven to be a universal approximation algorithm. The data 
structure can pick out (learn to represent) features at different 
scales or resolutions and combine them into higher-order 
features. For example from lines, to collections of lines to 
shapes. 
 

III.APPLICATION OF DEEP LEARNING ALGORTHM TO NETWORK 

TRAFFIC 

The steps for building a good deep learning approach consists 

of preparing the data, defining and compiling the model, 

fitting the model, and evaluation (prediction) the model. We 
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will start with a brief overview concerning the deep learning 

structure. 

 

A. Overview of deep neural networks 

1) Neurons 

The building block for neural networks are artificial neurons. 

These are simple computational units that have weighted input 

signals and produce an output signal using an activation 

function. 

Fig. 1. Model of a Simple Neuron 

 

2) Neuron Weights 

Each neuron has a bias which can be thought of as an input 

that always has the value 1.0 and it too must be weighted. For 

example, a neuron may have two inputs in which case it 

requires three weights. One for each input and one for the bias. 

Weights are often initialized to small random values, such as 

values in the range 0 to 0.3, although more complex 

initialization schemes can be used. Like linear regression, 

larger weights indicate increased complexity and fragility of 

the model. It is desirable to keep weights in the network small 

and regularization techniques can be used. 

 

3) Activation 

The weighted inputs are summed and passed through an 

activation function, sometimes called a transfer function. An 

activation function is a simple mapping of summed weighted 

input to the output of the neuron. It is called an activation 

function because it governs the threshold at which the neuron 

is activated and the strength of the output signal. Historically 

simple step activation functions were used where if the 

summed input was above a threshold, for example 0.5, then 

the neuron would output a value of 1.0, otherwise it would 

output a 0.0. 

 

4) Network of Neurons 

DL involves making very large and deep (i.e. many layers of 

neurons) neural networks to solve specific problems, as shown 

in Fig.3. Thus, similar to how neurons are organized in layers 

in the human brain cells, neurons in neural networks are often 

organized in layers as well. So, an algorithm is deep if the 

input is passed through several non-linearities before being 

output. 

 

 

Fig. 2. An example of deep neural network with five layers 

 

a) Input Layer 

The first layer that takes input from some dataset is called the 

input or visible layer, because it is the exposed part of the 

neural network. Often a neural network is characterized with 

an input layer with one neuron per each input value in the 

dataset. 

 

b) Hidden Layer 

After the input layer, we have the hidden layers, they are 

called hidden because they are not directly exposed to the 

input. The simplest example of a neural network is to have a 

single neuron in the hidden layer that directly outputs a value. 

With the increase in computing power and very efficient 

libraries, very deep neural networks can be built. Neural 

network can have many hidden layers in it.  

 

c) Output Layer 

The last layer is called the output layer and it is responsible for 

exporting the value or vector of values that correspond to the 

format required for the problem. 

B. Training The Network 

a) Data Classification 

In order to use binary classification, we should capture two 

types of data, in our case it will be normal and malicious 

packets to train the neural network on. As neural networks can 

only work with numerical data, we have to label the network 

packets with 0 or 1 for normal and malicious packets.  

We captured a big dataset that is composed of normal network 

traffic, i.e. a normal behavior of the ICS devices. In order to 

get the malicious packets, we prepared a table consisting of 

the opposite functions and values of the normal ones, that is 

different IP sources, IP destinations, port numbers, protocol 

numbers, Modbus (functions, values, registers, coils) etc… 

And then we captured almost the same number of packets. 

After that, we combined the normal and malicious packets into 

one dataset and added a column labeling the packets 0 for 

normal and 1 for malicious one. 

 

b) Data Values 

Data must be numerical, for example real values. If we have 

categorical data, such as a sex attribute with the values male 

and female, we can convert it to a real-valued representation 
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called a one hot encoding. This is where one new column is 

added for each class value (two columns in the case of sex of 

male and female) and a 0 or 1 is added for each row depending 

on the class value for that row. 

Neural networks require the input to be scaled in a consistent 

way. We can rescale it to the range between 0 and 1 called 

normalization. Another popular technique is to standardize it 

so that the distribution of each column has the mean of zero 

and the standard deviation of 1. Scaling also applies to image 

pixel data. In our case, the data will be a captured PCAP file 

where the fields consists of IP addresses, port numbers, 

hexadecimal Modbus values as shown in Fig. 4.  

Fig. 3. Modbus Frame 
 

Thus, data must be well-prepared before training the neural 

network on, we should convert the IP addresses, hexadecimal 

values, and all other non-decimal attributes into decimal ones, 

preferred between 0 and 1. 

 

c) Stochastic Gradient Descent 

The classical and still preferred training algorithm for neural 

networks is called stochastic gradient descent. This is where 

one row of data is exposed to the network at a time as input. 

The network processes the input upward activating neurons as 

it goes to finally produce an output value. This is called a 

forward pass on the network. It is the type of pass that is also 

used after the network is trained in order to make predictions 

on new data.  

The output of the network is compared to the expected output 

and an error is calculated. This error is then propagated back 

through the network, one layer at a time, and the weights are 

updated according to the amount that they contributed to the 

error. This clever bit of math is called the Back Propagation 

algorithm. The process is repeated for all of the examples in 

your training data. One round of updating the network for the 

entire training dataset is called an epoch. A network may be 

trained for tens, hundreds or thousands of epochs, an example 

of epoch round is shown in Fig. 5. 
 

Fig. 4. Epoch example during network training 

 

d) Prediction 

Once a neural network has been trained it can be used to make 

predictions. You can make predictions on test or validation 

data in order to estimate the skill of the model on unseen data. 

You can also deploy it operationally and use it to make 

predictions continuously. The network topology and the final 

set of weights is all that you need to save from the model. 

Predictions are made by providing the input to the network 

and performing a forward-pass allowing it to generate an 

output that you can use as a prediction [7]. 

 

C. Model Approach 

a) Preparing the Neural Network  

As deep learning structure is defined as a sequence of layers, 
we will create a sequential model and add layers one at a time 
until we are satisfied with our network topology. The first thing 
to get right is to ensure the input layer has the right number of 
inputs. In our case, the number of inputs will be the number of 
fields extracted from the network packets as shown in Fig.6, in 
addition to the last field which indicates if the packet is normal 
or malicious. 

 
Fig. 5. Input parameters of the neural network 

 
As shown in the above figure, we have 12 inputs including 
different types of fields (IP, TCP, and MODBUS). The neural 
network will try to train and learn using those attributes. 

How do we know the number of hidden layers to use and their 
types? This is a bit hard question. There are heuristics that we 
can use and often the best network structure is found through a 
process of trial and error experimentation. Generally, we need 
a network large enough to capture the structure of the problem 
if that helps at all. In our case we will use a fully-connected 
network structure with three layers as shown in Fig. 6.  
 

Next, it’s best to think about the structure of our layer, we 
have an input layer, some hidden layers and an output layer. 
As stated previously, a type of network that performs well on 
binary classification problem is a multi-layer perceptron. This 
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type of neural network is often fully connected. That means 
that we are looking to build a fairly simple stack of fully-
connected layers to solve this problem. As for the activation 
function that you we will use, it’s best to use one of the most 
common functions which is relu activation function [8]. 

The Rectified Linear Unit has become very popular in the last 

few years for logistic/continues output. It computes the 

function   

 

𝑓(𝑥) = max(0, 𝑥) 
 

One way ReLUs improve neural networks is by speeding up 
training. The gradient computation is very simple (either 0 or 1 
depending on the sign of x).  

When we are building our model, it’s therefore important to 
take into account that the first layer needs to make the input 
shape clear. The model needs to know what input shape to 
expect and that’s why you’ll always find the input shape, input 
dimension, input length arguments in the documentation of the 
layers and in practical examples of those layers Fig.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Visualization of Neural Network Structure 

 

b) Encoding 

However, the training must be on numerical fields only, that is 

if we have an IP address which have the format 

xxx.xxx.xxx.xxx, the network wont understand it, same as if 

we have a hexadecimal Modbus data of FF00 for example.To 

Solve this problem, data must be converted into decimals, we 

used Excel plugins to convert IP addresses and hexadecimal 

values into numbers, so that all the fields became of decimal 

values. 

As the scales of the different fields are wildly different, it may 

have a knock-on effect on network ability to learn. To 

overcome this, we used data standarization. Standardization is 

a scaling technique that assumes your data conforms to a 

normal distribution. If a given data attribute is normal or close 

to normal, this is probably the scaling method to use.  

The result of standardization is that the features will be 

rescaled so that they’ll have the properties of a standard 

normal distribution with a mean of =0 and a standard 

deviation of 1. This can be thought of as subtracting the mean 

value or centering the data. Standardization can be useful, and 

even required in some machine learning algorithms when the 

input data values are of different scales. 

Below is a table showing the network input conversion for a 

normal packet: 

Table-1  

Network packet different conversion stages 

Attribute Normal Value Decemalized Value Encoded Value 

IP Source 192.168.1.5 3232235781 0.53640178 

IP Destination 192.168.1.3 3232235779 0 

Protocol 6 6 0 

TTL 128 128 0.71646104 

TCP Window Size 524288 524288 -1.06582338 

Destination Port 56783 56783 1.0261182 

Source Port 502 502 -1.01072698 

TCP Length 0 0 -0.99563837 

Modbus Data FF:00 65280 -0.01348645 

Modbus Code 5 5 -0.88003806 

Modbus Register 0 0 -0.05902683 

Modbus 

Reference 

100 100 -0.13751838 

 

c) Computation Time 

The machine used to run the algorithm is a Intel® Core™ i7-

3630QM @ 2.4GHz with 8GB installed memory (RAM) 

having x64-based processor with 4 cores and 8 Logical 

Processors. The total time for learning (Training + Testing) 

was 3228 seconds that is 54 minute (Fig.8). 

 

Fig. 7. Training computation time  
 

Input Layer  
(18 inputs) 

 

Output Layer  
(1 output) 

 

Hidden Layer  
(8 neurons) 
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IV.RESULTS AND DISCUSSION 

 

A. Description of the Network 

Our ICS network is composed of the SCADA, PLC, and a 

simulated heater process which triggers the network with a 

large amount of traffic for gathering and analyzing a real time 

data to be shown on the SCADA screen, the reactor diagram is 

shown in Fig.9. 

 

 

Fig. 8.  Reactor diagram with inputs/outputs label 

 

The following table summarizes the system inputs/outputs 

shown in the above figure. 

Table-2 

Reactor system inputs and outputs values 

Variable Value 

X1 Opened/Closed 

X2 Opened/Closed 

Xout Opened/Closed 

Coolant Qc [0; 500] 

Liquid Height H [0; 200] 

Liquid Temperature T [coolant temperature, undefined] 

Reactant 

concentration 

[0; undefined] 

Explosion Notifier True/False 

 

Using existing approaches of a HIL system and a local 

network a hybrid approaches was designed respecting some 

constraints in order to simulate an industrial environment 

containing a PLC, a local network, a SCADA control and a 

virtual mockup built of electronic-designed parts, and a IHM 

for operator interaction. Fig.9 presents the generic schema of 

the system. 

 

 

Fig.9. General ICS architecture 

The PLC performs the control of the virtual mockup. It 

receives the data from the digital mockup as though it were a 

sensor capturing ongoing information of a physical process 

such as a fluid heater process. Then, it uses the received data 

to calculate a control signal that is sent to the mockup through 

an analog output. 

The SCADA displays the system information for a supervisor 

that can access the major system information about the 

industrial process, the information comes from the PLC that 

gets information from the sensor and updates the system 

status. The supervisor uses a PC to control some functions of 

the systems such as the water temperature and the height. 

The real network is created by a Switch. 

 

B. Proposed Approach 

The proposed intrusion detection systems considers a general 
type of an attack scenario where malicious packets are injected 
into a SCADA network system composed of a heater and a 
PLC. The proposed intrusion detection monitors incoming 
packets and determines an attack. 

In this work, we consider the most common industrial protocol, 
that is to say MODBUS protocol. 

Our IDS design is composed of two main phases, the training 
phase and the detection phase. The training phase is performed 
offline as it is somehow time consuming. In the training phase, 
the Modbus packet is processed to extract a feature that 
represents the normal behavior of the network. Each trained 
Modbus packet has a label indicating either normal or 
malicious packet, that what we call the supervised learning. We 
adopt the Neural Network structure to train the features. The 
detection phase works almost the same, the same feature is 
extracted from an incoming packet and the Neural Network 
structure calculates with the trained parameters to predict the 
binary decision that is either normal or malicious. 

In order to perform the training phase, we simulated a network 
traffic composed of real values to let the neural network train 
on. 

 

a) Preparing the simulation 

The simulation is composed of three virtual machines, the first 

one is the process that will be executed each 0.1s in order to 

generate high network traffic, the second one is the SCADA – 

HMI screen that will display the result and is capable of 

changing the temperature and finally the PLC controller who 
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is responsible for reading/writing from/to the registers and 

coils it is holding as shown in Fig.10, the PLC will control the 

cooling flow rate. 

 

 

Fig. 10. Simulation of Modbus traffic using virtual machines 

 

The process sends and receieves multiple input/output 

variables, these variables corresponds to modbus addresses in 

addition to the value sent for this variable, the addresses with 

their correspondant variables are shown in Fig.11. 

 

Fig. 11. Process input/output values 

 

b) Capturing the traffic 

Upon running the PLC, process and SCADA, a high volume 

of network packets can be captured using Wireshark, and then 

filtered in order to get the Modbus/TCP traffic only that is 

running between the machines. An example of those packets is 

shown in Fig.12.  

 

 
Fig. 12. Modbus/TCP packets capture using Wireshark 

 

 

The captured PCAP file can be saved into CSV by using 

Tshark (A tool installed when installing Wireshark) where we 

can choose specific fields to be saved only (IP source, IP 

destination, Ports, Protocols, Modbus Data, etc…). Now after 

obtaining a good traffic and converting it into CSV file we can 

adjust and perform any operation on any field before training 

the neural network on. 

 

C. Results  

Upon training the neural network on the prepared dataset 

using Tensorflow and Keras, we can evaluate the performance 

of the network on the same dataset, this will give us the 

accuracy and the loss of the training after splitting the data 

into 70% for training and 30% for testing, these evaluations 

shows how well the network is doing on the data it is being 

trained, training accuracy usually keeps increasing throughout 

training. Using Tensorflow visualization on training and 

testing dataset, we can view the accuracy of our approach 

which is shown in Fig. 13. 
 

 

Fig. 13. Model accuracy during the training of the network 

 

As we can see, the accuracy of the trained data is increasing as 

number of steps (epochs) is increasing, until it reaches 

approximately 99.89% of accuracy, which means that there is 

a change of 99.89% of detecting any malicious packet 

destined towards the network. It is good to note that the neural 

network performed very well while training, this can be 

noticed by viewing the speed by which the network learned to 

draw a pattern from the data given to him, so that between 0 

and 40 epochs the accuracy reached approximately 100% of 

detecting. This is to ensure the importance of decimalizing and 

reshaping of the data before training the network on them.  
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Moreover, after each epoch, the model is tested against a 

validation set, Keras can separate a portion of the training data 

into a validation dataset and evaluate the performance of the 

model on that validation dataset after each epoch. The lower 

the loss, the better the model. Loss is not in percentage as 

opposed to accuracy and it is a summation of the errors made 

for each example in training or validation sets. Fig. 14 shows 

the loss upon training the network. 

Fig. 14. Model loss during the training of the network 

 

Similar to accuracy, loss will decrease as number of epochs 

increase till it reaches a value of 0.005% which is almost a 

negligible loss at the end of the training. 

 

To test the neural network on malicious packets, we prepared 

a lot of anomalous packets with different IP addresses, ports, 

functions, and values combinations and injected the IDS with 

them, the IDS detects all the packets with a high accuracy of  

99.9%, an example of the result Keras shows when injecting it 

with a normal packet is 0.99987454, which when rounded 

becomes 1 that is a normal one. 

 

This result when compared to self-taught learning (STL) and 

soft-max regression (SMR) [9] shows a higher performance 

rate, where when using SMR the accuracy reached 97% and 

STR reached 98.4%, whereas our discussed approach reached 

99.9% of accuracy. 

 

V.CONCLUSION AND FUTURE WORK 

 

We proposed a deep learning based approach to build an 

effective and flexible IDS. A multi-layer perceptron and 

binary based IDS was implemented. We used a network 

dataset that we simulated to evaluate anomaly detection 

accuracy. We observed that the IDS anomaly detection 

accuracy showed a very high percentage of detecting. The 

performance can further be enhanced by adding the ability to 

detect Denial of Service attacks and adding time stamps to the 

fields in order to learn the interval of times packets usually 

arrive by. 
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