

A Deep Learning Approach for Intrusion Detection System in

Industry Network

Ahmad HIJAZI

Univ.Grenoble Alpes, G-SCOP,

F-38000 Grenoble, France

ahd.hjz@gmail.com

EL Abed EL SAFADI

Univ.Grenoble Alpes, G-SCOP,

F-38000 Grenoble, France

Abed.safadi@grenoble-inp.fr

Jean-Marie FLAUS

Univ.Grenoble Alpes, G-SCOP,

F-38000 Grenoble, France

Jean-marie.Flaus@grenoble-inp.fr

Abstract— Network has brought convenience to the world by

allowing flexible transformation of data, but it also exposes a

high number of vulnerabilities. A Network Intrusion Detection

System (NIDS) helps system and network administrators to

detect network security breaches in their organizations.

Identifying anonymous and new attacks is one of the main

challenges in IDSs researches.

Deep learning (2010’s), which is a subfield of machine learning

(1980’s), is concerned with algorithms that are based on the

structure and function of brain called artificial neural networks.

The progression on such learning algorithms may improve the

functionality of IDS especially in Industrial Control Systems to

increase its detection rate on unknown attacks. In this work, we

propose a deep learning approach to implement an effective and

enhanced IDS for securing industrial network.

Keywords—Intrusion Detection System, Deep Learning, SCADA,

Modbus, Industrial Control Systems, Artificial Neural Networks.

I. INTRODUCTION

Targeted attacks on industrial control systems are the biggest

threat to critical national infrastructure, says Kaspersky Lab.

Today’s industrial control systems (ICS) face an array of

digital threats. Two in particular stand out. On the one hand,

digital attackers are increasingly targeting and succeeding in

gaining unauthorized access to industrial organizations. Some

actors use malware, while others resort to spear-phishing (or

whaling) and other social engineering techniques [1]. The

main challenge is linked to the fact these systems typically

control physical processes that relate to power, transport,

water, gas and other critical infrastructure. Because the output

of ICS relates to physical processes, the effects of any

downtime – such as a power outage – can affect millions of

people [2].

Signature-based and anomaly-based Intrusion Detection

System is one aspect of an effective network security

monitoring strategy. Very few asset owners have IDS/IPS

deployed and configured appropriately at the boundary

between the Enterprise IT and ICS networks.

However, network intrusion detection has been criticized for

its propensity to generate a perceived large amount of false

positives and false negatives. Signature-based IDS lacks the

capability of detecting new forms of attacks that it had not

seen before, and anomaly based produces high amount of false

positive rates, in addition to that it is difficult to select normal

behavior of traffic dataset in the network.

Various machine learning techniques have been used to

develop NIDSs, such as Articial Neural Networks (ANN),

Support VectorMachines (SVM), Naive-Bayesian (NB),

Random Forests (RF), Self-Organized Maps (SOM), etc. The

NIDSs are developed as classifiers to differentiate the normal

traffic from the anomalous traffic [3].

In this paper, an intrusion detection system using the deep

learning is proposed to secure the ICS network. The proposed

technique uses multi-layer perceptron with binary

classification and trains high-dimensional Modbus packet data

after a network simulation and label the data with normal and

malicious in order to the neural network to understand the

underlining structure of the normal and anomalous behavior of

the network.

II.ICS AND IDS

A. ICS overview

Industrial control system (ICS) is a general term that

encompasses several types of control systems, including

supervisory control and data acquisition (SCADA) systems,

distributed control systems (DCS), and other control system

configurations such as Programmable Logic Controllers (PLC)

often found in the industrial sectors and critical infrastructures.

ICS have different performance and reliability requirements,

and also use operating systems and applications that may be

considered unconventional in a typical IT network

environment. Security protections must be implemented in a

way that maintains system integrity during normal operations

as well as during times of cyber-attack.

A typical ICS contains numerous control loops, human

interfaces, and remote diagnostics and maintenance tools built

using an array of network protocols on layered network

architectures. A control loop utilizes sensors, actuators, and

controllers (e.g., PLCs) to manipulate some controlled

process. A sensor is a device that produces a measurement of

some physical property and then sends this information as

controlled variables to the controller. The controller interprets

55

the signals and generates corresponding manipulated

variables, based on a control algorithm and target set points,

which it transmits to the actuators.

Industrial control systems underpin the critical national

infrastructure and are essential for the success of industries

such as:

 Electricity production and distribution

 Water supply and treatment

 Food production

 Oil and gas production and supply

 Chemical and pharmaceutical production

 Telecommunications

 Manufacturing of components and finished products

 Paper and pulp production [5].

SCADA and industrial protocols, such as Modbus/TCP, are

critical for communications to most control devices.

Unfortunately, many of these protocols were designed without

security built in and do not typically require any authentication

to remotely execute commands on a control device.

B. IDS for ICS

For a long time, ICS/SCADA was an area that relied on

different embedded devices and clear-text communications

such as Modbus/TCP, without taking into consideration the

security approach which made it vulnerable to different types

of attacks and it becomes a target of cyber threats. This

resulted in a new focus on the security issues related to

industrial control systems.

Intrusion Detection System are capable of providing visibility

and detection of any breach on the network, IDS can alarm in

response to network security or endpoint security events.

IDSs for ICT networks have become very popular; especially

for identifying the signatures of many pieces of known

malicious code (e.g. SNORT rules), other IDSs utilize model-

base anomaly detectors. Modern ICS equipment does not

normally fall in the same category as computer systems in

modern-day ICT networks. ICS equipment is not typically

designed with security logging and processing in mind. It does

not usually run standard operating systems used in ICT

desktops and servers. Network-based IDSs are a network

device that collects network traffic directly from the network,

often from a central point such as a router or switch. Data

from multiple network sensors can be aggregated into a central

processing engine, or processing may occur on the collection

machine itself. The network traffic can also be analyzed for

unsatisfactory traffic or behavior patterns; either patterns that

are anomalous to a previously established traffic or behavior

model, or specific traffic patterns that display non-conformity

to standards, e.g. violations of specific communication

protocols.

C. Deep learning and IDS

 Signature based IDS is effective in the detection of known
attacks and results in a high detection accuracy and less false-
alarm rates. However, its performance suffers during detection
of unknown or new attacks due to the limitation of rules that
can be installed beforehand in an IDS. On the other hand,
anomaly based IDS, is well-suited for the detection of
unknown and new attacks. Although Anomaly Detection IDS
produces high false-positive rates, its theoretical potential in
the identification of new attacks has caused its wide acceptance
among the research community. There are primarily two
challenges that arise while developing an effective and flexible
NIDS for the unknown future attacks. First, proper feature
selections from the network traffic dataset for anomaly
detection is difficult. As attack scenarios are continuously
changing and evolving, the features selected for one class of
attack may not work well for other classes of attacks. Second,
unavailability of labeled traffic dataset from real networks for
developing an NIDS.

Deep learning belongs to a class of machine learning
methods, where employs consecutive layers of information-
processing stages in hierarchical manners for pattern
classification and feature or representation learning. Usually
deep learning plays the important role in image classification
results. In addition, deep learning is also commonly used for
language, graphical modeling, pattern recognition, speech,
audio, image, video, natural language and signal processing.
There are many deep learning methods such as Deep Belief
Network (DBN), Restricted Boltzman Machine (RBM), Deep
Boltzman Machine (DBM), Deep Neural Network (DNN),
Auto Encoder, Deep / stacked Auto Encoder, etc… [6].

The advancements on learning algorithms might improve
IDS ability to reach higher detection rate and lower false alarm
rate. It is envisioned that the deep learning based approaches
can help to overcome the challenges of developing an effective
NIDS.

In this work, we will use Multi-layer Perceptrons with
binary classification which we found the most useful type of
neural network where the only two output classes will be
normal and malicious ones. A Perceptron is a single neuron
model that was a precursor to larger neural networks.

The power of neural networks come from their ability to
learn the representation in your training data and how to best
relate it to the output variable that you want to predict. In this
sense neural networks learn a mapping. Mathematically, they
are capable of learning any mapping function and have been
proven to be a universal approximation algorithm. The data
structure can pick out (learn to represent) features at different
scales or resolutions and combine them into higher-order
features. For example from lines, to collections of lines to
shapes.

III.APPLICATION OF DEEP LEARNING ALGORTHM TO NETWORK

TRAFFIC

The steps for building a good deep learning approach consists

of preparing the data, defining and compiling the model,

fitting the model, and evaluation (prediction) the model. We

56

will start with a brief overview concerning the deep learning

structure.

A. Overview of deep neural networks

1) Neurons

The building block for neural networks are artificial neurons.

These are simple computational units that have weighted input

signals and produce an output signal using an activation

function.

Fig. 1. Model of a Simple Neuron

2) Neuron Weights

Each neuron has a bias which can be thought of as an input

that always has the value 1.0 and it too must be weighted. For

example, a neuron may have two inputs in which case it

requires three weights. One for each input and one for the bias.

Weights are often initialized to small random values, such as

values in the range 0 to 0.3, although more complex

initialization schemes can be used. Like linear regression,

larger weights indicate increased complexity and fragility of

the model. It is desirable to keep weights in the network small

and regularization techniques can be used.

3) Activation

The weighted inputs are summed and passed through an

activation function, sometimes called a transfer function. An

activation function is a simple mapping of summed weighted

input to the output of the neuron. It is called an activation

function because it governs the threshold at which the neuron

is activated and the strength of the output signal. Historically

simple step activation functions were used where if the

summed input was above a threshold, for example 0.5, then

the neuron would output a value of 1.0, otherwise it would

output a 0.0.

4) Network of Neurons

DL involves making very large and deep (i.e. many layers of

neurons) neural networks to solve specific problems, as shown

in Fig.3. Thus, similar to how neurons are organized in layers

in the human brain cells, neurons in neural networks are often

organized in layers as well. So, an algorithm is deep if the

input is passed through several non-linearities before being

output.

Fig. 2. An example of deep neural network with five layers

a) Input Layer

The first layer that takes input from some dataset is called the

input or visible layer, because it is the exposed part of the

neural network. Often a neural network is characterized with

an input layer with one neuron per each input value in the

dataset.

b) Hidden Layer

After the input layer, we have the hidden layers, they are

called hidden because they are not directly exposed to the

input. The simplest example of a neural network is to have a

single neuron in the hidden layer that directly outputs a value.

With the increase in computing power and very efficient

libraries, very deep neural networks can be built. Neural

network can have many hidden layers in it.

c) Output Layer

The last layer is called the output layer and it is responsible for

exporting the value or vector of values that correspond to the

format required for the problem.

B. Training The Network

a) Data Classification

In order to use binary classification, we should capture two

types of data, in our case it will be normal and malicious

packets to train the neural network on. As neural networks can

only work with numerical data, we have to label the network

packets with 0 or 1 for normal and malicious packets.

We captured a big dataset that is composed of normal network

traffic, i.e. a normal behavior of the ICS devices. In order to

get the malicious packets, we prepared a table consisting of

the opposite functions and values of the normal ones, that is

different IP sources, IP destinations, port numbers, protocol

numbers, Modbus (functions, values, registers, coils) etc…

And then we captured almost the same number of packets.

After that, we combined the normal and malicious packets into

one dataset and added a column labeling the packets 0 for

normal and 1 for malicious one.

b) Data Values

Data must be numerical, for example real values. If we have

categorical data, such as a sex attribute with the values male

and female, we can convert it to a real-valued representation

57

called a one hot encoding. This is where one new column is

added for each class value (two columns in the case of sex of

male and female) and a 0 or 1 is added for each row depending

on the class value for that row.

Neural networks require the input to be scaled in a consistent

way. We can rescale it to the range between 0 and 1 called

normalization. Another popular technique is to standardize it

so that the distribution of each column has the mean of zero

and the standard deviation of 1. Scaling also applies to image

pixel data. In our case, the data will be a captured PCAP file

where the fields consists of IP addresses, port numbers,

hexadecimal Modbus values as shown in Fig. 4.

Fig. 3. Modbus Frame

Thus, data must be well-prepared before training the neural

network on, we should convert the IP addresses, hexadecimal

values, and all other non-decimal attributes into decimal ones,

preferred between 0 and 1.

c) Stochastic Gradient Descent

The classical and still preferred training algorithm for neural

networks is called stochastic gradient descent. This is where

one row of data is exposed to the network at a time as input.

The network processes the input upward activating neurons as

it goes to finally produce an output value. This is called a

forward pass on the network. It is the type of pass that is also

used after the network is trained in order to make predictions

on new data.

The output of the network is compared to the expected output

and an error is calculated. This error is then propagated back

through the network, one layer at a time, and the weights are

updated according to the amount that they contributed to the

error. This clever bit of math is called the Back Propagation

algorithm. The process is repeated for all of the examples in

your training data. One round of updating the network for the

entire training dataset is called an epoch. A network may be

trained for tens, hundreds or thousands of epochs, an example

of epoch round is shown in Fig. 5.

Fig. 4. Epoch example during network training

d) Prediction

Once a neural network has been trained it can be used to make

predictions. You can make predictions on test or validation

data in order to estimate the skill of the model on unseen data.

You can also deploy it operationally and use it to make

predictions continuously. The network topology and the final

set of weights is all that you need to save from the model.

Predictions are made by providing the input to the network

and performing a forward-pass allowing it to generate an

output that you can use as a prediction [7].

C. Model Approach

a) Preparing the Neural Network

As deep learning structure is defined as a sequence of layers,
we will create a sequential model and add layers one at a time
until we are satisfied with our network topology. The first thing
to get right is to ensure the input layer has the right number of
inputs. In our case, the number of inputs will be the number of
fields extracted from the network packets as shown in Fig.6, in
addition to the last field which indicates if the packet is normal
or malicious.

Fig. 5. Input parameters of the neural network

As shown in the above figure, we have 12 inputs including
different types of fields (IP, TCP, and MODBUS). The neural
network will try to train and learn using those attributes.

How do we know the number of hidden layers to use and their
types? This is a bit hard question. There are heuristics that we
can use and often the best network structure is found through a
process of trial and error experimentation. Generally, we need
a network large enough to capture the structure of the problem
if that helps at all. In our case we will use a fully-connected
network structure with three layers as shown in Fig. 6.

Next, it’s best to think about the structure of our layer, we
have an input layer, some hidden layers and an output layer.
As stated previously, a type of network that performs well on
binary classification problem is a multi-layer perceptron. This

58

type of neural network is often fully connected. That means
that we are looking to build a fairly simple stack of fully-
connected layers to solve this problem. As for the activation
function that you we will use, it’s best to use one of the most
common functions which is relu activation function [8].

The Rectified Linear Unit has become very popular in the last

few years for logistic/continues output. It computes the

function

𝑓(𝑥) = max(0, 𝑥)

One way ReLUs improve neural networks is by speeding up
training. The gradient computation is very simple (either 0 or 1
depending on the sign of x).

When we are building our model, it’s therefore important to
take into account that the first layer needs to make the input
shape clear. The model needs to know what input shape to
expect and that’s why you’ll always find the input shape, input
dimension, input length arguments in the documentation of the
layers and in practical examples of those layers Fig.7.

Fig. 6. Visualization of Neural Network Structure

b) Encoding

However, the training must be on numerical fields only, that is

if we have an IP address which have the format

xxx.xxx.xxx.xxx, the network wont understand it, same as if

we have a hexadecimal Modbus data of FF00 for example.To

Solve this problem, data must be converted into decimals, we

used Excel plugins to convert IP addresses and hexadecimal

values into numbers, so that all the fields became of decimal

values.

As the scales of the different fields are wildly different, it may

have a knock-on effect on network ability to learn. To

overcome this, we used data standarization. Standardization is

a scaling technique that assumes your data conforms to a

normal distribution. If a given data attribute is normal or close

to normal, this is probably the scaling method to use.

The result of standardization is that the features will be

rescaled so that they’ll have the properties of a standard

normal distribution with a mean of =0 and a standard

deviation of 1. This can be thought of as subtracting the mean

value or centering the data. Standardization can be useful, and

even required in some machine learning algorithms when the

input data values are of different scales.

Below is a table showing the network input conversion for a

normal packet:

Table-1

Network packet different conversion stages

Attribute Normal Value Decemalized Value Encoded Value

IP Source 192.168.1.5 3232235781 0.53640178

IP Destination 192.168.1.3 3232235779 0

Protocol 6 6 0

TTL 128 128 0.71646104

TCP Window Size 524288 524288 -1.06582338

Destination Port 56783 56783 1.0261182

Source Port 502 502 -1.01072698

TCP Length 0 0 -0.99563837

Modbus Data FF:00 65280 -0.01348645

Modbus Code 5 5 -0.88003806

Modbus Register 0 0 -0.05902683

Modbus

Reference

100 100 -0.13751838

c) Computation Time

The machine used to run the algorithm is a Intel® Core™ i7-

3630QM @ 2.4GHz with 8GB installed memory (RAM)

having x64-based processor with 4 cores and 8 Logical

Processors. The total time for learning (Training + Testing)

was 3228 seconds that is 54 minute (Fig.8).

Fig. 7. Training computation time

Input Layer
(18 inputs)

Output Layer
(1 output)

Hidden Layer
(8 neurons)

59

IV.RESULTS AND DISCUSSION

A. Description of the Network

Our ICS network is composed of the SCADA, PLC, and a

simulated heater process which triggers the network with a

large amount of traffic for gathering and analyzing a real time

data to be shown on the SCADA screen, the reactor diagram is

shown in Fig.9.

Fig. 8. Reactor diagram with inputs/outputs label

The following table summarizes the system inputs/outputs

shown in the above figure.

Table-2

Reactor system inputs and outputs values

Variable Value

X1 Opened/Closed

X2 Opened/Closed

Xout Opened/Closed

Coolant Qc [0; 500]

Liquid Height H [0; 200]

Liquid Temperature T [coolant temperature, undefined]

Reactant

concentration

[0; undefined]

Explosion Notifier True/False

Using existing approaches of a HIL system and a local

network a hybrid approaches was designed respecting some

constraints in order to simulate an industrial environment

containing a PLC, a local network, a SCADA control and a

virtual mockup built of electronic-designed parts, and a IHM

for operator interaction. Fig.9 presents the generic schema of

the system.

Fig.9. General ICS architecture

The PLC performs the control of the virtual mockup. It

receives the data from the digital mockup as though it were a

sensor capturing ongoing information of a physical process

such as a fluid heater process. Then, it uses the received data

to calculate a control signal that is sent to the mockup through

an analog output.

The SCADA displays the system information for a supervisor

that can access the major system information about the

industrial process, the information comes from the PLC that

gets information from the sensor and updates the system

status. The supervisor uses a PC to control some functions of

the systems such as the water temperature and the height.

The real network is created by a Switch.

B. Proposed Approach

The proposed intrusion detection systems considers a general
type of an attack scenario where malicious packets are injected
into a SCADA network system composed of a heater and a
PLC. The proposed intrusion detection monitors incoming
packets and determines an attack.

In this work, we consider the most common industrial protocol,
that is to say MODBUS protocol.

Our IDS design is composed of two main phases, the training
phase and the detection phase. The training phase is performed
offline as it is somehow time consuming. In the training phase,
the Modbus packet is processed to extract a feature that
represents the normal behavior of the network. Each trained
Modbus packet has a label indicating either normal or
malicious packet, that what we call the supervised learning. We
adopt the Neural Network structure to train the features. The
detection phase works almost the same, the same feature is
extracted from an incoming packet and the Neural Network
structure calculates with the trained parameters to predict the
binary decision that is either normal or malicious.

In order to perform the training phase, we simulated a network
traffic composed of real values to let the neural network train
on.

a) Preparing the simulation

The simulation is composed of three virtual machines, the first

one is the process that will be executed each 0.1s in order to

generate high network traffic, the second one is the SCADA –

HMI screen that will display the result and is capable of

changing the temperature and finally the PLC controller who

60

is responsible for reading/writing from/to the registers and

coils it is holding as shown in Fig.10, the PLC will control the

cooling flow rate.

Fig. 10. Simulation of Modbus traffic using virtual machines

The process sends and receieves multiple input/output

variables, these variables corresponds to modbus addresses in

addition to the value sent for this variable, the addresses with

their correspondant variables are shown in Fig.11.

Fig. 11. Process input/output values

b) Capturing the traffic

Upon running the PLC, process and SCADA, a high volume

of network packets can be captured using Wireshark, and then

filtered in order to get the Modbus/TCP traffic only that is

running between the machines. An example of those packets is

shown in Fig.12.

Fig. 12. Modbus/TCP packets capture using Wireshark

The captured PCAP file can be saved into CSV by using

Tshark (A tool installed when installing Wireshark) where we

can choose specific fields to be saved only (IP source, IP

destination, Ports, Protocols, Modbus Data, etc…). Now after

obtaining a good traffic and converting it into CSV file we can

adjust and perform any operation on any field before training

the neural network on.

C. Results

Upon training the neural network on the prepared dataset

using Tensorflow and Keras, we can evaluate the performance

of the network on the same dataset, this will give us the

accuracy and the loss of the training after splitting the data

into 70% for training and 30% for testing, these evaluations

shows how well the network is doing on the data it is being

trained, training accuracy usually keeps increasing throughout

training. Using Tensorflow visualization on training and

testing dataset, we can view the accuracy of our approach

which is shown in Fig. 13.

Fig. 13. Model accuracy during the training of the network

As we can see, the accuracy of the trained data is increasing as

number of steps (epochs) is increasing, until it reaches

approximately 99.89% of accuracy, which means that there is

a change of 99.89% of detecting any malicious packet

destined towards the network. It is good to note that the neural

network performed very well while training, this can be

noticed by viewing the speed by which the network learned to

draw a pattern from the data given to him, so that between 0

and 40 epochs the accuracy reached approximately 100% of

detecting. This is to ensure the importance of decimalizing and

reshaping of the data before training the network on them.

61

Moreover, after each epoch, the model is tested against a

validation set, Keras can separate a portion of the training data

into a validation dataset and evaluate the performance of the

model on that validation dataset after each epoch. The lower

the loss, the better the model. Loss is not in percentage as

opposed to accuracy and it is a summation of the errors made

for each example in training or validation sets. Fig. 14 shows

the loss upon training the network.

Fig. 14. Model loss during the training of the network

Similar to accuracy, loss will decrease as number of epochs

increase till it reaches a value of 0.005% which is almost a

negligible loss at the end of the training.

To test the neural network on malicious packets, we prepared

a lot of anomalous packets with different IP addresses, ports,

functions, and values combinations and injected the IDS with

them, the IDS detects all the packets with a high accuracy of

99.9%, an example of the result Keras shows when injecting it

with a normal packet is 0.99987454, which when rounded

becomes 1 that is a normal one.

This result when compared to self-taught learning (STL) and

soft-max regression (SMR) [9] shows a higher performance

rate, where when using SMR the accuracy reached 97% and

STR reached 98.4%, whereas our discussed approach reached

99.9% of accuracy.

V.CONCLUSION AND FUTURE WORK

We proposed a deep learning based approach to build an

effective and flexible IDS. A multi-layer perceptron and

binary based IDS was implemented. We used a network

dataset that we simulated to evaluate anomaly detection

accuracy. We observed that the IDS anomaly detection

accuracy showed a very high percentage of detecting. The

performance can further be enhanced by adding the ability to

detect Denial of Service attacks and adding time stamps to the

fields in order to learn the interval of times packets usually

arrive by.

VI.REFERENCES

[1] David Bisson. (2016, Nov 13) How to Approach Cyber

Security for Industrial Control Systems. [Online]. Available:

https://www.tripwire.com/state-of-security/ics-

security/approach-cyber-security-industrial-control-systems/

[2] Warwick Ashford. (2014, Oct 15) Industrial control

systems: What are the security challenges? [Online].

Available:

http://www.computerweekly.com/news/2240232680/Industrial

-control-systems-What-are-the-security-challenges

[3] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin,”

Intrusion Detection by Machine Learning: A Review," Expert

Systems with Applications, vol. 36, no. 10, pp. 11994 - 12000,

2009.

[4] Keith Stouffer, Victoria Pillitteri, Suzanne Lightman,

Marshall Abrams, Adam Hahn, “Guide to Industrial Control

Systems (ICS) Security”, rev 2, NIST National Institute of

Standards and Technology, U.S Department of Commere,

May. 2015.

[5] Characteristics of Industrial Control Systems. [Online].

Available: https://www.citicus.com/Characteristics-of-

Industrial-Control-Systems

[6] Muhamad Erza Aminantoa, Kwangjo Kimb, “Deep

Learning in Intrusion Detection System: An Overview”,

School of Computing, KAIST, Korea.

[7] Jason Brownlee, “Deep Learning With Python: Develop

Deep Learning Models on Theano and TensorFlow Using

Keras”, v1.7.

[8] Karlijn Willems (2017, May 2) “Keras Tutorial: Deep

Learning in Python”. [Online]. Available:

https://www.datacamp.com/community/tutorials/deep-

learning-python

[9] Quamar Niyaz, Weiqing Sun, Ahmad Y Javaid, and

Mansoor Alam, “A Deep Learning Approach for Network

Intrusion Detection System”, College of Engineering, The

University of Toledo, USA.

62

https://www.tripwire.com/state-of-security/ics-security/approach-cyber-security-industrial-control-systems/
https://www.tripwire.com/state-of-security/ics-security/approach-cyber-security-industrial-control-systems/
http://www.computerweekly.com/news/2240232680/Industrial-control-systems-What-are-the-security-challenges
http://www.computerweekly.com/news/2240232680/Industrial-control-systems-What-are-the-security-challenges
https://www.citicus.com/Characteristics-of-Industrial-Control-Systems
https://www.citicus.com/Characteristics-of-Industrial-Control-Systems
https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.datacamp.com/community/tutorials/deep-learning-python

