

RaDEN: A Scalable and Efficient Radiation Data
Engineering

Hadi Fadlallah
Lebanese University

Beirut, Lebanon
Hadi.Fadlullah@gmail.com

Yehia Taher
-Quentin

-en-Yvelines (UVSQ)
Versailles, France

yehia.taher@uvsq.fr

Ali Jaber
Lebanese University

Beirut, Lebanon
ali.jaber@ul.edu.lb

Abstract Detecting and monitoring radiation level is one
of the critical duties for governments and researchers because
of the high threats it oppose to humans. It was challenging in
the past century to have a centralized radiation monitoring
system until the rise of IoT (Internet of Things). Radiation level
is measured using wireless sensors that outputs data which are
transferred to a back-end server that monitors radiation and
alerts when high radiation levels are detected, the server also
stores the data for further analysis. The traditional data
warehousing systems cannot handle this type of data any more
due to (1) data collection speed, (2) rapid data growth, and (3)
data diversity. With the rise of Big Data notion, new
technologies are developed to handle data with similar
characteristics. In this paper, we proposed RaDEn a scalable
and fault-tolerant radiation data engineering system that relies
on Big Data technologies such as Hadoop, Kafka, Spark, and
Hive. The system is responsible of (1) reading data from
sensors and other sources, (2) monitor the radiation level in
real-time, (3) storing the data, and (4) providing on-demand
data retrieval to users. In addition, we have implemented our
system and conducted experiments in a real case scenario in
collaboration with the department of environmental radiation
control at the Lebanese Atomic Energy Commission (LAEC-
CNRS).

Keywords Radiation, data engineering, Big Data, radiation
monitoring, real-time processing

I. INTRODUCTION

Radiation pollution is a critical concern due to its
detrimental impact on living beings and environment. There
are different types of radiation stemming from various
radioactive materials and natural resources [1]. The higher
level of these radiations specifically the gamma radiation
causes severe damage to human health [2]. Therefore,
controlling radiation level is critically important. In order to
do so, monitoring radiation sources is an indispensable task.

The advent IoT (Internet of Things) specifically, sensors
have paved the foundation of building smart ecosystems that
enable collecting radiation data, processing, and analyzing
radiation level in real-time [3]. Radiation sensors collect and
transmit data via communication network such as
telecommunication network, Wi-Fi, and Internet to the
computational engine for measuring radiation levels.
Radiation monitoring sensors records data continuously; in
consequence, massive volume data can be generated in a

high speed. Conventional data engineering technologies
such as data warehouse are not adequate to handle this type
of data.
 Several data engineering technologies have been
proposed in literature such as [5],[6],[7],[8],[9],[10],[11],
[12],[13],[14],[15],[16] and many others. These solutions
aims engineering radiation pollution data. However, existing
solutions have several limitations that we summarized as
follows: (1) Existing technologies rely mainly on traditional
data technologies. (2) Most of them are focused on the data
collection only. (3) Real-time data collection and processing
is outside of the scope of existing technologies. (4)
Scalability and fault-tolerance have not been dealt with by
the technologies discussed in the previous sections. A
solution that can address these limitations is an
indispensable need.
 In this paper, we have proposed a solution called RaDEn,
which is a scalable and fault-tolerant system for radiation
data engineering that relies mainly on new data technologies
that are able to handle massive volume of data generated in
high speed. RaDEn has the ability to read data from
different sources, monitor radiation level in real-time,
storing data in a scalable repository that provides on-
demand data retrieval to users for further analysis.
 The remainder of this paper is organized as follows. In
Section 2, we briefly introduce our solution called RaDEn.
The development of RaDEn will be detailed in Section 3.
Section 4 demonstrates RaDEn. We conclude our work in
Section 5.

II. AN OVERVIEW OF RADEN

RaDEn is a scalable platform developed for radiation
data engineering. It allows fetching massive volume of data
from different sources. RaDEn enables user collection
different types of data including such as structured databases,
data streams and flat files. RaDEn has a radiation data lake
which stores data a scalable cluster, process then with
advanced techniques and visualize data using the best fit
methods.

RaDEn adopted both realtime and batch style
philosophies for collecting and processing data. The hybrid
enables users to perform both realtime and batch style
operations. The data streaming from sensors can be collected
by the users in realtime and files can be ingested in storage

89

as batch style. The processing and can be done the same
ways. Besides these major operations it somewhat performs
pre-processing tasks such data transformation and loading
data into scalable data lake. Visualization is real-time
meaning that the streams can be visualized with minimal
latency and the can be done by files data.

RaDEn is built on cluster computing and parallel
computing paradigm. In addition, it adopts the notion of Big
Data. The cluster computing guides the solution adopt
technologies that foster scalability whereas the parallel
computing provides computation models for designing
parallel operations using suitable programming model such
as functional programming model.

RaDEn is built-on multi-layered architecture. Figure 1
shows the architecture of RaDEn. The figure shows that the
RaDEn system can collect data from any number of sources.
RaDEn consist of six layers which are explained in the
following:

 Data Sources: Data sources layer consists of data
streams sent from sensors installed in cities and mountains,
relational databases where archive data are stored and flat
files that can be exported from any old echo system

Figure 1 - RaDEn architecture

Data ingestion layer: This layer is responsible of
reading data from different sources and delivering them to
data processing or data storage layer. This layer must ensure
scalability and fault tolerance and must read a huge amount
of data from different sources in real-time and batch mode.
Data can be stored into Data storage layer directly or it can
be sent to Data processing layer to be processed in real-time.

 Data Storage: This layer is responsible of storing data.
It relies heavily on HDFS, which is a distributed file system
that ensures high scalability and fault-tolerance. On the Top
of HDFS we have to use warehousing technology to define
and configure the metadata of the data stored in HDFS and
let the users be able to perform easy data retrieval operations.

 Data Processing Layer: This layer is responsible of
processing data and notifying the end-user when a high level
radiation is detected. The nature of the data sources requires
a distributed data processing platform that ensures a high
scalability and fault tolerance.

 Data visualization: This layer is to visualize the results
of data processing and is responsible of bringing the end-user
in action by drawing real-time graphs that show radiation
level timeline.

 Coordination layer: This layer is responsible of making

It is a service that runs in background and has the ability to
connect with any technology used.

III. DEVELOPMENT OF RADEN

RaDEn is developed in two phases. In the first phase, we
developed the RaDEn system and in the second phase we
developed an alarm system integrated within RaDEn.

A. RaDEn Core System

We have built a 4-node Hadoop cluster. To build this
system we have first deployed four virtual machines where
we have installed Ubuntu1 16.04 LTS as operating system
and Hadoop 3.1.0 for data storage. We have configured the
first virtual machine to act as the master node (name node)
and the others to act as slaves (only stores data).

On the master node, we have also installed the data
ingestion, processing and visualization tools. As a
programming language, We have used python2 because it is
more powerful than other languages in data science domain
due to the presence of many specialized libraries.

For data ingestion, we have installed Apache Kafka3 ,
Apache Flume4, and Apache Sqoop5. We used Apache Kafka
as the main data ingestion tools, because: (1) it has the ability
to read data from sensors directly. (2) It guarantees
scalability and fault tolerance. (3) It can read data in real-
time and at rest. (4) It can send the data to processing engine
and to the data storage layer. (5) It is easy to implement
using python programming language. To use Apache Kafka,
first we have installed the Apache Zookeeper6 which acts as
a coordinator that lets Apache Kafka communicate with
other technologies. Then, we created two topics: (1)

 to insert data to
HDFS (Hadoop Distributed File System) without any

used for real-time processing and will insert data to HDFS
Note that the first topic will be used for archive data only.

 We have configured Apache Flume agents to read from
Kafka topics consumers. The Flume agent is responsible of
storing data from Kafka to HDFS. In addition, we used
Apache Sqoop to read data from relational databases and
store it into HDFS. Reading archive data from relational
databases is not one of the main goals of the system, but it is
an added value to allow user to migrate their old data from
traditional warehousing system. In addition, we have used
Apache Hive7 to define the metadata of the file stored in
HDFS to make the data retrieval process more easily using
SQL-Like languages such as HiveQL and Spark-SQL.

1 https://ubuntu.com
2 https://python.org
3 https://kafka.apache.org
4 http://fume.apache.org
5 http://sqoop.apache.org
6 https://zookeeper.apache.org
7 https://hive.apache.org

90

For Data processing, our solution relies heavily on
Apache Spark8 for these main reasons: (1) it uses micro
batching processing instead of stream processing, which
more guarantee fault-tolerance, and in this solution fault
tolerance is critical even if it may cause a few milliseconds
latency [4]. (2) It can process data at rest and in real-time. (3)
Spark has a wrapper library called PySpark that allows
creating and running Apache Spark jobs in python. (4) It is
scalable so we can add more nodes when it is required.

We have created a single node Apache Spark cluster as
the first phase of deployment and we can add other slave
nodes when it is required. In addition, we have use pandas9
python library because it provides many classes and
functions that makes handling data easier.

For Data visualization, we used matplotlib 10 library
which is a Python 2D plotting library which produces
publication quality figures in a variety of hardcopy formats
and interactive environments across platforms. It also allows
drawing real-time graphs.

B. RaDEn Alarm System

The data processing and visualization is done by a python
script, where we have implemented the radiation alert
system (designed based on the Lebanese Atomic Energy
Commission requirements) that work as the following: (1)
First, the user must define a threshold value. (2) The
radiation average is calculated based on the last 30 day from
the current date. (3) Then, when the current radiation value
is higher than the sum of the radiation average and the

ause the rain
increase the radiation level. (5) If an alert was raised (any
level) and the radiation level is still high after 5 hours then a

technician to visit the sensor location to do a checkup.

IV. DEMONSTRATION OF RADEN

In this section, we demonstrate RaDEn. For our
demonstration we used a radiation dataset supplied by the
department of environmental radiation control at the
Lebanese Atomic Energy Commission (LAEC-CNRS).

A. Dataset

The dataset was provided by the LAEC-CNRS, is in
form of flat files, because accessing the sensors or the web
server (relational database) was not made due to
confidentiality issues. The dataset contains the data
collected from 2015-08-01 to 2016-08-01 from a testing
sensor that was installed in Beirut. It contains information
related to radiation such as: radiation level, temperature, rain
level, Sensor battery power, data collection time and
external battery power.

B. Starting RaDEn

Before starting the process, the user must start the
following services: (1) Hadoop cluster (Figure 2), (2)
Apache Kafka service (Figure 3), (3) Apache Spark cluster

8 https://spark.apache.org
9 https://pandas.pydata.org
10 https://matplotlib.org

(Figure 4), (4) Apache Flume agent (Figure 5), (5) Python
data processing script (if the user want to insert data to
HDFS without visualizing data on a real-time graph,
running this script is not needed).

Figure 2 - Starting Hadoop services

Figure 3 -Starting Kafka services

Figure 4 - Starting Spark services

Figure 5 - Starting Flume agent

C. Data Ingestion

To simulate data ingestion we have create a directory
where we must copy all flat files, and we created a terminal
script that creates a listener on this folder. When any file is
inserted, the script loops over the lines and send them one
by one to the Apache Kafka producer. Once the data is sent
to the Kafka producer, the Apache Flume agent sent it

91

directly to HDFS to a specific directory and the data is
replicated on the three Hadoop data nodes. Figure 6 shows
the data ingested into HDFS via Hadoop web interface.
Also, figure 7 shows that the file stored in HDFS is
replicated on 3 data nodes.

Figure 6 - Files ingested into HDFS

Figure 7 - Stored file availability

D. Radiation Monitoring

At the same time, the python script read the data from
Kafka consumer using the PySpark library, the alarm script
is applied, and the radiation level is visualized on a real-time
graph using matplotlib library. In figure 8, we have shown
sequential snapshots of the real-time graph that was
visualized during the experiments and it shows the radiation
level changes in function of date and time.

Figure 8 - Real-time graph screenshots

In addition, when an alert is raised it is shown in a
message box where the alarm level is written in the title and
the description is written in the body. In figure 9, we have
showed the level 1 alert message box.

Figure 9 - Alarm Level 1 Messagebox

E. Data Retrieval

Based on the Flat files structure and for data retrieval
purposes, we created an External Table using Apache Hive
on the Directory location in HDFS. Then we created a view
from this table to remove messy data such as duplicates
rows and rows where dose rate is null.

After created external table on HDFS directory, we can
search among the data imported to HDFS using Spark-SQL
or HiveQL console. We have to write a query based on our
requirements. As example, we need to retrieve all the data
where the radiation level is higher than 50. First, we need to
run the Spark SQL console using the spark-sql command or
hive command to start Hive console, and we can use the
following query:

SELECT * FROM vw_radiation WHERE dose_rate > 50;

In this example, it shows that the number of rows
returned is 10459 rows in 13.99 seconds as illustrated in
Figure 10.

Figure 10 Apache Hive query results.

V. CONCLUSION

In this paper, we designed a solution called RaDEn that
is able to handle a massive scale of data in real-time and

92

batch style. It allow user to process the radiation data
coming from different sources, predict any possible
radiation problems and visualize the data in real-time. In
addition, it gives the user the ability to query and retrieve
the data using a simple SQL-Like language. In addition, we
explained how we implemented this solution and we showed
a real case scenario.

We tried to cover all the challenges we identified at the
beginning of our work but unfortunately, the
implementation we have made have some limitations due to
the following issues: (1) we received a very small dataset
that cannot be considered as Big Data while our system is
designed to handle Big Data. (2) We did not get permissions
to access the sensors or the databases. (3) There is a lack of
documentation for Big Data technologies. (4) The
research time limit.

A list of works is lined up to be done in future. More
powerful tools such as bokeh11 and Kibana12 can be used to
increase performance and more options to the end-user and
are able to draw a huge number of real-time graphs at the
same time. In addition, adding some user interface will
make this this solution more powerful, because the current
implementation is not user friendly; due to the lack of user
interface, also it requires a good knowledge in SQL to be
able to retrieve data from HDFS. In addition, the solution
should be extended enhance the user the ability to visualize
the results of queries on different types of graphs.

Furthermore, we stored data as flat files in HDFS, to
improve the performance; we could create an automate job
that run periodically and move new data to another HDFS
location and convert it to Optimized Row Columnar (ORC)
files which gives faster results. Also in future extension,
distributed search engines such as Elasticsearch and Solr13
can be used for data retrieval process.

REFERENCES
[1] "Alpha, Beta, Gamma, X-Ray, and Neutron Radiation," Mirion

technologies, [Online]. Available:
https://www.mirion.com/introduction-to-radiation-safety/types-of-
ionizing-radiation. [Accessed 17 September 2018].

[2] "Ionising Radiation and Human Health," Australian government -
department of health, 07 December 2012. [Online]. Available:
http://www.health.gov.au/internet/publications/publishing.nsf/Content
/ohp-radiological-toc~ohp-radiological-05-ionising. [Accessed 17
September 2018].

[3] "Wireless Sensor Networks to Control Radiation Levels," Libelium,
19 April 2011. [Online]. Available:
http://www.libelium.com/wireless_sensor_networks_to_control_radia
tion_levels_geiger_counters. [Accessed 17 September 2018].

[4] C. Prakash, "Spark Streaming vs Flink vs Storm vs Kafka Streams vs
Samza : Choose Your Stream Processing Framework," 21 March
2018. [Online]. Available: https://www.linkedin.com/pulse/spark-
streaming-vs-flink-storm-kafka-streams-samza-choose-prakash/.
[Accessed 10 9 2018].

[5] Hsin-Fa Fang, Jeng-Jong Wang, Ing-Jang Chen and Jih-Hung Chiu,
"The application of GPS, GIS and GPRS in Environmental Radiation
Survey," Taiwan.

[6] G. Segura Millan, D. Perrin, L. Scibile, "RAMSES: The LHC
Radiation Monitoring System for the Environment and Safety," in
10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics
Control Systems, Geneva, 2005.

[7] L. R. NAIK, "An Integrated System for Regional Environmental
Monitoring and Management Based on Internet of Things,"

11 https://bokeh.pydata.org/
12 https://www.elastic.co/products/kibana
13 http://lucene.apache.org/solr/

international journal of professional engineering studies, vol. 9, no. 3,
pp. 182-186, 2017.

[8] Pablo Andrade Grossi, Leonardo Soares de Souza, Geraldo Magela
Figueiredo, Arthur Figueiredo, "Management Information System
Applied to Radiation Protection Services," in 2013 International
Nuclear Atlantic Conference - INAC 2013, Brazil, 2013.

[9] Kalpana.k, Shruti, Shweta, Bhagyasri, "An Integrated system For
Regional Environmental Monitoring and Management Based on IoT,"
Internatonal Journal of Information Technology and
ComputerEngineering, no. 16, pp. 60-64.

[10] Eran Vax, Benny Sarusi, Mati Sheinfeld, Shmuel Levinson, Irad
Brandys, Danny Sattinger , Udi Wengrowicz, Avi Tshuva, Dan
Tirosh, "ERMS Environmental Radiation Monitoring System," Beer
Sheva, Israel.

[11] -Based Radiation
Monitoring and Warning System," Romania.

[12] Xiaoyu Wanga, Zhaoguo Wang, Liyuan Xu, Deyun Chen, "Wireless
Communications Radiation Monitoring System Based on ZigBee and
GPRS," Advanced Materials Research, Vols. 403-408, no. 1662-
8985, pp. 1956-1959, 2012.

[13] Camelia Avram, Silviu Folea, Dan Radu and Adina Astilean ,
"Wireless Radiation Monitoring System," in European Conference on
Modelling and Simulation, Romania.

[14] Cheng-Jian, Z., Xian-Hua, L., Xiang-Yong, S., & Qing-Zhou, L.,
"Analysis on the correlation of atmospheric path radiation and air
pollution index," in Urban Remote Sensing Event, 2009.

[15] Baker, C., Davidson, G., Evans, T. M., Hamilton, S., Jarrell, J., &
Joubert, W., "High performance radiation transport simulations:
preparing for Titan," in International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012.

[16] Jeong, M. H., Sullivan, C. J., & Wang, S., "Complex radiation sensor
network analysis with Big Data analytics," in In Nuclear Science
Symposium and Medical Imaging Conference, 2015.

93

