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Abstract— According to some statistics published by 
Centers for Disease Control and Prevention (CDC), 1 in 50 
people approximately around the world is incapable of 
achieving some of daily’s life activities by his own due to 
paralysis. Paralysis is the partial or total inability of the human 
body to perform some movements caused by stroke, spinal 
cord injury, multiple sclerosis, birth defect, etc. Today, number 
of paralysis “victims” is increasing dramatically making over 6 
million people paralyzed around the world, with some cases 
were the physical therapy becomes unable to heal.  

Consequently, Technology has constantly been a major 
player in a large number of physical therapy applications, and 
offers many advantages for paralyzed people that the physical 
therapy is not able to provide. Recently, exoskeleton patient 
motion aiding technology was introduced in order to supply 
disabled people and regain mobility.  

The main goal of this project is to study the Sit-to-Stand and 
Stand-to-Sit transfer in 10 young healthy subjects. IMU 
(Inertial Measurement Unit) wearable sensors, more 
specifically MPU6050 sensors, are used in the performed 
experiences in order to extract desired raw data such as the 
acceleration, angular rate and inclination of lower limb 
different segments including metatarsal, shank and thigh 
segments and the inclination of the trunk. Thus, ankle, knee 
and hip joints angles were derived.  

Furthermore, extracted features are studied, analyzed and 
used to establish epochs and recognize phases of the Sit-to-
Stand gesture based on a number of previous Sit-to-Stand 
literature of art. This is accomplished using Artificial Neural 
Network, using different architectures and choosing the best 
one, which resulted in four main phases: flexion phase, transfer 
phase, extension phase and stabilization phase.  

Finally, and using the proper Neural Network with the 
higher accuracy (92.3% accuracy using the 30 layers 
architecture), a Sit-to-Stand algorithm is proposed and 
modeled. 
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I. INTRODUCTION  
Gait and Sit To Stand (STS) analysis are studies based on 
different techniques using various devices and sensors able 
to capture some human motions and extract the 
corresponding parameters and data for further applications. 
Usually, three common techniques are used: Image 
Processing, floor Force Sensors and Wearable Sensors. 

Image processing technique is performed in a special 
laboratory equipped with a set of cameras, either analog or 
digital ones.  Extracting gait and STS parameters using this 

method can be done by taking several images during the 
experience, processing, feature extraction and classification. 
[1]. 

As its name indicates, floor force sensors technique uses a set 
of force platforms which enable the user to extract and 
calculate pressure, force or pressure and force based data 
when the subject perform gait or STS tasks on the sensors. 
This technique [2], like the previous one, needs special 
equiped high end laboratories. Wearable sensors is a new 
technique that provides great results and same accuracy as 
image processing and floor force system, and overcomes 
these methods by the fact that it is less complex, since it 
doesn’t require special environment and can be performed 
in-lab, less time consuming and less costly. [3] During a STS 
or gait study, the participant has a number of sensors 
positioned on his body, usually segments and joints, in order 
to extract desired data. [3] 

      Tay et al. study was founded on Newton’s.motion.law. 
Since fair forces applied on the human body are pro rata to 
the acceleration of the latter, Tay et al  introduced a method 
by integrating two accelerometer sensors, positioned on the 
left and right ankles of a subject to stalk walking, and an 
accelerometer near the cervical vertebra in order to supervise 
different body positions during the task. [4] 

      Likewise, they were capable of evaluating some 
interesting parameters like peak acceleration and time during 
a sitting and standing tasks.  

      Inspired from Android Phone Sphere application 
allowing to estimate the direction of rotating the smartphone, 
Kai-Yu Tong & Granat studied gait and STS movements by 
placing 1-axis gyroscopes on the shank and thigh of each 
subject in order to extract every segment velocity rate. They 
conclude the efficiency of this method in order to derive 
other parameters such as inclination, orientation and number 
of movements. [5] 

Our experience and study were basically based on Tadano et 
al. [6]. They proposed a three dimension gait analysis using 
wearable, combination of 3-axis accelerometer and 3-axis 
gyroscope, sensors positioned on lower limb segments. 
Acceleration and angular velocity data were recorded, in real 
time, during walking task.  

      The direction and orientation, respectively to the 
gravitational force, were extracted from the accelerometer 
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sensors in order to compute original positions, while various 
displacements and angular velocities were recorded using the 
gyroscope sensors. 

      Tadano et al. conclude that IMU based method showed 
accurate and validate results, comparatively to other common 
techniques, of quantitative data and parameters like segments 
acceleration, inclination and angular displacement.  

Our suggested methodology in this paper will be described 
as follow : first, 50 STS tasks will be experimented on 10 
subjects. The subjects have been asked to perform 5 trials, 
while 7 IMU sensors are placed on lower limb segments and 
the trunk.  During the task, acceleration, angular velocity and 
inclination of lower limb segments and inclination of the 
trunk are recorded, using Arduino software, displayed on 
graphs, using MATLAB software, and interpreted. Joints 
angles will be derived and calculated. All these data are then 
classified using Artificial Neural Netowork, ANN, using 
various architectures. Afterwards, Receiver Operating 
Characteristic, ROC and confusion matrixes results of the 
most ideal ANN architecture are analyzed. Finally, all results 
will be used in order to suggest a STS conceptual model 
algorithm. 

 

Figure 1- Flowchart Methodology 
 

II. MATERIALS AND METHODS 

A. Inertial Moment Unit Sensors 

Motion Processing Unit 6050 (MPU-6050), a part of 
IMU-6000 family, consists of a micro-electromechanical 
system, providing a 3 Degrees of Freedom of 
acceleration and 3 Degrees of Freedom of angular 
velocities values, using respectively a 3-axis 
accelerometer and a 3-axis gyroscope. It provides 6 
Degrees of Freedom as a final result. This low priced 
sensor consumes less power and has a great performance 
comparatively to other IMU sensors. MPU-6050 sensors 
are compatible with Arduino and Raspberry pi boards 
and softwares using I2C and Serial Peripheral Interface 
(SPI) protocols. 

B. Experimentations 
10 healthy men participated in this experience, all these 
participants are between 20 and 25 years (Mean= 23 years, 
SD= 1.84), heights between 169 cm and 182 cm (Mean= 175 
cm, SD= 4.7) and weights between 85 Kg and 99 Kg (Mean= 
91.8 Kg, SD =3.89).  
 
      All participants are free of any orthopedic or arthritic 
disorder, and thus were all-able to perform the sit-to-stand 
independently without any human support or device 
assistance (e.g. knee support). 
Participants were requested to sit on an armless chair with no 
active role of their arms in the sit-to-stand task. In order to 
maintain the vertical position of the trunk, each subject uses 
the back support of the chair, and his knees flexed to 
approximately 90o with a space of 20 cm between his feet 
while placed on the ground.  
      Every participant was asked to perform 5 sit-to-stand-to-
sit trials for 13 to 14 seconds after verbal signals. 

TABLE I.  EXPERIENCE PROCESS 

 
Phase Recording time 

Sitting position 3 seconds 

Transition phase (sit-to-
stand) 

2 seconds 

Standing position 3 seconds 

Transition phase (stand-to-
sit) 

2 seconds 

Sitting position 3 seconds 

 
Instrumentation consists of 7 IMU sensors (MPU 6050), 
Arduino software and armless back supported seats.  
Sensors were positioned on 2/3 of each segment length 
(metatarsal, shank and thigh) of the left and the right parts, 
and 1 IMU is placed on the T3 thoracic vertebrae of the trunk 
illustrated in Fig.2 and Fig.3. 
      In this study, segments acceleration values, acquired 
from the accelerometer and segments angular velocity 
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values, acquired from the gyroscope, were collected 
simultaneously, displayed on the serial monitor of Arduino 
software and saved in a .txt format file. 
Hip, knee and ankle angles were calculated from the 
acceleration values.  The right placement of the IMU sensors 
is crucial to features extraction, because each sensor will 
indicate to a certain list of variables all obtaining to one 
parameter.  
Each sensor will be coded to one parameter as illustrated in 
table II.  

The angles calculation is shown in the following formulas: 

𝒑 = 𝒂𝒓𝒄𝒕𝒂𝒏  (
𝑨𝒙

𝑨𝒚 𝟐 + 𝑨𝒛 𝟐  
) 

𝜱 = 𝒂𝒓𝒄𝒕𝒂𝒏  (
𝑨𝒚

𝑨𝒙 𝟐 + 𝑨𝒛 𝟐  
) 

Ɵ = 𝒂𝒓𝒄𝒕𝒂𝒏  (
𝑨𝒙 𝟐 + 𝑨𝒚 𝟐  

𝑨𝒛
) 

 
 

TABLE II.  SENSORS PLACEMENT 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

	
  

Figure 2- IMU sensors placement 

	
  

Figure 3- Trunk IMU sensor Placement 

C. Proposed protocol 
In the first place, the subject is in a sitting position with feet 
positioned on the ground. 
• Trunk, maintained in a nearly vertical position, and 

thigh, maintained in a nearly horizontal position 
relatively to the ground, forms a hip angle of 95 o. 

• Shank, maintained in a nearly vertical position 
relatively to the ground, forms with       the thigh a 
knee angle of 85 o. 

• Metatarsal, maintained in a nearly horizontal position 
relatively to the ground,           forms with 
the shank an ankle angle in a range of 85 o. 

The first step, flexion phase, is demarcated by the 
movement of the subject’s upper body part, especially the 
trunk, while lower body segments are immobile. The main 
base support in this phase is the seat or the chair.  
 So it starts from the sitting position and end when 
the trunk is flexed before lifting off from the seat or initial 
position.  
• Knee and ankle joints angles remain the same 
while the trunk is flexed in a forward position resulting in a 
decrease of the hip joint angle of 35o to achieve a flexion 
position of 60 o. 
• Thigh, shank and metatarsal segments accelerations 
remain the same. 
• Thigh, shank and metatarsal segments angular 
velocity remain the same 
The second step, extension phase is differentiated from the 
first one from by several mechanical points. It is completed 
when maximum forward flexed posture is reached. A 
“transfer” of the base support occurs: the subject passes 
from the seat support to the feet support. The lower body 
movement accompanies the upper body movement. 
      This step begins when the subject starts to lift off from 
the seat and ends before starting the extension motion of 
different joints. 
      The third step, extension phase, also mechanically 
differs from the first and the second phase. We can simply 
say that the extension phase is the translation of the body in 
a vertical direction. 
The Stabilization phase represents the final stage of a STS 
transfer.  
Hip and knee angles of 170o allow us to conclude that 
metatarsal and shank segment are nearly orthogonal, while 
shank, thigh and trunk are approximately aligned in a 

Sensor Place 

S1 Trunk 

S2 Right thigh 

S3 Left thigh 

S4 Right shank 

S5 Left shank 

S6 Right metatarsal 

S7 left metatarsal 
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vertical direction nearly perpendicular to the horizontal 
direction of the ground. 
The different STS phases are illustrated in Fig.4. 
 

 
Figure 4- STS Phases algorithm 

Sit-to-Stand phases will be named respectively class 1, class 
2, class 3 and class 4. 

D. Features Extraction 
All extracted features were recorded using Arduino 
software. Here is a table that displays each feature number 
and name. 
 

TABLE III.  FEATURES EXTRACTION 

 
 

Feature Number 
 

Feature Name 

F.E.1 Trunk angles 

F.E.2 Thigh Angles 

F.E.3 Thigh Angular Velocity 

F.E.4 Thigh Acceleration 

F.E.5 Shank Angles 

F.E.6 Shank Angular Velocity 

F.E.7 Shank Acceleration 

F.E.8 Metatarsal  Angles 

F.E.9 Metatarsal  Angular Velocity 

F.E.10 Metatarsal  Acceleration 

 

Each experience is made for 13 seconds approximately; 
each sensor can sense a value at 0.2 seconds. Thus for each 
feature status above we will have, a certain number of 
values that will be noted N, where N =  65 values. However, 
the total amount of values obtained at each experience that 
will be noted X, is equal to the N x Number of features = 10 
x 65 = 650. To add, each experience is repeated 5 times, to 
get the most accurate values possible. Total Amount of 
Values (for each subject) , knowing that the experiment has 
been repeated 5 times  is equal to 3250 values. For the 10 
subjects, the total Amount of Values (for all subject) is 
equal to 32500 values.  

 
      In general, when two bones are re-joined, a joint is 
developed. The joint movement is completed by the 
presence of muscles. Since we are interested in the lower 

body parts and the trunk to study the Sit-to-Stand task, it is 
fundamental to use some anatomical terms related to 
different joints movement: 
-Flexion: causes two parts or segments to get closer, 
decreasing the separating angle between them. It is usually 
used to describe a flexion movement of the hip and knee 
joints. 
-Extension: causes two parts or segments to separate, 
increasing the separating angle between them. It is usually 
used to describe the extension movement of the hip and 
knee joints. 
-Dorsiflexion: is the flexion of the ankle joint 
-Plantar flexion: is the extension of the ankle joint. 
 
Fig. 5 represents an ankle joint, formed by the metatarsal 
and the shank segments, with M and S the angles of 
respectively metatarsal and shank segments, while M’ is the 
internal alternate angle of the S relatively to the ground. M 
is measured from the IMU sensor of the metatarsal segment, 
and thus M’ is concluded from this sensor. S is measured 
from the IMU sensor of the trunk segment. Ankle angle can 
be seen on the figure as the sum of M’ and S angles. 

 
Figure 5- Ankle joint extraction 

 
Same studies have been done for the knee joint, the hip 
angle. We only limited the calculation on the X-plan, since 
flexion and extension are only performed in the lateral plan. 
 

E. Processing workflow 
Extracted features have been fed into an artificial neural 
network. Fig.6 illustrated the general workflow. 

 
Figure 6- General workflow 
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After extracting features from MATLAB workspace, 32 480 
data were introduced as input vectors to the ANN. In this 
statistical analysis, 10 samples were tested.  The set of 
variables could be resumed as follow : X-axis metatarsal 
angles, X-axis shank angles, X-axis thigh angles, X-axis 
trunk angles, X-axis metatarsal angular velocity, X-axis 
shank angular velocity, X-axis thigh angular velocity, X-axis 
metatarsal acceleration, X-axis shank acceleration, X-axis 
thigh acceleration. Several neural network architectures were 
employed in order to find the most appropriate one using 5, 
10, 15, 20, 25, 30 and 35 neurons per hidden layer.  

	
  

Figure 7- ANN Algorithm 
 

Fig. 7 illustrates the adopted ANN algorithm. 

III. RESULTS 
Fig. 8 illustrates different trunk inclinations during the 

task. As seen, 5 different steps can be recognized easily. 
 TABLE IV- DIFFERENT ANN ARCHITECTURE AD THEIR RESULTING 

ACCURACY 

 
Figure 8- Trunk Angles Graph 

Phase 1: window between 0 x 0.2 sec and 10 x 0.2 sec. It 
displays a constant curve of 87 degrees, which allows us to 
conclude that the subject is at rest. In fact, these values are 
related to a perpendicular posture of the trunk respectively to 
the horizontal (ground) with values approximately close to 
90 degrees.  

      Phase 2: window between 10 x 0.2 sec and 15 x 0.2 
sec. It displays a rapid decrease of the trunk inclination curve 
of 40 degrees, going from 87 degrees to 47 degrees. In 
includes a forward movement of the trunk since the angle 
formed with the horizontal is decreasing and the trunk is 
getting closer to the thigh.  

      Phase 3: window between 15 x 0.2 sec and 20 x 0.2 
sec. The curve is still in a descending direction, but relatively 
slower than the previous one. Inclination value passes from 
47 degrees to 30 degrees where it attempts its minimum 
value. The trunk still performs a flexion motion. 

      Phase 4: window between 20 x 0.2 sec and 25 x 
0.2sec. A sudden increase of the curve occurs from 30 
degrees to 97 degrees concluding that the trunk is moving in 
the opposite direction of phases 2 and 3: it is getting further 
from the thigh, and angle between the trunk and ground is 
getting bigger. The trunk can be said to perform an extension 
motion.  

Phase 5: window between 25 x 0.2 sec and 40 x 0.2 sec. 
the curve maintains a constant value of 97 degrees, which 
means that the trunk is in a vertical posture relatively to the 
ground.  

The study has been elaborated for the different features. 
The features were fed into an artificial neuronal network.   

Different ANN architecture accuracy results are presented in 
table IV. The best results have been obtained for the 30 
hidden layers ANN architecture. 

Referred to the resulted test confusion matrix, trained inputs 
provides a total precision of 92.3% and total error of 7.7%, 
showed in the blue cell of the matrix. Precision and accuracy 
values corresponding to each output-target class, represented 
in green cells in the matrix, were as follow: 

-Class-target 1: 95.0% and 93.3%. 
-Class-target 2: 90.4% and 94.7%. 
-Class-target 3: 95.8% and 88.7%. 
-Class-target 4: 89.4 and 92.3%. 
Results are illustrated in Fig.9. 

 

ANN architecture (hidden layers) Accuracy result (%) 

5  64.1 

10 76.0 

15 88.5 

20 89.9 

25 90.6 

30 92.8 

35 92.6 
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Figure 9- Confusion matrix using 30 hidden layers 

 

 
Figure 10- ROC of STS classes using 30 hidden layers 

 

      As already stated the best ROC wished, is when the 
curves starts so close to the y-axis, to reach the closer it can 
get, to the left-upper corner and then to go parallel with x-
axis to reach the closest to the right-upper angle. 

      However, the 4 curves fits perfectly the description 
stated above. With area under curves of the 4 classes ranging 
from, 0.887 to 0.993, this is by far the best classification the 
MLP can reach. Having a maximum ration of true positive 
rate over the false positive rate reaching a 0.993 AUC.  

IV. CONCLUSION 

We presented a full study of the STS motion based on 
experiences made on 10 healthy subjects. After 
understanding different factors that affect the movement and 
biomechanics behind, we used 6 IMU sensors placed on the 
metatarsal, shank and thigh segments of the lower limb parts, 
and 1 IMU sensor on the trunk to extract and record STS 
motion parameters such as the acceleration, angular velocity, 
inclination and joint angles. In order to classify this data, we 
used the Artificial Neural Network Toolbox in MATLAB. 
By trying different architectures, we were able to each an 
accuracy of 92.3% using the 30 layers architecture. Finally, 
we proposed a conceptual algorithm model of the STS 
motion based on analyzed results and visual observation of 
different steps during the task. STS analysis has been always 
an interesting study in different biomedical, biomechanics 
and physical therapy. Improving our suggested method can 
be used to study STS performance in elderly and obese 
people or patients representing a Parkinson disease, impaired 
postural control, etc. Higher accuracy, using ANN based 
classification can be reached by increasing number of trials 
per subject. Furthermore, our extracted features can be used 
as a reference input to design a Patient Motion Aid 
exoskeleton to assist disabled people in achieving a STS task 
by their own.  
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